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Appendices
A. Proofs of Section 4.1
Proof of Theorem 1. For any positive x+ and negative x−, 1(wTx+ ≤ wTx−) is monotonically decreasing in wTx+

assigned to x+. Thus the quantity 1
β

∑
x+∈Z+

1(wTx+ ≤ wTx−) for any x− ∈ Z− is minimized by top ranked β positives.

Define r(w;x+
(1)w

, . . . x+
(β)w

, x−) := 1
β

∑β
i=1 1(wTx+

(i)w
≤ wTx−). This function is monotonically increasing in wTx−

assigned to x−. Hence,

R̂pAp@k(w;x+
(1)w

, . . . x+
(β)w

, Z−) =
1

k

∑
x−∈Z−

r(w, x+
(1)w

, . . . x+
(β)w

, x−)

is maximized by top k negatives. Therefore,

R̂pAp@k(w;S) = max
Z−⊆S−,
|Z−|=k

min
Z+⊆S+,
|Z+|=β

1

βk

∑
x+∈Z+

∑
x−∈Z−

1(wTx+ ≤ wTx−)

= max
Z−⊆S−,
|Z−|=k

min
Z+⊆S+,
|Z+|=β

R̂AUC(w;Z+, Z−),

where R̂AUC(w;Z+, Z−) is the AUC between the subset of positives Z+ and the subset of negatives Z−. By using the
same argument first on negatives and then on positives, we get

R̂pAp@k(w;S) = min
Z+⊆S+,
|Z+|=β

max
Z−⊆S−,
|Z−|=k

R̂AUC(w;Z+, Z−),

as well. Hence, the order of the min-max over subsets Z− and Z+ does not affect pAp@k and can be interchanged.

Lemma 1. Let Z̄+ = {z̄+
1 , . . . , z̄

+
β } and Z̄− = {z̄−1 , . . . , z̄

−
k } be the set of instances in the top β and top k positions in the

ranking of positive instances and negative instances (in descending order of scores) by wTx, respectively. Then the (outer)
maximum of the minimum value in Eq. (6) is attained at Z̄+ and Z̄−.

Proof. By expanding (6), we have that

R̂ramp
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

min
Z+⊆S+

|Z+|=β

max
π∈Πβ×k

1

βk

 β∑
i=1

k∑
j=1

πi,j +

k∑
j=1

qjw
T z−j −

β∑
i=1

piw
T z+

i

 , (18)

where pi =
∑k
j=1 πi,j ≥ 0 and qj =

∑β
i=1 πi,j ≥ 0. For any subset of positive instances Z+ = {z+

1 , . . . , z
+
β } ⊆ S+, we

assume w.l.o.g. that wT z+
1 ≥ · · · ≥ wT z

+
β (this ensures that the identity of each z+

i is unique). Similarly, for any subset of
negative instances Z− = {z−1 , . . . , z

−
k } ⊆ S−, we assume w.l.o.g. that wT z−1 ≥ · · · ≥ wT z

−
k . Notice that in (18), only the

last term depends on the subset Z+. Moreover, in general, the min and the max (over π) cannot be exchanged; however,
notice that since pi’s are always non-negative for any π ∈ Πβ×k and set Z− ⊆ S−, we may push the minimum inside as
shown below:

R̂ramp
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

max
π∈Πβ×k

1

βk

 β∑
i=1

k∑
j=1

πi,j +

k∑
j=1

qjw
T z−j − max

Z+⊆S+

|Z+|=β

β∑
i=1

piw
T z+

i

 .
For any fixed π (or equivalently pi’s), the last term above is maximized when the subset Z+ contains the positives with the
highest scores, and in particular, the top β ranked positives by w, denoted by Z̄+ = {z̄+

1 , . . . , z̄
+
β }. Similarly, notice that

in (18), only the second term depends on the subset Z−. Therefore, Eq.(18) can be written as follows:

R̂ramp
pAp@k(w;S) = max

π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j −
1

βk

β∑
i=1

piw
T z̄+

i + max
Z− ⊆ S−
|Z−| = k

1

βk

k∑
j=1

qjw
T z−j

 .
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Since qj ≥ 0 for all j for any fixed π (or equivalently qj’s), the last term above is maximized when the subset Z− contains
the negative with the highest scores, and in particular, the top k ranked negatives by w.

Proof of Proposition 1. Since the term in (4) upper bounds the AUC performance measure between the set of positives S+

and the set of negatives S−, the ramp surrogate (6), by construction, upper bounds the pAp@k metric.

Moreover, since pi, qj ≥ 0 for all i, j in (18), we observe from Lemma 1 that the set of positives and the set of negatives
selected are Z̄+ = {z̄+

1 , . . . z
+
β } = {z+

(1)w
, . . . z+

(β)w
} i.e. the top β positives and Z̄− = {z̄−1 , . . . z

−
k } = {z−(1)w

, . . . z−(k)w
}

i.e. the top k negatives, respectively, ranked in decreasing order by wTx. The ramp loss can be written as:

R̂ramp
pAp@k(w;S) = max

π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j −
1

βk

β∑
i=1

p(i)ww
T z+

(i)w
+

1

βk

k∑
j=1

q(j)ww
T z−(j)w


= max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w −
1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)ww
T z+

(i)w
+

1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)ww
T z−(j)w


= max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w [1− wT (z+
(i)w
− wT z−(j)w)]

 , (19)

where the ramp loss in the first step is another way to write eq. (18) when the subset Z̄+ and Z̄− are chosen. From (19), it
is easy to find the optimum π̄, i.e., π̄(i)w,(j)w = 1 if (1− wT (z̄+

(i)w
− z̄−(j)w)) ≥ 0, and 0 otherwise. Therefore, the ramp

surrogate is 0 iff the weak β-margin condition (Definition 2) holds in the data, i.e., there is set of β positives which are
separated by negatives by a margin of 1.

Proof of Proposition 2. One simple way to construct a surrogate for the pAp@k metric is by replacing the indicator function
in (1) by a convex, monotone, Lipschitz, classification surrogate, e.g., the hinge surrogate:

R̂hinge
pAp@k(w;S) :=

1

βk

β∑
i=1

k∑
j=1

(1− (wTx+
(i)w
− wTx−(j)w))+, (20)

where x+
(i)w

and x−(j)w denotes the positive and negative instances in S+ and S− ranked in i-th and j-th position (among
positives and negatives, in decreasing order of scores) by w, respectively. From (19), we observe that the hinge loss surrogate
is equal to the ramp surrogate for the pAp@k metric, i.e.

R̂hinge
pAp@k(w;S) = R̂ramp

pAp@k(w;S).

When n+ ≤ k, we consider all the positives in the data, and as discussed, the pAp@k metric reduces to partial-AUC with
false positive range being [0, k

n−
]. From Theorem 3 of (Narasimhan & Agarwal, 2017), the above hinge loss based surrogate

(equiv. the ramp surrogate) becomes convex.

