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Dynamic Adapting Window Independence Drift Detection (DAWIDD)

A. Proofs
In this section we provide proofs for the theorems and lem-
mas given in our paper. We also include all definitions,
section headlines and the statements that are to be proven.
The numbering is the same as in the paper.

A.1. Concept Drift Definition

Definition 1. A drift process (pt, PT ) is a probability mea-
sure PT on [0, 1] together with a collection of probability
measures pt on Rd with t ∈ [0, 1], such that t 7→ pt(A) is
measurable for every measurable A ⊂ Rd.

Definition 2. Let (pt, PT ) be a drift process. We say that
pt has no drift if pt 6= ps holds on a PT null set only, i.e.
(PT × PT )({(s, t) ∈ [0, 1]2 | pt 6= ps}) = 0.

Lemma 1. Let (pt, PT ) be a drift process. The following
are equivalent:

1. pt has no drift

2. there exists a probability measure PX such that
pt = PX for PT -a.s. all t ∈ [0, 1]

3. there exists a probability measure PX such that
pt ⊗ PT = PX × PT

Furthermore, if PX exists, it is uniquely determined and it
holds PX =

∫
ptPT (dt).

Proof. Show ”1. ⇐ 2.”: Denote by C = {t|pt = PX}
and by D = {(t, s)|pt = ps}. Obviously it holds C × C ⊂
D. Since PT (C) = 1 we have

1 = (PT × PT )(C × C) ≤ (PT × PT )(D).

Show ”1. ⇒ 2.”: Since PT is finite we may
write (PT × PT )(A) =

∫
PT (Ax)PT (dx), where Ax =

{y|(x, y) ∈ A}. This implies that PT ({s ∈ T |ps =
pt}) = 1 for PT -a.s. all t ∈ [0, 1]. Therefore there ex-
ists a t0 ∈ [0, 1] such that pt = pt0 for PT -a.s. all t ∈ [0, 1];
so we may choose PX = pt0 .

Show ”2.⇐⇒ 3.”: Since B(Rd) has a intersection stable
countable generator the statement follows by the fact that

in this case it holds pt ⊗ P = qt ⊗Q⇔ P = Q and pt =
qt P -a.s. for probability measures P,Q and Markov kernels
pt, qt.

Show uniqueness: For all A ∈ B(Rd) we have

P ′X(A) = (P ′X × PT )(A× [0, 1])

= (pt ⊗ PT )(A× [0, 1])

= (PX × PT )(A× [0, 1]) = PX(A).

Show representation: Choose t0 ∈ [0, 1] as before. Then it
holds

∫
ptdPT =

∫
pt0dPT = pt0

∫
1dPT = PX .

A.2. Change of Loss as Indicator for Drift

Definition 3. LetH be a hypothesis class and X be a mea-
sure space (usually X = Rd). An empirical loss function is
a map ˆ̀ : H×(

∐∞
n=0

∏n
i=1 X)→ R, such that for every set

of X-valued random variables X1, ..., Xn and hypothesis
h ∈ H we obtain a measurable map ˆ̀(h|X1, ..., Xn) : Ω→
R which measures the error of h on the the random samples
delivered by X1, ..., Xn.

We say that an empirical loss function ˆ̀ decomposes
into sums for X1, X2, ..., XN (with N ∈ N ∪ {∞}) if
ˆ̀(h|X1, ..., Xn) = 1

n

∑n
i=1

ˆ̀(h|Xi) holds for all n ≤ N .

We say that an empirical loss function is uniformly bounded
if there exists an K < ∞ such that |ˆ̀(h|x1, ..., xn)| < K
for all x1, ..., xn ∈ X and h ∈ H.

Theorem 1. Let ˆ̀be an empirical loss function on a hypoth-
esis classH which is uniformly bounded by some K <∞.
Let X1, ..., Xn be independent and X ′1, ..., X

′
m be indepen-

dent random variables for which ˆ̀decomposes into sums.
Then for all h ∈ H and ε > 0 it holds

P[|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′m)| ≥ ε]

≤ K

ε

√√√√( 1√
n

+
1√
m

)2

+

∥∥∥∥∥ 1

n

n∑
i=1

PXi
− 1

m

m∑
i=1

PX′i

∥∥∥∥∥
2

TV

,

where ‖ · ‖TV denotes the total variation norm.

