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Abstract

We consider the problem of learning the quali-
ties w1, . . . , wn of a collection of items by per-
forming noisy comparisons among them. A stan-
dard assumption is that there is a fixed “compar-
ison graph” and every neighboring pair of items
is compared k times. We will study the popu-
lar Bradley-Terry-Luce model, where the prob-
ability that item i wins a comparison against j
equals wi/(wi + wj). The goal is to understand
how the expected error in estimating the vector
w = (w1, . . . , wn) behaves in the regime when
the number of comparisons k is large. Our con-
tribution is the determination of the minimax rate
up to a constant factor. We show that this rate is
achieved by a simple algorithm based on weighted
least squares, with weights determined from the
empirical outcomes of the comparisons. This al-
gorithm can be implemented in nearly linear time
in the total number of comparisons.

1. Introduction
Estimation of item qualities from user preferences is a
common problem across multiple domains in e-commerce,
health care, and social science. The dominant approach is to
rely on raw scores provided by users; for instance, Amazon
asks customers for ratings on a scale ranging from 1-5 stars,
which are then aggregated to produce an average rating for
each item.

Unfortunately, such user-provided scores can be poorly cali-
brated. Users could differ substantially in how they reach
the decision to assign scores; worse, different items could
be popular among different classes of users, and these user
classes could have statistical differences in the way they
assign ratings. It is challenging to deal with this disparity in
a principled manner.
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An alternative line of research has explored data fusion
based on better calibrated measures, such as the outcomes
of comparisons among items. In many contexts, comparison
data is readily available. When a user chooses to purchase
one of several items recommended by a webpage, it is natu-
ral to view this as the outcome of an implicit comparison.
The outcome of a sports game can be viewed as the result
of a noisy comparison of the strengths of the two teams.
Finally, when users click on a particular webpage in re-
sponse to a list of sites provided by a search engine, this
may be viewed as the outcome of a comparison between
user estimates of the informativeness of the corresponding
webpages. Many additional examples can be given and we
refer the reader to (Cattelan, 2012) for an extensive overview
of comparison models and their uses.

The simplest and most common model is the Bradley-Terry-
Luce (BTL) model (Bradley & Terry, 1952; Luce, 2012)
which posits n items with quality measures w1, . . . , wn,
with item i winning each comparison against item j inde-
pendently with probability wi/(wi + wj). All comparisons
in this model are pairwise. The BTL model is extremely
well-studied; for a sampling of its uses, we mention its ap-
plications to an empirical analysis of sports tournaments
(Cattelan et al. , 2013), measurements of pain among pa-
tients (Matthews & Morris, 1995), estimating driver crash
risks (Li & Kim, 2000), and testing the power of arguments
in referendums (Loewen et al. , 2012), among many others.

This paper is concerned with estimating the vector w =
(w1, . . . , wn) from the outcomes of comparisons carried out
according to the BTL model. It is standard to assume that
there is a given undirected graph G = ({1, . . . , n}, E), and
every pair of neighbors in G is compared k times. The goal
is to recover the vector of true weights vector w. Note, how-
ever, that since scaling every entry of w does not change
the probability distribution of the outcomes under the BTL
model, what can actually be recovered is a normalized ver-
sion of w.

This problem formulation is standard in the literature; in
particular, its analysis has been the subject of a number of
recent papers, e.g., (Negahban et al. , 2012; Rajkumar &
Agarwal, 2014; Negahban et al. , 2016; Agarwal et al. ,
2018; Hendrickx et al. , 2019). One can, of course, intro-
duce a number of complicating factors (e.g., more general
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comparisons models, active comparisons, different numbers
of comparisons across each edge, simultaneous comparisons
of multiple items, etc), and we below survey a number of
works analyzing these extensions. However, surprisingly
it turns out that, despite literature on the BTL model dat-
ing back to the 1950s, many fundamental questions in this
simplest setting remain open.

In this paper, we address one of those questions, namely
understanding the rate at which the error in the recovery of
w decays with the number of comparisons per edge k in
terms of the graph G and the true weight vector w.