However, when n+ > k, then the above surrogate is non-convex. We provide a counter example to support our claim.
Consider the following 2-dimensional example. Let k = 2, w1 = [−1, 0], w2 = [0,−1], and λ = 0.5. We take w̃ =
λw1+(1−λ)w2. Consider the feature matrix x = [[−1, 0], [−1,−1], [1, 0], [1, 0], [0, 1]] and the true labels y = [0, 0, 1, 1, 1].
We can observe that in this case, R̂ramp

pAp@k(w̃;S) = 2.25, R̂ramp
pAp@k(w1;S) = 2.5, and R̂ramp

pAp@k(w2;S) = 1.5. This means that

R̂ramp
pAp@k(w̃;S) > λR̂ramp

pAp@k(w1;S) + (1−λ)R̂ramp
pAp@k(w2;S). Thus, the ramp surrogate (hinge surrogate) is non-convex.

B. Proofs of Section 4.2, Section 4.3, and Section 4.4
Proof of Proposition 3. The average surrogate is constructed by replacing the last maximum in (9) by average over all
the subsets. Thus, the average surrogate upper bounds the ramp surrogate and hence the metric pAp@k. For conditional
consistency, let us recall the definition of average surrogate:

R̂avg
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j +
1

βk

β∑
i=1

k∑
j=1

πi,jw
T z−j −

1

βk

 1

n+

n+∑
l=1

wTx+
l

 β∑
i=1

k∑
j=1

πi,j

 .
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The maximum over finite sets can be interchanged. Thus, we can write the average surrogate as follows:

R̂avg
pAp@k(w;S) = max

π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j −
1

βk

 1

n+

n+∑
l=1

wTx+
l

 β∑
i=1

k∑
j=1

πi,j + max
Z−⊆S−
|Z−|=k

1

βk

β∑
i=1

k∑
j=1

πi,jw
T z−j

 .
Similar to the proof of Lemma 1, the inner maximum is achieved by the top-k negatives as scored by the scoring function
wTx. Thus,

R̂avg
pAp@k(w;S) = max

π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j +
1

βk

β∑
i=1

k∑
j=1

πi,(j)ww
T z−(j)w −

1

βk

 1

n+

n+∑
l=1

wTx+
l

 β∑
i=1

k∑
j=1

πi,j


= max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,(j)w +
1

βk

β∑
i=1

k∑
j=1

πi,(j)ww
T z−(j)w −

1

βk

 1

n+

n+∑
l=1

wTx+
l

 β∑
i=1

k∑
j=1

πi,(j)w


= max
π∈Πβ×k

1

βk

β∑
i=1

k∑
j=1

πi,(j)w

1 + wT z−(j)w −

 1

n+

n+∑
l=1

wTx+
l




= max
π∈Πβ×k

1

βk

β∑
i=1

k∑
j=1

πi,(j)w

1 + wT z̄−(j)w −

 (n+ − β)!β!

n+!

∑
Z̃+∈Zuo

1

β

β∑
i=1

wTxi∈Z̃+


 ,

where Zuo is the set of all (unordered) sets of positives of size β, and the last step follows from the fact that average score of
all the positives is equal to the average of the mean over all subsets of size β. From the above equation, it is easy to find the
optimum π̄ ∈ Πβ×k, i.e., π̄i,(j)w = 1 if (1 + wT z−(j)w −

1
n+

∑n+

l=1 w
Tx+

l ) >= 0, and 0 otherwise. Clearly, if there exists a

scoring function w which satisfies the β-margin condition, then R̂pAp@k(w;S) = R̂avg
pAp@k(w;S) = 0.

Before proving Proposition 4, we prove the following Lemma which states that that the argument maximum over π ∈ Πn+×k
in TS surrogate can be found in a restricted space of ordering matrices where any two positives separated by a negative are
sorted in decreasing order of scores by wTx. To this end, recall that the TS surrogate is defined as:

R̂TS
pAp@k(w;S) := max

Z−⊆S−
|Z−|=k

max
π∈Πn+×k

1

βk

 β∑
i=1

k∑
j=1

π(i)π,j −
n+∑
i=1

piw
Tx+

i +

k∑
j=1

qjw
T z−j

 ,
where pi =

∑k
j=1 πi,j and qj =

∑n+

i=1 πi,j . Similar to the proof of Proposition 3, we observe that the argmax over
Z− ⊆ S−, |Z−| = k is attained at the top-k negatives Z− according to wTx, and the combinatorial optimization problem
over Πn+×k becomes equivalent to:

max
π∈Πn+×k

1

βk

 β∑
i=1

k∑
j=1

π(i)π,j −
n+∑
i=1

piw
Tx+

i +

k∑
j=1

q(j)ww
T z−(j)w

 . (OP1)

Notice that the top-β positives in the first term above are different for different ordering matrices π ∈ Πn+×k. Hence, one
may simplify the above optimization problem and search the argmax, for any given w ∈ Rd, over a restricted space of
ordering matrices defined as:

Πw
n+×k = {π ∈ Πn+×k | ∀ j, i1 < i2 : π(i1)w,j ≤ π(i2)w,j}, (21)

where (i)w denotes the index of the i-th ranked positive (among the positive instances) , when the instances are sorted in
descending order by wTx. The set in (21) is the set of all ordering matrices in which any two positive instances that are
separated by a negative instance are sorted according to the score wTx in decreasing order. Notice that this approach of
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searching the optimum in the restricted search space is similar to the approach for optimizing R̂tight
pAUC(γ, δ) surrogate, where

0 < γ < δ < 1, for the pAUC performance measure (Narasimhan & Agarwal, 2017) in the false positive range (γ, δ). This
is expected since both R̂TS

pAp@k(w;S) for pAp@k and R̂tight
pAUC for pAUC take features from all the positives after restricting

to (top-k) negatives. The difference is that the R̂TS
pAp@k(w;S) further restricts ordering of positives. Thus the solutions are

entirely different as we seek positives to be further restricted in a certain order. Restricting our search to Πw
n+×k, we have:

Lemma 2. The solution π̄ to the optimization problem (OP1) lies in Πw
n+×k.