Proof. Let Z be a real-valued random variable, then by
using that var(Z) = E[Z2]− E[Z]2, x ≤

√
x for x ∈ [0, 1]
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and Markov’s inequality it follows that for all ε > 0 it holds

P[|Z| ≥ ε] = P[Z2 ≥ ε2] ≤ 1

ε

√
var(Z) + E[Z]2. (1)

Now consider the case where Z = ˆ̀(h|X1, ..., Xn) −
ˆ̀(h|X ′1, ..., X ′m); we have to show that a)
var(ˆ̀(h|X1, ..., Xn) − ˆ̀(h|X ′1, ..., X ′m)) ≤ K2(n−1/2 +

m−1/2)2 and b) E[ˆ̀(h|X1, ..., Xn) − ˆ̀(h|X ′1, ..., X ′m)] ≤
K
∥∥ 1
n

∑n
i=1 PXi

− 1
m

∑m
i=1 PX′i

∥∥
TV

.

Start with a): First note that

var(Z − Z ′) ≤ var(Z) + var(Z ′) + 2|cov(Z,Z ′)|

≤ (
√

var(Z) +
√

var(Z ′))2, (2)

where we used that cov(Z,Z ′)2 ≤ var(Z)var(Z ′). Since ˆ̀

decomposes into sums, with each summat being indepen-
dent and bounded by K we have

var(ˆ̀(h|X1, ..., Xn)) =
1

n2

n∑
i=1

var(Xi)︸ ︷︷ ︸
≤K2

≤ K2 1

n
(3)

plugging this in we obtain the stated bound for a).

Now prove b): Recall that E[f(Z)] =
∫
fdPZ . Now by

using that the integral is a bilinear map and the fact that ˆ̀

decomposes into sums it follows that

E[ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′m)]

=

∫
ˆ̀(h|x)d

(
1

n

∑
i

PXi

)

−
∫

ˆ̀(h|x)d

(
1

m
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i
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)

= K
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1
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(
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≤ K sup
f:R→[−1,1]

measurable

(∫
f(x)d

(
1

n
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PXi

)

−
∫

f(x)d

(
1
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. (4)

Plugging (2)-(4) into (1) the statement follows.

Lemma 2. Let ˆ̀ be an empirical loss function and
X1, ..., Xn be random variable for which ˆ̀ decomposes

into sums. Denote by Fˆ̀(h|X1,...,Xn)
(x) the empirical cumu-

lative distribution over ˆ̀(h|X1, ..., Xn), i.e.

Fˆ̀(h|X1,...,Xn)
(x) =

1

n

n∑
i=1

I(ˆ̀(h|Xi),∞)(x).

Then for every x ∈ R we have that Fˆ̀(h|X1,...,Xn)
(x) is

again an empirical loss function that decomposes into sums
with K = 1.

Proof. Obvious

Corollary 1. Let (pt, PT ) be a drift process and
ˆ̀ be an empirical loss function on a hypothe-
sis class H which is uniformly bounded by some
K <∞. Let (X1, T1), ..., (Xn, Tn) ∼ pt ⊗ PT and
(X ′1, T

′
1), ..., (X ′n, T

′
n) ∼ pt ⊗ PT be independent random

variables. Then for all h ∈ H, A,B ⊂ [0, 1] measurable
with PT (A), PT (B) > 0 and ε > 0 it holds

P[|ˆ̀(h|X)− ˆ̀(h|X′)| ≥ ε|T ∈ A,T′ ∈ B]

≤ K

ε

√
(n−1/2 + m−1/2)2 + ‖pA − pB‖2TV,

where pA = PT (A)−1
∫
A
pt(·)PT (dt) and pB analogous

and we used the short hands ˆ̀(h|X) = ˆ̀(h|X1, ..., Xn) and
T ∈ A :⇐⇒ T1 ∈ A, ..., Tn ∈ A and analogous for X′

and T′.

Proof. The conditional version of Markov’s inequality
states that P[X ≥ Y |F ] ≤ Y −1E[X|F ] for a F
adapted, positive random variable Y . Now by redo-
ing the proof of theorem 1 using that Xi|Ti ∈ A ∼
PT (A)−1

∫
A
ptdPT (t) = pA for i = 1, ..., n and analogous

for X ′i|T ′i ∈ B with i = 1, ...,m the statement follows.

Lemma 3. Let pt be a drift process. Then we may find a
model h and an empirical loss function ˆ̀such that

|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′n)| a.s.−−→ ‖pA − pB‖TV,

with X1, X2, ... ∼ pA, X ′1, X
′
2, ... ∼ pB independent.