We will propose an algorithm for the recovery of w based
on nonlinearly scaled weighted least-squares. Our main
contribution is to show that, up to a constant factor, this
algorithm achieves the asymptotic minimax rate for this
problem, which we characterize in terms of the trace of
a certain matrix depending both on the graph G and the
weights w.

1.1. Previous work

The earliest references on the BTL model are (Bradley &
Terry, 1952; Rao & Kupper, 1967; Davidson, 1970; Beaver
& Gokhale, 1975) dating back to 1950s-1970s. These works
focused on maximum likelihood estimation and hypothesis
testing. We mention in particular (Beaver, 1977), which
proposed doing so with a least squares approach, which
is in the same spirit as the method proposed in this paper.
The problem was first introduced in the context of inter-
net search in the now-classic paper (Dwork et al. , 2001).
Several methods for the general class of problems of rank
aggregation were proposed in (Dwork et al. , 2001), particu-
larly a method based on encoding qualities as the stationary
distribution of a Markov chain built from the outcomes of
comparisons.

An extremely large literature on analysis of pairwise compar-
isons has sprung within the statistics and machine learning
literature in the past two decade and, a a result, it is not pos-
sible to survey all the work that has been done. There are
many variations of the problem that have been studied, from
more sophisticated models such as Thurstone and Placket-
Luce (Hajek et al. , 2014; Maystre & Grossglauser, 2015),
to online or bandit versions (Szörényi et al. , 2015; Yue et al.
, 2012), to models with active learning (Jamieson & Nowak,
2011; Ailon, 2012), to models with multiple users with
potentially different preferences among items (Wu et al. ,
2015). We next focus only on papers most directly related to
our work, namely papers concerned with rates for recovery
of the true weights w in the BTL model.

The first rigorous analysis of the error rate in the pairwise
case appeared in (Negahban et al. , 2012) in the case of a
random comparison graph and in (Negahban et al. , 2016)

for an arbitrary graph. The underlying method recovered
an estimate Ŵ from the stationary distribution of a Markov
chain constructed based on the outcomes of the comparisons.
By construction, the elements of Ŵ summed to one, which
made it natural to compare Ŵ with the normalized version
of the true weights w/||w||1.

It was shown in (Negahban et al. , 2016) that, for a number
of comparisons k large enough as a function of the graph G,
assuming that the weight imbalance is bounded as

max
i,j

wi
wj
≤ b, (1)

then with high probability we have that∣∣∣∣∣∣ w
||w||1 − Ŵ

∣∣∣∣∣∣2
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(
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k

)
b5 log n

(1− ρ)2
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d2
min

, (2)

where dmax, dmin are the largest/smallest degrees in the
comparison graph and 1−ρ is the spectral gap of the random
walk on the comparison graph G.

To understand how this scales in terms of the number of
nodes n, we can use the results of (Landau & Odlyzko, 1981)
which show that 1/(1−ρ) for a simple random walk on any
graph will have worst-case scaling of O(n3). Thus the right-
hand side above has a worst-case scaling of O(n7 log n)/k.

To our knowledge (Negahban et al. , 2012; 2016) represent
the first understanding of how error bounds for w scale
in terms of the corresponding graph. A consequence of
those results is that a good approximation to the (scaled)
true weights w can be found using a polynomial number of
samples. Moreover, the results of (Negahban et al. , 2016)
suggest a natural open problem: to understand just how fast
the error decays for the best possible method.

The bounds of (Negahban et al. , 2016) were recently im-
proved in (Agarwal et al. , 2018), resulting in a better scal-
ing with b and replacing davg/dmin with davg/dmin, among
other improvements. Moreover, improved bounds in the
somewhat more restrictive setting when comparisons are
made over the complete graph, but with each pair of edges
sampled independently (at rates that could differ across
edges) were obtained in (Rajkumar & Agarwal, 2014).