Proof. The proof follows by contradiction. Let us suppose that π̄ /∈ Πw
n+×k. Then, ∃j, i1 < i2 such that π̄(i1)w,j > π̄(i2)w,j ,

which essentially means that π(i2)w,j = 0 and π(i1)w,j = 1. That is, π̄ ranks x+
(i2)w

above x−j , which is further ranked
above than x+

(i1)w
, and hence the number of negatives above the (i1)w-th positive is greater than the number of negatives

above the (i2)w-th positive, i.e. p̄(i1)w ≥ p̄(i2)w . Now let us construct another ordering π′ in which the instances x+
(i1)w

and
x+

(i2)w
are swapped, i.e. for all j′ with π̄(i1)w,j′ = 1 and π̄(i2)w,j′ = 0, we set π′(i1)w,j′

= 0 and π′(i2)w,j′
= 1. This would

entail that p′(i1)w
≤ p′(i2)w

. Then it can be seen that the loss term (first term in (OP1)) is the same for π̄ as for π′. Define
∆̄ := −(p̄(i1)ww

Tx+
(i1)w

+ p̄(i2)ww
Tx+

(i2)w
) and ∆′ := −(p′(i1)w

wTx+
(i2)w

+ p′(i2)w
wTx+

(i1)w
). Clearly, we have ∆̄′ ≥ ∆̄

since wTx+
(i1)w

≥ wTx+
(i2)w

. Therefore, the second term in (OP1) increases leading to a higher objective value in (OP1).
This contradicts the fact that π̄ is a maximizer.

Given Lemma 2, we may now prove Proposition (4).

Proof of Proposition 4. As discussed in Section 4.3, the TS surrogate upper bounds the pAp@k metric by construction. For
consistency, let us recall that the definition of TS surrogate:

R̂TS
pAp@k(w;S) := max

Z−⊆S−
|Z−|=k

max
π∈Πn+×k

1

βk

 β∑
i=1

k∑
j=1

π(i)π,j −
n+∑
i=1

piw
Tx+

i +

k∑
j=1

qjw
T z−j

 .
Again the outer max is satisfied by the top-k negatives. Moreover, using Lemma 2, we may write the TS surrogate as:

R̂TS
pAp@k(w;S) = max

π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)π,j −
1

βk

n+∑
i=1

piw
Tx+

i +
1

βk

k∑
j=1

q(j)ww
T z−(j)w


= max
π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)π,(j)w −
1

βk

n+∑
i=1

piw
Tx+

i +
1

βk

k∑
j=1

q(j)ww
T z−(j)w

 .
Now observe that for any π ∈ Πw

n+×k, π(i)π,j = π(i)w,j , as there always exists an ordering consistent with π in which all
the positives are sorted in decreasing order by the score function wTx. This means that the ordering of positives is also
fixed, now we must fill the entries of the matrix π. So, our objective is to solve the following:

R̂TS
pAp@k(w;S)

= max
π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w −
1

βk

n+∑
i=1

piw
Tx+

i +
1

βk

k∑
j=1

q(j)ww
T z−(j)w


= max
π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w −
1

βk

n+∑
i=1

k∑
j=1

π(i)w,(j)ww
Tx+

(i)w
+

1

βk

n+∑
i=1

k∑
j=1

π(i)w,(j)ww
T z−(j)w


= max
π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w [1− wTx+
(i)w

+ wT z−(j)w ] +
1

βk

n+∑
i=β+1

k∑
j=1

π(i)w,(j)w [−wTx+
(i)w

+ wT z−(j)w ]

 (22)
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The second term goes to zero if all the positives are just separated by negatives, and the first term goes to zero if the top-β
positives further outrank all the negatives by a margin of 1. Thus, in conclusion, the TS surrogate R̂TS

pAp@k(w;S) = 0 under
the moderate β-margin condition.

Proof of Proposition 5. By construction, the ramp surrogate (6) upper bounds the pAp@k metric (1). Moreover, by writing
ramp surrogate as in equation (9) and using the first inequality in the following

max
Z+⊆S+

|Z+|=β

β∑
i=1

piw
T z+

i ≥
(n+ − β)!

n+!

∑
Z̃+∈Z

β∑
i=1

piw
T z+

i∈Z̃
≥ min
Z+⊆S+

|Z+|=β

β∑
i=1

piw
T z+

i ,

where Z is the set of all ordered sets of size β, we construct the average surrogate (10). Since maximum is greater than
the mean, the average surrogate upper bounds ramp surrogate. Lastly, since mean is greater than the minimum, the max
surrogate (defined in Appendix C, equation (24)) upper bounds the average surrogate. This establishes the following:

R̂pAp@k(w;S) ≤ R̂ramp
pAp@k(w;S) ≤ R̂avg

pAp@k(w;S) ≤ R̂max
pAp@k(w;S).

Now, from (22), it is easy to write the TS surrogate as:

R̂TS
pAp@k(w;S) = R̂ramp

pAp@k + max
π∈Πw

(n+−β)×k

 1

βk

n+∑
i=β+1

k∑
j=1

π(i)w,(j)w [−wTx+
(i)w

+ wT z−(j)w ]

 .
The second term on the right hand side above is non-negative, hence we establish that

R̂ramp
pAp@k(w;S) ≤ R̂TS

pAp@k(w;S).

C. The Max Surrogate for pAp@k
Let us take the form of ramp surrogate as defined in (9), i.e.:

R̂ramp
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

max
π∈Πβ×k

1

βk

 β∑
i=1

k∑
j=1

πi,j +

k∑
j=1

qjw
T z−j − max

Z+⊆S+

|Z+|=β

β∑
i=1

piw
T z+

i

 . (23)

Since pi ≥ 0 ∀ i, the last term is maximized by the top-β positives in descending order of scores by wTx. Thus by replacing
the maximum over Z+ in (23) by a minimum over Z+ and pushing that outside, we relax the ramp surrogate in order to
obtain the max surrogate defined below:

R̂max
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

max
π∈Πβ×k

1

βk

 β∑
i=1

k∑
j=1

πi,j +

k∑
j=1

qjw
T z−j − min

Z+⊆S+

|Z+|=β

β∑
i=1

piw
T z+

i


= max
Z−⊆S−
|Z−|=k

max
Z+⊆S+

|Z+|=β

max
π∈Πβ×k

1

βk

 β∑
i=1

k∑
j=1

πi,j +

β∑
i=1

k∑
j=1

πi,jw
T z−j −

β∑
i=1

k∑
j=1

πi,jw
T z+

i

 . (24)

This surrogate is a point-wise maximum over convex functions in w, thus it is convex. It also upper bounds pAp@k, since
it upper bounds the ramp surrogate. This surrogate is consistent w.r.t. pAp@k under the strong (β, δ)-margin condition
defined as follows:

Definition 5. Strong (β, δ)-margin (Kar et al., 2015): A dataset S satisfies the strong (β, δ)-margin condition if for some
scoring function f ,

min
i∈S+

fi − max
j∈S−

fj ≥ δ. (25)

We say that f realizes this margin. We refer the strong (β, 1)-margin condition as simply the strong β-margin condition.