Proof. Choose H = B(Rd) and ˆ̀(h|x) = 2Ih(x),
ˆ̀(h|x1, ..., xn) = 1

n

∑n
i=1

ˆ̀(h|xi). Now by the law of large
numbers we have

|ˆ̀(h|X1, ..., Xn)− ˆ̀(h|X ′1, ..., X ′n)|

= |ˆ̀(h|X1, ..., Xn)− E[ˆ̀(h|X1)]|

+ |E[ˆ̀(h|X1)]− E[ˆ̀(h|X ′1)]|

+ |E[ˆ̀(h|X ′1)]− ˆ̀(h|X ′1, ..., X ′n)|
a.s.−−→ |E[ˆ̀(h|X1)]− E[ˆ̀(h|X ′1)]|
= 2|pA(h)− pB(h)|.
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Using that

‖pA − pB‖TV = 2 sup
h∈B(Rd)

|pA(h)− pB(h)|

and that such h may actually be found (Hahn-Banach) the
statement follows.

Definition 4. We say that a drift process (pt, PT ) has model
drift iff there exists measurable sets A,B ⊂ [0, 1] with
PT (A), PT (B) > 0, such that pA 6= pB or equivalent
‖pA − pB‖TV > 0, with pA = PT (A)−1

∫
A
pt(·)PT (dt)

and analogous for pB .

Theorem 2. Let (pt, PT ) be a drift process. Then it holds
that pt has drift if and only if pt has model drift.

Proof. Show ”⇐”: Let A,B ⊂ [0, 1] measurable,
PT (A), PT (B) > 0 with pA 6= pB . Assume that pt has
no drift. By lemma 1 we have pt ⊗ PT = PX × PT and
hence pA = PX = pB which is a contradiction.

Show ”⇒”: Assume pt has no model drift. Then for
all A,B ⊂ [0, 1] measurable, PT (A), PT (B) > 0 it holds
pA = pB so PX := pA is well defined. Now it holds

(pt ⊗ PT )(B × C)
def. pB

=

{
PT (B)pB(C) if PT (B) > 0

0 if PT (B) = 0

= PT (B)PX(C)

= (PT × PX)(B × C)

for all B ∈ B([0, 1]), C ∈ B(Rd), which is a intersection
stable generator of B(Rd × [0, 1]). So we have pt ⊗ PT =
PX × PT which by lemma 1 implies that pt has no drift.
This is a contradiction.

A.3. Drift as Dependency between Data and Time

Definition 5. Let (pt, PT ) be a drift process and let
(X,T ) ∼ pt ⊗ PT a pair of random variables. We say
that pt has dependency drift if X and T are statistically
dependent, i.e. are not independent random variables.

Theorem 3. Let (pt, PT ) be a drift process. Then pt has
drift if and only if it has dependency drift.

Proof. Let (Ω,F ,P) be the underlying probability space,
i.e. X and T are measurable maps from Ω to Rd resp. [0, 1].
X and T are independent if and only if

(pt ⊗ PT )(A×B) = PX,T (A×B) = PX(A)PT (B)

holds for all A ∈ B(Rd), B ∈ B([0, 1]). By setting A =
Rd we obtain PT = PT and therefore pt ⊗ PT = PX × PT

which, by lemma 1, holds if and only if pt has no drift.

A.4. Drift Detection via Independence Tests on
Dynamically Adapted Windows

Lemma 4. Let (pt, PT ) and (qt, QT ) be drift processes.
Suppose PT (A) = 0 ⇒ QT (A) = 0 for all measurable
A ∈ B([0, 1]) and that pt = qt for PT -a.s. all t ∈ [0, 1].
Then it holds: if pt has no drift then qt has no drift.

Proof. Denote by f = dQT

dPT
the Radon-Nikodym density.

Then it holds

(qt ⊗QT )(A×B) =

∫
A

qt(B)dQT (t)

=

∫
A

qt(B)f(t)dPT (t)

Cauchy-Schwarz
=

∫
A

pt(B)f(t)dPT (t)

lemma 1
= PX(B)

∫
A

f(t)dPT (t)

= PX(B)QT (A)

for all A ∈ B([0, 1]), B ∈ B(Rd), which is a intersection
stable generator of B(Rd × [0, 1]). So we have qt ⊗QT =
PX×QT which by lemma 1 implies that qt has no drift.