Considerably more general models of ranking are quite com-
mon in the literature; in particular, we mention the papers
(Rajkumar & Agarwal, 2016; Shah et al. , 2016; Negahban
et al. , 2018), discussed next. In (Rajkumar & Agarwal,
2016), the class of ranking models learnable from a ran-
dom comparison graph G with average degree that scales as
log(n) was studied, and it was shown that this possible un-
der a certain “low-rank” condition on the underlying model.
In (Shah et al. , 2016) namely estimating w under a general
ranking model parametrized by a nonlinear function which
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included the BTL model was a special case. Adopting the
normalization condition

∑n
i=1 logwi = 0, upper and lower

bounds were shown in (Shah et al. , 2016) after m compar-

isons for E
∣∣∣∣∣∣Ŵ − logw

∣∣∣∣∣∣2
2
; the upper bound scaled with

(n/m)λ2(L)−1, where L is the Laplacian of the comparison
graph, and the lower bound had a complicated dependence
on the Laplacian spectrum. In (Negahban et al. , 2018) up-
per and lower bounds depending on the Laplacian spectrum
were derived for the multinomial logit model, which is much
more general than the BTL model.

For the BTL model specifically, progress towards the best
rate was made in the recent paper (Hendrickx et al. , 2019).
The error measure considered in that paper was the sine of
the angle made by Ŵ and w, which can be expressed as

| sin(Ŵ , w)| = inf
α

||αŴ − w||2
||w||2

.

The sine of the angle is a standard way to measure distance
between subspaces and, as the above identity suggests, it can
be thought of as the relative distance between w and the best
normalized version of Ŵ . Moreover, because sin(θ) ≈ θ for
small θ, this error measure is essentially the same (provided
the number of samples is large) as measuring the angle
between Ŵ and w. Additionally, as remarked in (Hendrickx
et al. , 2019) it can be shown that

1√
2
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||x||2
− y

||y||2

∣∣∣∣∣∣∣∣
2

so that the sine is, up to a constant, the error in the two-norm
after normalization. Finally, the sine is also equivalent, up
to polynomial factors of b, to previous metrics used in this
problem. In particular, it was shown in (Hendrickx et al. ,
2019) that the sine is within a

√
b multiplicative factor of

the norm used in (Negahban et al. , 2012) (see left-hand
side of Eq. (2) and it can be shown it is within a polynomial

factor of E
∣∣∣∣∣∣Ŵ − logw

∣∣∣∣∣∣2
2

used in (Shah et al. , 2016).

Upper and lower bounds were established (Hendrickx et al.
, 2019) on sin2(Ŵ , w), both holding when the number of
samples per edge k is large enough. As far as upper bounds,
it was shown that, for large enough k as a function of G and
δ, with probability 1− δ we have the bounds

sin2(Ŵ , w) = O

(
b2Rmax(1 + log(1/δ))

k

)
(3)

sin2(Ŵ , w) = O

(
b4Ravg(1 + log(1/δ))

k

)
, (4)

where Ravg, Rmax are, respectively, the average and largest
electrical resistance1 of the comparison graph G. A corre-
sponding lower bound was proved showing that, for large

1Resistances are defined in terms of the circuit obtained by
replacing every edge in a graph by a resistor of unit resistance.

enough k as a function of the graph G,

E
[
sin2(Ŵ , w)

]
≥ Ravg

k
. (5)

These results come close, but do not quite characterize, the
asymptotic minimax rate. Putting all the bounds together, it
becomes clear that the electrical resistance is the key graph-
theoretic quantity. However, there are gaps between the
upper and lower bounds, both in terms of scaling with b and
in terms of the difference between average and maximum
resistance2.

1.2. Our contribution

The purpose of the present paper is to present a new algo-
rithm, coupled with new upper and lower bounds, which
characterize the minimax rate for this problem (using the
sine as a measure of distance). We will need the following
definition: we set

γ(i, j) =
1

(wi + wj)2
,

and we use Lγ to mean the Laplacian of the graph G where
edge (i, j) has weight γ(i, j). We next state two theorems,
the first providing an upper bound and the second providing
a lower bound, which are the main results of this paper.

Note that by definition of Lγ , the quantity
Tr(L†γ)
||w||22

appearing
in both results is invariant under scaling of the weights wi.