Proposition 6. For any scoring function wTx, we have R̂max
pAp@k(w;S) ≥ R̂pAp@k(w;S). Moreover, if the scoring function

wTx realizes the strong β-margin condition over a dataset S, then R̂max
pAp@k(w;S) = R̂pAp@k(w;S) = 0.
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Proof. From (24), we have:

R̂max
pAp@k(w;S) = max

Z−⊆S−
|Z−|=k

max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j +
1

βk

k∑
j=1

qjw
T z−j − min

Z+⊆S+

|Z+|=β

1

βk

β∑
i=1

piw
T z+

i

 .
Since pi ≥ 0 for all i, the min in the last term is minimized by the bottom β positives according to the score function
wTx. Let us denote the set of bottom β positives by Z+ = {z+

(n+−β+1)w
, . . . , z+

(n+)w
}. Also, only the second term

depends on the set of negatives and since qj’s are non-negative for all j, the objective is maximized by the top-k negatives
Z̄− = {z−(1)w

, . . . , z−(k)w
} according to the score function wTx. So, π ∈ Πβ×k only measures the relative ordering of the

bottom β positives and the top k negatives as discussed below:

R̂max
pAp@k(w;S) = max

π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

πi,j +
1

βk

k∑
j=1

q(j)ww
T z−(j)w −

1

βk

β∑
i=1

p(n+−β+i)ww
T z+

(n+−β+i)w


= max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

π(n+−β+i)w,(j)w +
1

βk

k∑
j=1

q(j)ww
T z−(j)w −

1

βk

β∑
i=1

p(n+−β+i)ww
T z+

(n+−β+i)w


= max
π∈Πβ×k

 1

βk

β∑
i=1

k∑
j=1

π(n+−β+i)w,(j)w [1− wT (z+
(n+−β+i)w

− z−(j)w)]

 (26)

It is easy to see that π̄(n+−β+i)w,(j)w = 1[1 − wT (z−(n+−β+i)w
− z+

(j)w
) ≥ 0], and under strong (β, δ)-margin condition

(Definition 5), the upper bounding surrogate R̂max
pAp@k(w;S) = R̂pAp@k(w;S) = 0.

D. Subgradients of the Proposed Surrogates for pAp@k
In this section, we discuss the subgradients of the proposed surrogates. This involves first finding the argument maximum
over the subsets Z−, Z+ (if any) and the ordering matrix π, and then computing the gradient step w.r.t the model w. We will
also mention some interesting observations regarding the surrogates while computing their subgradients.

D.1. Subgradient of R̂avg
pAp@k(w;S)

In R̂avg
pAp@k(w;S) (10), the arguments over which the maximum is searched are restricted to Z− and π. Following the

same arguments as in the proof of Proposition 3, we observe that the argmax over Z− ⊆ S−, |Z−| = k is attained at the
top-k negatives Z− according to the score function wTx (line 1 of Algorithm 2). Moreover, the remaining combinatorial
optimization problem becomes equivalent to:

arg max
π∈Πβ×k

β∑
i=1

k∑
j=1

πi,j

1− wT
 1

n+

n+∑
l=1

x+
l − z

−
j


 . (OP2)

Notice that the objective (OP2) can be maximized by maximizing each term separately; the optimal matrix is then given by
(line 3 of Algorithm 2):

πi,j = 1

1− wT
 1

n+

n+∑
l=1

x+
l − z

−
j

 ≥ 0

 .
This optimal matrix π is also a valid ordering matrix in Πβ,k, which interestingly, puts all the positives below the j-th
negative if the average score of the positives is less than one plus score of the j-th negative. In particular, we obtain a
rank-1 π̄ matrix. After obtaining (Z−, π) for R̂avg

pAp@k(w;S), we can compute the sub-gradient which is shown (in line 4 of
Algorithm 2) as follows:

∂wR̂
avg
pAp@k(w;S) =

1

βk

β∑
i=1

k∑
j=1

πi,j

z−j − 1

n+

n+∑
l=1

x+
l

 .
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D.2. Subgradient of R̂max
pAp@k

Since maximum over finite sets can be interchanged in the definition of R̂max
pAp@k(w;S)in (24) and since πi,j ≥ 0 for all i, j, we

find that the argmax over Z− ⊆ S−, |Z−| = k is attained at the top-k negatives Z− := {z(1)w , . . . , z(k)w} = {z1, . . . , zk}
according to wTx (line 1 of Algorithm 2). Similarly, from the proof of Proposition 6, we find that the argmax over
Z+ ⊆ S+, |Z+| = β is attained at the bottom-β positives Z+ := {z(n+−β+1)w , . . . , z(n+)w} = {z 1, . . . , zβ} according to
wTx (line 6 of Algorithm 2). All that remains is a combinatorial optimization problem to compute the relative ordering
matrix between the bottom-β positives and top-k negatives as scored by wTx:

arg max
π∈Πβ×k

1

βk

β∑
i=1

k∑
j=1

πi,j

[
1− wT (z+

i − z
−
j )
]
. (OP3)

Notice that the subgradient of R̂max
pAp@k(w;S) requires the relative ordering of the bottom-β positives and top-k negatives,

which is unlike the ramp surrogate. The objective in (OP3) can now be maximized by optimizing each term separately. The
optimal matrix is given by (line 7 of Algorithm 2)

πi,j = 1
[
1− wT (z+

i − z
−
j ) ≥ 0

]
.

This optimal matrix π is a valid ordering matrix in Πβ,k as well. Hence (Z+, Z−, π) gives us the desired argument
maximums for R̂max

pAp@k(w;S). We can compute the sub-gradient which is shown (in line 8 of Algorithm 2) as follows:

∂wR̂
max
pAp@k(w;S) =

1

βk

β∑
i=1

k∑
j=1

πi,j

[
z−j − z+

i

]
.

D.3. Subgradient of R̂TS
pAp@k(w;S)

Similar to the procedure for R̂avg
pAp@k(w;S), we observe that the argmax over Z− ⊆ S−, |Z−| = k in (14) is attained at the

top-k negatives Z− := {z(1)w , . . . , z(k)w} according to wTx (line 1 of Algorithm 2), and the combinatorial optimization
problem over Πn+×k becomes equivalent to (OP1):

arg max
π∈Πn+×k

1

βk

 β∑
i=1

k∑
j=1

π(i)π,j −
n+∑
i=1

k∑
j=1

πi,jw
Tx+

i +

n+∑
i=1

k∑
j=1

πi,(j)ww
T z−(j)w

 .
As shown in Lemma 2, the above argmax can be computed over a restricted set of ordering matrices Πw

n+×k (21), given for
any w ∈ Rd. This reduces (OP1) to a simpler optimization problem (22):

R̂TS
pAp@k(w;S) = max

π∈Πwn+×k

 1

βk

β∑
i=1

k∑
j=1

π(i)w,(j)w [1− wTx+
(i)w

+ wT z−(j)w ] +
1

βk

n+∑
i=β+1

k∑
j=1

π(i)w,(j)w [−wTx+
(i)w

+ wT z−(j)w ]

 .
The above objective can be decomposed into a sum of terms involving individual elements πi,j ∈ {0, 1} and thus can be
maximized by optimizing each term separately. The optimal matrix is given by (line 11 of Algorithm 2):

π̄(i)w,j =


1, if i ≤ β and wT (x+

(i)w
− z̄−j ) ≤ 1

1, if i > β and wT (x+
(i)w
− z̄−j ) ≤ 0

0, o.w.

 = 1
[
wT (x+

(i)w
− z̄−j ) ≤ 1(i ≤ β)

]
. (27)

This optimal matrix π is a valid ordering matrix in Πβ,k. Hence (Z−, π) gives us the desired argument maximums for
R̂TS

pAp@k(w;S). We can now compute the sub-gradient shown (in line 12 of Algorithm 2) as follows:

∂wR̂
TS
pAp@k(w;S) =

1

βk

n+∑
i=1

k∑
j=1

πi,j

[
z−j − x

+
i

]
.
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E. Proof of Section 6
Proof of Theorem 2. Recall that the population pAp@k risk is defined (16) as:

RpAp@k[f ;D] =
1

γ+γ−
Ex+∼D+,x−∼D− [1(f(x+) ≤ f(x−))Tγ−(f, x−)Tγ+(f, x+))], (28)

where

γ+ =

{
1, if P[x ∼ D+] ≤ γ−
γ−, o.w.

}
, (29)

Tγ−(f, x−) is 1 if Px̃−∼D− [f(x̃−) > f(x−)] ≤ γ− and 0 otherwise, and Tγ+(f, x+) is 1 if Px̃+∼D+
[f(x̃+) > f(x+)] ≤

γ+ and 0 otherwise. Similarly, let us define the empirical version of the pAp@k risk as follows:

R̂pAp@k[f ;S] =
1

iγ+jγ−

n+∑
i=1

n−∑
j=1

1[f(x+
i ) ≤ f(x−j )]T̂γ+(f, x+

i )T̂γ−(f, x−j ), (30)

where iγ+ = min(n+, jγ−), T̂γ−(f, x−) is 1 if x−j lies in the top-jγ− negatives and 0 otherwise, and T̂γ+(f, x+) is 1 if x+
j

lies in the top-iγ+ positives and 0 otherwise.

Assuming that f has no ties and that γ−n−, γ+n+ are integers, let us define the population and sample thresholds on both
positives and negatives as:

tD+,f,γ+ = arg inf
t∈R

{t | Px+∼D+
[f(x+) > t] = γ+}, t̂S+,f,γ+ = arg min

t∈R
{t | 1

n+

n+∑
i=1

1[f(x+
i ) > t] ≥ γ+} (31)

tD−,f,γ− = arg inf
t∈R

{t | Px−∼D− [f(x−) > t] = γ−}, t̂S−,f,γ− = arg min
t∈R

{t | 1

n−

n−∑
i=1

1[f(x−i ) > t] ≥ γ−}. (32)

Given that there are no ties by f , t̂S+,f,γ+ is the threshold on f above which n+γ+ of the positives in S+ are ranked by f .
This implies

∑n+

i=1 1[f(x+
i ) > t̂S+,f,γ+ ] = n+γ+. Analogous is the case for the negatives in S−. Now let us rewrite the

population and empirical risk as follows:

Rγ+,γ− [f ;D] =
1

γ+γ−
Ex+∼D+,x−∼D−1[f(x−) ≥ f(x+), f(x+) > tD+,f,γ+ , f(x−) > tD−,f,γ− ] (33)

R̂γ+,γ− [f ;S] =
1

n+γ+n−γ−

n+∑
i=1

n−∑
j=1

1[f(x−j ) ≥ f(x+
i ), f(x+

i ) > t̂S+,f,γ+ , f(x−j ) > t̂S−,f,γ− ]. (34)

Let us first use t+, t−, t̂+, and t̂− as shorthand notations for tD+,f,γ+ , tD−,f,γ− , tS+,f,γ+ , and tS−,f,γ+ , respectively.
Furthermore, let us define six more terms as follows:

R̃+
γ+,γ− [f ;D, S−] =

1

γ+
Ex+∼D+

1[f(x+) > t+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t−]

 (35)

R̃−γ+,γ− [f ;D, S+] =
1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t+]

 (36)

R̄+
γ+,γ− [f ;D, S−] =

1

γ+
Ex+∼D+

1[f(x+) > t+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]

 (37)
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R̄−γ+,γ− [f ;D, S+] =
1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]

 (38)

R̆+
γ+,γ− [f ;D, S−] =

1

γ+
Ex+∼D+

1[f(x+) > t̂+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]

 (39)

R̆−γ+,γ− [f ;D, S+] =
1

γ−
Ex−∼D−

1[f(x−) > t̂−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]

 (40)

We then have for any f ∈ F ,

Rγ+,γ− [f ;D]−Rγ+,γ− [f ;S] =
1

2
(2Rγ+,γ− [f ;D]− 2Rγ+,γ− [f ;S])

=
1

2

[
(Rγ+,γ− [f ;D]− R̃+

γ+,γ− [f ;D, S−]) + (Rγ+,γ− [f ;D]− R̃−γ+,γ− [f ;D, S+])

+ (R̃+
γ+,γ− [f ;D, S−]− R̄+

γ+,γ− [f ;D, S−]) + (R̃−γ+,γ− [f ;D, S+]− R̄−γ+,γ− [f ;D, S+])

+ (R̄+
γ+,γ− [f ;D, S−]− R̆+

γ+,γ− [f ;D, S−]) + (R̄−γ+,γ− [f ;D, S+]− R̆−γ+,γ− [f ;D, S+])

+ (R̆+
γ+,γ− [f ;D, S−]− R̂γ+,γ− [f ;S]) + (R̆−γ+,γ− [f ;D, S+]− R̂γ+,γ− [f ;S])

]
(41)

Using (41), for any ε > 0, we have that:

P
S∼D

n+
+ ×D

n−
−

⋃
f∈F

{
Rγ+,γ− [f ;D]−Rγ+,γ− [f ;S] ≥ ε

} ≤ P
S−∼D

n−
−

⋃
f∈F

{
Rγ+,γ− [f ;D]− R̃+

γ+,γ− [f ;D, S−] ≥ ε

4

}
︸ ︷︷ ︸

A

+ P
S+∼D

n+
+

⋃
f∈F

{
Rγ+,γ− [f ;D]− R̃−γ+,γ− [f ;D, S+] ≥ ε

4

}
︸ ︷︷ ︸

B

+P
S−∼D

n−
−

⋃
f∈F

{
R̃+
γ+,γ− [f ;D, S−]− R̄+

γ+,γ− [f ;D, S−] ≥ ε

4

}
︸ ︷︷ ︸

C

+ P
S+∼D

n+
+

⋃
f∈F

{
R̃−γ+,γ− [f ;D, S+]− R̄−γ+,γ− [f ;D, S+] ≥ ε

4

}
︸ ︷︷ ︸

D

+P
S−∼D

n−
−

⋃
f∈F

{
R̄+
γ+,γ− [f ;D, S−]− R̆+

γ+,γ− [f ;D, S−] ≥ ε

4

}
︸ ︷︷ ︸

E

+ P
S+∼D

n+
+

⋃
f∈F

{
R̄−γ+,γ− [f ;D, S+]− R̆−γ+,γ− [f ;D, S+] ≥ ε

4

}
︸ ︷︷ ︸

F

+P
S∼D

n+
+ ×D

n−
−

⋃
f∈F

{
R̆+
γ+,γ− [f ;D, S−]− R̂γ+,γ− [f ;S] ≥ ε

4

}
︸ ︷︷ ︸

G

+ P
S∼D

n+
+ ×D

n−
−

⋃
f∈F

{
R̆−γ+,γ− [f ;D, S+]− R̂γ+,γ− [f ;S] ≥ ε

4

}
︸ ︷︷ ︸

H

We will now bound every term separately. Let us start with term A.