Theorem 1. For large enough k, there is a near-linear time
method which produces a estimate Ŵ which satisfies

E
[
sin2(Ŵ , w)

]
≤ O

(
1

k

)
Tr
(
L†γ
)

||w||22
, (6)

where L†γ refers to the Moore-Penrose pseudoinverse of Lγ .
The method which accomplishes this is the WLSM described
in Section 2.

Theorem 2. Fix any w ∈ Rn and fix any map ŵ from
the outcomes of k comparisons across each edge to Rn.
There is a way to generate wz randomly from a ball of
radius Ow,G(1/

√
k) around w such that as long as k is

large enough,

E
[
sin2(ŵ(Y), wz)

]
≥ Ω

(
1

k

)
Tr
(
L†γ
)

||w||22
, (7)

where Y is the outcome of k comparisons across each edge
generated according to weights wz and L†γ refers to the
Moore-Penrose pseudoinverse of Lγ .

2There is also a gap in terms of the log(1/δ) factor present in
Eq. (3) and Eq. (4) but not in Eq. (5). However, this gap is not
important, as can be expected to go away when integrating the
high-probability bounds of Eq. (3) and Eq. (4) over δ to obtain a
bound on the expectation.
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We note that the constants in O(·) and Ω(·) notations are
absolute constants, i.e., they do not depend on any of the
problem parameters, and in particular, they do not depend
on b. However, the notation Ow,G(1/

√
k) in Theorem 2

means that the constant in the O(·)-notation depends on w
and the graph G. A key point is that the estimator ŵ(Y)
is arbitrary. Intuitively, this means that we can think of
this estimator as “knowing” w as well as the distribution
of wz . Finally, we remark that it is easy to derive both the
upper and lower bounds of (Hendrickx et al. , 2019) from
these theorems using the well-known fact that the average
graph resistance is proportional to the trace of the Laplacian
pseudoinverse (see e.g., (Vishnoi, 2013))3.

2. Our approach
The underlying intuition of approach is best explained by
using a series of non-rigorous approximations. While our
method will be formally analyzed in the supplementary
information, in this section we make free use of such ap-
proximations.

For every pair of neighbors i, j in G, we will use Fij to
denote the fraction of times node i wins the comparisons
against its neighbor j. It will be helpful sometimes to turn
G into a directed graph by orienting every edge arbitrarily;
we will use

−→
E to refer to the edge set of this directed graph.

Across each edge, we also define the ratio Rij = Fij/Fji
which captures the imbalance between item qualities across
the edge (i, j); indeed, by the strong law of large numbers,

Rij →
wi/(wi + wj)

wj/(wi + wj)
=
wi
wj
, (8)

where the convergence would happen with probability one
if we were to take the number of comparisons k →∞.

Our goal is to figure out the weights wi from knowledge of
the quantities Rij for large but nevertheless finite k. One
approach is to take the logarithm of both sides of Eq. (8) to
obtain that

logRij ≈ logwi − logwj , for all edges (i, j) ∈
−→
E .

3Indeed, the relation referred to is

Ravg =
Tr(L†)

n
,

where L is the plain (unweighted) graph Laplacian (see e.g., (Vish-
noi, 2013)). Thus taking w = (1, . . . , 1) in Theorem (2) we imme-
diately recover Eq. (5). Similarly, rescaling w so that mini wi = 1
we have that Eq. (1) implies that maxi wi ≤ b, and using the
implications ||w||22 ≥ n and (wi + wj)

2 = O(b2), Theorem 1
immediately implies an upper bound of O(b2Ravg/k), actually
improving upon both Eq. (3) and Eq. (4).

The≈ symbol hides the error that occurs from taking k finite.
This is now a linear system of equations in the quantities
logwi, so a natural approach is to solve the collection of
equations

logRij = zi − zj , for all edges (i, j) ∈
−→
E ,

in the least-squares sense. In other words, we can try to find

z∗ = arg min
z1,...,zn

∑
(i,j)∈E

(logRij − (zi − zj))2. (9)

We can then build an estimator Ŵ of the item quality vector
w by setting Ŵi = ez

∗
i . This is exactly what is done in

(Beaver, 1977; Hendrickx et al. , 2019) and broadly similar
to the approach taken earlier in (Jiang et al. , 2011).