Rγ+,γ− [f ;D]− R̃+
γ+,γ− [f ;D, S−]

=
1

γ+
Ex+∼D+

1[f(x+) > t+]

Ex−∼D− 1

γ−
[1[f(x−) ≥ f(x+)]1[f(x−) > t−]]− 1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t−]


=

1

γ+γ−
Ex+∼D+

1[f(x+) > t+]

Ex−∼D− [1[f(x−) > max{f(x+), t−}]−
1

n−

n−∑
j=1

1[f(x−j ) > max{f(x+), t−}]


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≤ 1

γ+γ−
Ex+∼D+

[1[f(x+) > t+]] sup
x+∈X

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > max{f(x+), t−}]−
1

n−

n−∑
j=1

1[f(x−j ) > max{f(x+), t−}]

∣∣∣∣∣∣
≤ 1

γ−
sup
x+∈X

∣∣∣∣∣∣Ex−∼D−
1[f(x−) > max{f(x+), t−}]−

1

n−

n−∑
j=1

1[f(x−j ) > max{f(x+), t−}]

∣∣∣∣∣∣ (as 1[f(x+) > t+] ∈ {0, 1})

≤ 1

γ−
sup
t∈R
|Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]| (42)

Using (42), we have the following:

A ≤ P
S−∼D

n−
−

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




= P
S−∼D

n−
−

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




≤ C1n
d
−e
−2n−γ

2
−ε

2/16 (43)

The last step follows from the usual VC dimension bound. Now we bound the B term.

Rγ+,γ− [f ;D]− R̃−γ+,γ− [f ;D, S+]

=
1

γ−
Ex−∼D−1[f(x−) > t−]

Ex+∼D+

1

γ+
[1[f(x−) ≥ f(x+)]1[f(x+) > t+]]− 1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t+]


≤ 1

γ−γ+
Ex−∼D− [1[f(x−) > t−]] sup

x−∼X

∣∣∣∣[Ex+∼D+
[1[f(x−) ≥ f(x+)]1[f(x+) > t+]]

− 1

n+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t+]

∣∣∣∣∣∣
≤ 1

γ+
sup
x−∼X

∣∣∣∣∣∣
Ex+∼D+

[1[f(x−) ≥ f(x+)]1[f(x+) > t+]]− 1

n+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t+]

∣∣∣∣∣∣
≤ 1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[t ≥ f(x+)]1[f(x+) > t+]]− 1

n+

n+∑
i=1

1[t ≥ f(x+
i )]1[f(x+

i ) > t+]

∣∣∣∣∣∣
≤ 1

γ+

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t+]− 1

n+

n+∑
i=1

1[f(x+
i ) > t+]

∣∣∣∣∣∣+
1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣
≤ 1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣+
1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣
=

2

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ (44)

Using (44), we have the following:
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B ≤ P
S+∼D

n+
+

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4× 2




= P
S+∼D

n+
+

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex+∼D+

[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

8




≤ C2n
d
+e
−2n+γ

2
+ε

2/64 (45)

The last step follows from the usual VC dimension bound. Now we bound the C term.

R̃+
γ+,γ− [f ;D, S−]− R̄+

γ+,γ− [f ;D, S−]

=
1

γ+
Ex+∼D+

1[f(x+) > t+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t−]


− 1

γ+
Ex+∼D+

1[f(x+) > t+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]



≤ 1

γ+γ−
Ex+∼D+

1[f(x+) > t+] sup
x+∼D+

 1

n−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]︸ ︷︷ ︸
∈ {0, 1}

{1[f(x−j ) > t−]− 1[f(x−j ) > t̂−]}


≤ 1

γ−

∣∣∣∣∣∣ 1

n−

n−∑
j=1

{1[f(x−j ) > t−]− 1[f(x−j ) > t̂−]}

∣∣∣∣∣∣
=

1

γ−

∣∣∣∣∣∣ 1

n−

n−∑
j=1

1[f(x−j ) > t−]− γ−

∣∣∣∣∣∣
=

1

γ−

∣∣∣∣∣∣ 1

n−

n−∑
j=1

1[f(x−j ) > t−]− Ex−∼D−1[f(x−) > t−]

∣∣∣∣∣∣
=

1

γ−
sup
t∈R

∣∣∣∣∣∣ 1

n−

n−∑
j=1

1[f(x−j ) > t]− Ex−∼D−1[f(x−) > t]

∣∣∣∣∣∣ (46)

Using (46), we have the following:

C ≤ P
S−∼D

n−
−

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > t]− 1

n−

n−∑
i=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




= P
S−∼D

n−
−

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




≤ C3n
d
−e
−2n−γ

2
−ε

2/16 (47)

This is same as (43). The last step follows from the usual VC dimension bound. We now consider the term D.
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R̃−γ+,γ− [f ;D, S+]− R̄−γ+,γ− [f ;D, S+]

=
1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t+]


− 1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]


=

1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )][1[f(x+

i ) > t+]− 1[f(x+
i ) > t̂+]]


≤ 1

γ−
Ex−∼D− [1[f(x−) > t−]] sup

x−∼D−

∣∣∣∣∣∣ 1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )][1[f(x+

i ) > t+]− 1[f(x+
i ) > t̂+]]

∣∣∣∣∣∣
≤ 1

γ+
| 1

n+

n+∑
i=1

[1[f(x+
i ) > t+]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]]|

≤ 1

γ+
| 1

n+

n+∑
i=1

[1[f(x+
i ) > t+]− γ+]|

=
1

γ+
| 1

n+

n+∑
i=1

1[f(x+
i ) > t+]− Ex+∼D+

1[f(x+) > t+]|

≤ 1

γ+
sup
t∈R

∣∣∣∣∣∣ 1

n+

n+∑
i=1

1[f(x+
i ) > t]− Ex+∼D+

1[f(x+) > t]

∣∣∣∣∣∣ , (48)

where the third step follows from the fact that 1[f(x+
i ) > t+] − 1[f(x+

i ) > t̂+] ≥ 0 if t+ ≤ t̂+, and 1[f(x+
i ) >

t+]− 1[f(x+
i ) > t̂+] ≤ 0 otherwise. Using (48), we have the following:

D ≤ P
S+∼D

n+
+

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4




= P
S+∼D

n+
+

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex+∼D+

1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4




≤ C4n
d
+e
−2n+γ

2
+ε

2/16 (49)

The last step follows from the usual VC dimension bound. We now consider the term E.