One disadvantage of this algorithm is that it does not take
into consideration the differences in variance in comparisons
across different edges. Indeed, observe that the variance
in outcomes in comparing items i and j depends on the
weights wi and wj . Furthermore, if the variance across an
edge (i, j) is relatively low, then the corresponding squared
term in Eq. (9) should have higher weight. This motivates a
weighted least squares approach: we will divide each term
in Eq. (9) by the standard deviation of logRij .

In general, the standard deviation of logRij does not have
a simple formula, but when k is large we can repeatedly
write Taylor expansions of all quantities involved to turn ev-
erything approximately linear. The calculation is relatively
simple and we perform it in the next few paragraphs; the
uninterested reader may feel free to skip ahead to Eq. (11)
to see the outcome.

Defining ρij = wi/wj to be the true ratio between qualities
of items i and j, we can use (log x)′ = 1/x to write

logRij ≈ log ρij +
1

ρij
(Rij − ρij)

= log ρij +
1

ρij

(
Fij
Fji
− ρij

)
= log ρij +

1

ρij

(
1− Fji
Fji

− ρij
)

= log ρij +
1

ρij

(
1

Fji
− 1− ρij

)
≈ log ρij +

1

ρij

(
1

pji
− 1

p2
ji

(Fji − pji)− ρij

)
,

where pji = wj/(wi + wj) is the correct probability of j
winning against i, and the final step takes the linear Taylor
approximation of 1/Fji around its limit of 1/pji.
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The advantage of these manipulations is that they imply

var(logRij) ≈ 1

ρ2
ij

1

p4
ji

var(Fji − pji),

=
wi/wj + wj/wi + 2

k
,

where the last step follows by some simple algebraic manip-
ulations. For simplicity, let us define

vij =
wi
wj

+
wj
wi

+ 2. (10)

Then what we really should do is solve the weighted least
squares problem

arg min
z1,...,zn

∑
(i,j)∈

−→
E

(logRij − (zi − zj))2√
vij/k

(11)

which properly accounts for the different variances of differ-
ent comparisons. Indeed, each term in Eq. (11) now has the
same variance as k gets large. Naturally, we can omit 1/

√
k

from the denominator since it multiplies every term.

The big problem with this approach, of course, is that the
quantities vij are actually unknown to us because we (ob-
viously) do not know the true weights w1, . . . , wn a-priori.
Thus as written Eq. (11) cannot be implemented.

Nevertheless, even though we do not know the quantities
vij , we can construct estimates of them based on the data.
Glancing at Eq. (10), a natual approach is to define

V̂ij =
Fij
Fji

+
Fji
Fij

+ 2. (12)

Indeed, if we consider what happens if we were to take
k → ∞, it follows from the strong law of large numbers
that V̂ij → vij with probability one. Thus we simply replace
each vij in Eq. (11) by its estimated counterpart:

z∗ = arg min
z1,...,zn

∑
(i,j)∈

−→
E

(logRij − (zi − zj))2√
V̂ij

. (13)

As before, constructing the estimator Ŵ will be done by
setting Ŵi = ez

∗
i .

We need to take one final step to have a well-defined al-
gorithm. Clearly, we could have a problem when some
Fkl = 0 because then we might run into the problem of
using logRkl = log 0 = −∞ in our least squares objective.
We resolve this problem by setting Fkl to be some small
positive number (specifically, Fkl = (1/2)/k) in this case.
Intuitively, when k is sufficiently large compared to b, the
probability that some Fkl = 0 is exponentially small, so it
doesn’t really matter what we do; nevertheless, we need to
do something in order to have a well-defined method.

This is the algorithm we will analyze in the remainder of
this paper. We state it formally in the algorithm box below.
We will refer to it as the Weighted Least Squares Method,
or the WLSM for short.