R̄+
γ+,γ− [f ;D, S−]− R̆+

γ+,γ− [f ;D, S−]

=
1

γ+
Ex+∼D+

1[f(x+) > t+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]


− 1

γ+
Ex+∼D+

1[f(x+) > t̂+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]


=

1

γ+

1

n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]{Ex+∼D+
1[f(x−j ) ≥ f(x+)](1[f(x+) > t+]− 1[f(x+) > t̂+])}
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=
1

γ+

1

n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]Ex+∼D+

[
1[f(x+) > t+]− 1[f(x+) > f(x−j )]− 1[f(x+) > t̂+] + 1[f(x+) > f(x−j )]

]

=
1

γ+

1

n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]Ex+∼D+

[
1[f(x+) > t+]− 1[f(x+) > t̂+]

]
≤ 1

γ+

[
Ex+∼D+

1[f(x+) > t+]− Ex+∼D+
1[f(x+) > t̂+]

]
=

1

γ+

[
γ+ − Ex+∼D+

1[f(x+) > t̂+]
]

=
1

γ+

 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]− Ex+∼D+

1[f(x+) > t̂+]


≤ 1

γ+
sup
t∈R

∣∣∣∣∣∣ 1

n+

n+∑
i=1

1[f(x+
i ) > t]− Ex+∼D+

1[f(x+) > t]

∣∣∣∣∣∣ (50)

Using (50), we have the following:

E ≤ P
S+∼D

n+
+

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4




= P
S+∼D

n+
+

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex+∼D+

1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4


 ≤ C5n

d
+e
−2n+(γ+)2ε2/16

(51)

The last step follows from the usual VC dimension bound. We now consider the term F.

R̄−γ+,γ− [f ;D, S+]− R̆−γ+,γ− [f ;D, S+]

=
1

γ−
Ex−∼D−

1[f(x−) > t−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]


− 1

γ−
Ex−∼D−

1[f(x−) > t̂−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]


=

1

γ−

1

n+γ+

n+∑
i=1

1[f(x+
i ) > t̂+]Ex−∼D−

[
1[f(x−) ≥ f(x+

i )]{1[f(x−) > t−]− 1[f(x−) > t̂−]
]

≤ 1

γ−

1

n+γ+

n+∑
i=1

1[f(x+
i ) > t̂+]Ex−∼D−

[
{1[f(x−) > t−]− 1[f(x−) > t̂−]

]
≤ 1

γ−
Ex−∼D−

[
{1[f(x−) > t−]− 1[f(x−) > t̂−]

]
=

1

γ−

[
Ex−∼D−{1[f(x−) > t−]− Ex−∼D−1[f(x−) > t̂−]

]
=

1

γ−

[
γ− − Ex−∼D−1[f(x−) > t̂−]

]
=

1

γ−

 1

n−

n−∑
j=1

1[f(x−j ) > t̂−]− Ex−∼D−1[f(x−) > t̂−]

 ≤ 1

γ−
sup
t∈R

∣∣∣∣∣∣ 1

n−

n−∑
j=1

1[f(x−j ) > t]− Ex−∼D−1[f(x−) > t]

∣∣∣∣∣∣
(52)
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Using (52), we have the following:

F ≤ P
S−∼D

n−
−

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




= P
S−∼D

n−
−

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




≤ C6n
d
−e
−2n−(γ−)2ε2/16 (53)

The last step follows from the usual VC dimension bound. We now consider the term G.

R̆+
γ+,γ− [f ;D, S−]− R̂γ+,γ− [f ;S]

=
1

γ+
Ex+∼D+

1[f(x+) > t̂+]
1

n−γ−

n−∑
j=1

1[f(x−j ) ≥ f(x+)]1[f(x−j ) > t̂−]


− 1

n+γ+n−γ−

n+∑
i=1

n−∑
j=1

1[f(x+
i ) > t̂+]1[f(x−j ) ≥ f(x+

i )]1[f(x−j ) > t̂−]

=
1

γ+

1

n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]Ex+∼D+

[
1[f(x+) > t̂+]1[f(x−j ) ≥ f(x+)]

]

− 1

γ+n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]
1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]1[f(x−j ) ≥ f(x+

i )]

=
1

γ+n−γ−

n−∑
j=1

1[f(x−j ) > t̂−]

Ex+∼D+
1[f(x+) > t̂+]1[f(x−j ) ≥ f(x+)]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]1[f(x−j ) ≥ f(x+

i )]


≤ 1

γ+n−γ−

n−∑
j=1

1[f(x−j ) > t̂−] sup
t∈R

∣∣∣∣∣∣Ex+∼D+
1[f(x+) > t̂+]1[t ≥ f(x+)]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]1[t ≥ f(x+

i )]

∣∣∣∣∣∣
≤ 1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
1[f(x+) > t̂+]1[t ≥ f(x+)]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]1[t ≥ f(x+

i )]

∣∣∣∣∣∣
=

1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[t ≥ f(x+) > t̂+]]− 1

n+

n+∑
i=1

1[t ≥ f(x+
i ) > t̂+]

∣∣∣∣∣∣
=

1

γ−
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t̂+]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]− Ex+∼D+

[1[f(x+) > t] +
1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣
≤ 1

γ+

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t̂+]− 1

n+

n+∑
i=1

1[f(x+
i ) > t̂+]

∣∣∣∣∣∣+
1

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣
=

2

γ+
sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ (54)

Using (54), we have the following:
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G ≤ P
S+∼D

n+
+

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex+∼D+
[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

4× 2




= P
S+∼D

n+
+

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex+∼D+

[1[f(x+) > t]− 1

n+

n+∑
i=1

1[f(x+
i ) > t]

∣∣∣∣∣∣ ≥ γ+ε

8


 ≤ C7n

d
+e
−2n+(γ+)2ε2/64

(55)

The last step follows from the usual VC dimension bound. Now we bound the H term.

R̆−γ+,γ− [f ;D, S+]− R̂γ+,γ− [f ;S]

=
1

γ−
Ex−∼D−

1[f(x−) > t̂−]
1

n+γ+

n+∑
i=1

1[f(x−) ≥ f(x+
i )]1[f(x+

i ) > t̂+]


− 1

n+γ+n−γ−

n+∑
i=1

n−∑
j=1

1[f(x−j ) > t̂−]1[f(x−j ) ≥ f(x+
i )]1[f(x+

i ) > t̂+]

=
1

n+γ+γ−

n+∑
i=1

1[f(x+
i ) > t̂+]

Ex−∼D− [1[f(x−) > t̂−]1[f(x−) ≥ f(x+
i )]]− 1

n−

n−∑
j=1

1[f(x−j ) > t̂−]1[f(x−j ) ≥ f(x+
i )]


=

1

n+γ+γ−

n+∑
i=1

1[f(x+
i ) > t̂+]

Ex−∼D− [1[f(x−) > max{t̂−, f(x+
i )}]]− 1

n−

n−∑
j=1

1[f(x−j ) > max{t̂−, f(x+
i )}]


=

1

n+γ+γ−

n+∑
i=1

1[f(x+
i ) > t̂+] sup

t∈R

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > t]]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣
≤ 1

γ−
sup
t∈R

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > t]]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ (56)

Using (56), we have the following:

H ≤ P
S−∼D

n−
−

⋃
f∈F

sup
t∈R

∣∣∣∣∣∣Ex−∼D− [1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4




= P
S−∼D

n−
−

⋃
f∈F

⋃
t∈R


∣∣∣∣∣∣Ex−∼D−1[f(x−) > t]− 1

n−

n−∑
j=1

1[f(x−j ) > t]

∣∣∣∣∣∣ ≥ γ−ε

4


 ≤ C8n

d
−e
−2n−(γ−)2ε2/16

(57)

We may now use the bounds for the eight terms, i.e. (43), (45), (47), (49), (51), (53), (55), and (57) to get the desired result
of Theorem 2.

F. Experimental and Dataset Details
As discussed, we fix ηt = η/

√
t+ 1 in our methods and use a regularized version of the surrogates by adding λ‖w‖2

for real-world experiments. For all the methods, including baselines, the learning rate and regularization parameters are
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Table 4: Datasets Statistics

Movielens (d = 90) Citation (d = 157) Behance (d = 150)
Statistic Train Validation Test Train Validation Test Train Validation Test

Datapoints 41934 13870 14099 90213 22264 29317 402083 133913 134062
Positives 9273 3081 3132 13726 3348 4125 66861 22074 22473

Users 638 637 638 1573 402 502 2498 2498 2498

(a) Total datapoints across users (b) Positives across users (c) Fraction of positives across users.

Figure 2: Histograms of total datapoints, positives, and ratio of positives across users for Movielens test data.

cross validated on the set {10−4, 2× 10−4, 5× 10−4, 10−3, . . . , 0.5} and 10{−3,...,1}, respectively. The reported results in
Table 3 are averaged over 5 random runs. Since we evaluate performance by Micro-pAp@k (17), all the methods including
baselines optimize the micro-version of the respective risks, i.e, average risk over users. Moreover, for fair comparisons,
baseline methods are also cross-validated on Micro-pAp@k (17) instead of the metrics for which they were introduced.
That is, the best hyper-parameters for each dataset and each method were chosen based on the highest Micro-pAp@k (17)
value on the validation data.

We take three publicly available datasets and process them to reflect the challenges in modern recommender systems, i.e.
data imbalance and heterogeneity in per-user fraction of positives. Moreover, we only focus on recommending limited
(top-k) items. The schema for our datasets is <user-feat, item-feat, prod-feat, label>, where prod-feat is the Hadamard
product of the user and item features. The data statistics are summarized in Table 4. In all the datasets, 60% data is for
training, 20% data is for validating, and 20% data is for testing purposes.

F.1. Movielens Dataset

We use the Movielens 100K dataset (Harper & Konstan, 2015), where the task is to recommend movies (items) to users.5

We create a rating matrix by considering the first 20 movies rated by the users. Then we apply non-negative matrix
factorization (Lee & Seung, 2001) to construct 30-dimensional user and item features. The non-negative matrix factorization
is run for a maximum of 1000 iterations and stopped earlier if the change in loss reaches below 10−6. The rest of the
ratings are used in training and inference. We remove the users who do not have at least one rating in the remaining dataset.
The number of features d = 90 after including the hadamard product of user and item features. Label 1 is provided if the
rating of the movie is 5, and 0 otherwise. The train-validation-test data statistics is provided in Table 4. Histograms of total
instances, positive instances, and fraction of positives across users on the test data are provided in Figure 2. Depending on
the number of positives per user, we vary k from 8 to 24 with a step of 4 for this dataset.

F.2. Citation Dataset

The task in the citation dataset (Budhiraja et al., 2020) is to recommend research papers for a paper in progress. Both the
paper being written, which acts as the user, and the candidate citations, which act as items, are embedded into 50 dimensional
features using Glove embedding (Pennington et al., 2014). There are additional 7 features denoting the past interactions
between authors and conferences. We further add the hadamard product of user and item features in the feature set, so the
total number of features is d = 157. Both Glove embedding and binary labels denoting relevance are provided in the dataset.
We remove the users who have less than three positives overall and less than 10% positives. A challenging aspect of this
dataset is that there is no overlap among users in train, test, and validation data. The train-validation-test data statistics is
provided in Table 4. Histograms of total instances, positive instances, and fraction of positives across users on the test data

5 Download: https://grouplens.org/datasets/movielens/100k/

https://grouplens.org/datasets/movielens/100k/


Optimization and Analysis of the pAp@k Metric for Recommender Systems

(a) Total datapoints across users (b) Positives across users (c) Fraction of positives across users.

Figure 3: Histograms of total datapoints, positives, and ratio of positives across users for Citation test data.

(a) Total datapoints across users (b) Positives across users (c) Fraction of positives across users.

Figure 4: Histograms of total datapoints, positives, and ratio of positives across users for Behance test data.

are provided in Figure 3. Depending on the number of positives per user, we vary k from 6 to 18 with a step of 3 for this
dataset.

F.3. Behance Dataset

We consider the Behance dataset (He et al., 2016), where the task is to recommend images (items) to users.6 We first apply
UMAP (McInnes et al., 2018) (nearest neighbors = 10, minimum distance = 0.5) to reduce the 4096 dimensions of images
to 50 dimensions. We filter users who have liked 60 to 170 images (just to control the number of users in the data). We then
randomly select 50 liked images for each user and denote the average of those features as user features. The remaining
images are used for training-test-validation. Label 1 is given if the user has liked an image. The label 0 is generated by
random sampling (by generating either four, five, or six times the positives for each user). We again take the hadamard
product of the user and item features, making the number of dimensions d = 150. The train-validation-test data statistics is
provided in Table 4. Histograms of total instances, positive instances, and fraction of positives across users on the test data
are provided in Figure 4. Depending on the number of positives per user, we vary k from 5 to 25 with a step of 5 for this
dataset.

6 Download: https://cseweb.ucsd.edu/ jmcauley/datasets.html#behance

https://cseweb.ucsd.edu/~jmcauley/datasets.html#behance