Algorithm 1 Weighted Least Squares Method
1: Input: results of k independent comparisons across each

edge in E.
2: for all (i, j) ∈ E do
3: Compute Fij , the fraction of times item i wins.
4: if Fij = 0 then
5: Set Fij = (1/2)/k.
6: else if Fij = 1 then
7: Set Fij = 1− (1/2)/k.
8: end if
9: Set Rij = Fij/Fji.

10: end for
11: Compute the quantities V̂ij using Eq. (12).
12: Solve Eq. (13) for the vector z∗.
13: For all i = 1, . . . , n, set Ŵi = ez

∗
i .

Finally, as we discuss in the Supplementary Information,
this algorithm can be implemented in nearly linear time in
the number of edges of G.

Unfortunately, the final procedure we have ended up with in-
volves taking the ratio of two random variables constructed
from the data (i.e., the quantities logRij and V̂ij), which
will make analysis of the error in expectation challenging.
To preview the analsysis of this method (which is available
in the supplementary information) we will need to perform
a large-deviations analysis of the outcome of the WLSM,
which will then need to be integrated to obtain a bound on
the expectation of sin2(Ŵ , w).

2.1. Linear time solvability

We now rewrite our algorithm in compact form; this rewrit-
ing will be needed later section to discuss the technical
novelty in the proof, and will also, as a consequence, show
that our algorithm can be implemented in (nearly) linear
time.

First we discuss some notation. We let
−→
E denote the set

of directed edges obtained by orienting every edge in E
arbitrarily. We let M be the edge-vertex incidence matrix of
the resulting directed graph ({1, . . . , n},

−→
E ); note that the

graph Laplacian L satisfies L = MMT . The matrices LV
and LV̂ correspond to weighted graph Laplacians, where
the edge (i, j) ∈ E is weighted by v−1

ij or V̂ −1
ij , respectively.

We will omit the subscripts when we stack the above quan-
tities into vectors. For example, the notation R represents
the vector in R|

−→
E | obtained by stacking up the quantities

Rij , (i, j) ∈
−→
E .
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With this notation in place, inspecting Eq. (13), we see that
z∗ is a least squares solution to the system of equations

V̂ −1/2MT z = V̂ −1/2 logR.

Recall that Ŵ is our notation for Ŵ = ez
∗
; thus log Ŵ is

the least squares solution of

V̂ −1/2MT logW = V̂ −1/2 logR.

Writing out the least-squares solution explicitly, we have
that log Ŵ is an exact solution of the equation

(V̂ −1/2MT )T V̂ −1/2MT log Ŵ = (V̂ −1/2MT )T V̂ −1/2 logR,

that is, of
LV̂ log Ŵ = MV̂ −1 logR. (14)

Thus we have that one solution to Eq. (14) is

log Ŵ = L†
V̂
MV̂ −1 logR. (15)

Observe that since, by connectivity of G the null space of
LV̂ is just span{1}, this picks up the solution of Eq. (14)
which satisfies

∑n
i=1 log Ŵi = 0 or

∏n
i=1 Ŵi = 1.

Concluding, we see that Eq. (15) is one way to represent a
solution Ŵ we seek to compute. We can now observe that
this is a Laplacian linear system, i.e., it requires multiplica-
tion by the pseudoinverse of a weighted graph Laplacian.
We can now directly apply the results of (Spielman & Teng,
2014), which showed that it is possible to solve Eq. (15) in
nearly-linear time, specifically in O(|E| logc n log(1/ε)) to
accuracy ε.

Linear time solvability is important in the context of ranking
from comparisons because it allows the underlying algo-
rithm to potentially scale up to very large data-sets, such
as those built from counts of web activity (i.e., clicks) or
from systems with millions of users and many times that
comparisons.

2.2. Main innovation in the proof

At a general level, there is a natural way to try to prove
the main results of this paper: on the one hand, there are
a variety of “two point estimates” which lower bound the
expected error by finding pairs of weights that are as differ-
ent as possible while giving rise to similar distributions on
outcomes; more sophisticated approaches do the same over
a distribution of weights. In the reverse direction, we can do
a large deviations analysis of Eq. (15), which will involve
having an accurate analysis of the behavior of a pseudoin-
verse of a random matrix. Once the lower and upper bounds
obtained this way match, the optimal error rate will have
been found. Most of the previous literature on the subject,
e.g., (Negahban et al. , 2016; Shah et al. , 2016; Hendrickx

et al. , 2019) used such an approach to derive upper or lower
bounds.

Unfortunately, this appears to be difficult to carry out di-
rectly. Our analysis relies on a “trick” of analyzing a suitably
regularized version of the problem, which we informally
describe next; the full proof is of course available in the
supplementary information.

Our starting point is Eq. (14), which shows that log Ŵ is a
solution of

LV̂ logW = MV̂ −1 logR. (16)

Of course, this equation has many solutions as 1 belongs
to the null space of LV̂ . The previous section defined a
solution Ŵ of this equation, which was the solution with
the elements of log Ŵ summing to zero. For our analysis,
we will find it convenient to “pick out” a different solution
of Eq. (16). We proceed as follows.

First, we multiply both sides of Eq. (16) by diag(w)−1:

diag(w)−1LV̂ logW = diag(w)−1MV̂ −1 logR.

We next introduce a new variable Y and reparametrize
logW = diag(w)−1Y so that the last equation can be
rewritten more symmetrically as

diag(w)−1LV̂ diag(w)−1Y = diag(w)−1MV̂ −1 logR.

As before, this equation has many solutions and we pick
one arguably the most “natural” one by setting

Ŷ =
(
diag(w)−1LV̂ diag(w)−1)† diag(w)−1MV̂ −1 logR,

(17)

Our analysis will proceed by analyzing the quantity Ŷ . Nat-
urally, we can use the relation logW = diag(w)−1Y to
obtain that the quantity diag(w)−1Ŷ is a solution of Eq.
(16). It will be helpful to introduce new notation for the
latter quantity:

log Ŵ r = diag(w)−1Ŷ . (18)

The quantity Ŵ r is, of course, a rescaled version of Ŵ
(because all solutions of Eq. (15) are rescaled versions
of Ŵ ). It is possible to be more precise and observe that
since the null space of diag(w)−1LV̂ diag(w)−1 is span of
w, we have that Ŷ is orthogonal to w; which implies that
log Ŵ r is orthogonal to w2 (where the square is understood
elementwise) or

n∏
i=1

(Ŵ r)
w2
i

i = 1. (19)

Observe that, because we do not know the true weights w,
we cannot compute Ŵ r. Nevertheless, we can still consider



Minimax Rate for Learning From Pairwise Comparisons in the BTL Model

it and analyze its properties, and whatever upper and lower
bounds we obtain for the sine of the angle between Ŵ r

and w will apply to the solutions we can actually compute,
since the angle between two vectors is unchanged if one of
them is scaled. It turns out that minimax optimal bounds
come out of the analysis only after analyzing the solution
Ŵ r defined in Eq. (19). Attempts based on other solutions
of Eq. (16) resulted in upper and lower bounds that do not
match (unless one introduces a scaling akin to considering
Ŵ r in the analysis). This is the main proof ingredient
present in this paper that was not used in earlier works.

Analyzing the quantity Ŵ r is the same as analyzing the
solution log Ŵ of the underlying least-squares problem of
Eq. (16) with smallest norm relative to the inner product
〈x, x〉w =

∑n
i=1 w

2
i x

2
i . Our approach may thus be viewed

as part of a long line of research suggesting that the key is
often to choose a metric that is natural for the problem. It
is analysis with respect to this (scaled) inner product that
ultimately leads to the weighted Laplacian Lγ appearing in
our main results and not the ordinary Laplacian L.

3. Simulations and Two Conjectures
We perform a number of experiments designed to gauge
the accuracy of the WLSM relative to competing methods.
Since we are not aware of any real data sets involving com-
parisons where the true weights are known, we will use
synthetic data. As we will see shortly, two conjectures are
suggested by our results. We simulate five methods:

1. The least-squares method. This is the method that
solves Eq. (9) for z∗ and then sets Ŵi = ez

∗
i . In the

figures below, it is abbreviated as “LS.”

2. Least squares with artificial weights. This solves for
z∗ using Eq. (11) and then sets Ŵi = ez

∗
i as above. It

cannot be implemented in practice because we do not
know the true variances vij used in Eq. (11), but it can
be used as a useful benchmark to measure degradation
in performance from using estimates of these variances.
This is abbreviated “artif weight” in the figures.

3. Iterative least squares. This method begins by solving
Eq. (11) by setting vij = 1. It then uses the computed
wij to compute vij using Eq. (10), and then proceeds
to re-solve Eq. (11). This cycle (new wij leading to
new vij then leading to new wij) is then repeated. This
is abbreviated by “iter weight” in the figures.

4. Our main algorithm, the WLSM method, which is
abbreviated with “emp weight” in the figures.

5. The eigenvector-based algorithm of (Negahban et al. ,
2012; 2016).

In general, we do not see much of a difference between any
of the methods on simple graphs. Representative results are
shown in Figure 1 for the 2D grid, the 3D grid, and the Erdos-
Renyi random graph. While the method we propose in this
paper is usually the best, the gains are extremely modest
in the neighborhood of a few percent, as can be eyeballed
from the figures. Only three graphs are shown because the
pattern is the same on all graphs we have simulated.

However, with some experimentations we have found that
the WLSM (along with other least-squares methods) has a
significant advantage as compared against the eigenvector-
based method in terms of accurately recovering all the
weights, especially when there are many nodes of small
weight. We give one example of such a graph in Figure 2.
We take a line graph, pick two nodes that are a neighbor
appart, and connect them through a complete bipartite graph
with newly introduced nodes (on the right-hand side of the
figure). The key idea is that the nodes on the right-hand side
(labeled u1, u2, u3 in the figure) will be assigned weight
wi of of 1, while the nodes on the left hand side will have
weights that increase geometrically from 1 to b. Thus, for
large b, the nodes u1, . . . , u3 are not very relevant to (any
notion of) distance between normalized versions of Ŵ and
w due to their comparatively small weights. However, ne-
glecting them has the effect of neglecting a large number
of paths between w3 and w5 which can be used to help
estimate the weights on the left-hand side.

w5

u1

u2

u3w6

w7

w4

w3

w2

w1

Figure 2. A graph on which the
eigenvector-based approach un-
derperform least-squares meth-
ods.

Figure 3 shows the dif-
ference between Ŵ3 −
Ŵ5 when w3 = w5 and
there are approximately 50
nodes ui on the right-hand
side. We compare the
difference Ŵ3 − Ŵ5 for
both the WLSM and the
eigenvector-based method
of (Negahban et al. , 2012;
2016). Each number repre-
sents a single run of the al-
gorithm with new random
comparisons. We see that
the WLSM outperforms by
about an order of magni-
tude.

Our simulations thus point
to two conjectures which
can be the subject of fur-
ther work. The first con-
jecture is that the earlier
eigenvector based methods
also achieve either the min-
imax scalings we have identified here, or something very
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Figure 1. Performance on the 2D grid, 3D grid, and Erdos-Renyi
graph. All three plots show | sin(Ŵ , w)| on the y-axis vs the
number of samples per edge on the x-axis. For the plots, the
weights were generated randomly in the interval [1, 20]. The 2D
and the E-R graph have 100 nodes, while the 3D grid has 125
nodes; the average degree of the E-R graph is 10. Each data point
is the average of 50 simulations.

0 2000 4000 6000 8000 10000 12000 14000
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emp weight
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Figure 3. Ŵ3 − Ŵ5 for the eigenvector method in red and the
WLSM in blue on the graph of Figure 2.

close to them, as our simulations do not appear to detect
any significant difference in performance. Indeed, note that
the 3D grid has a very strong divergence between average
resistance (constant) and spectral gap (' n2/3), and yet our
simulation on the 3D grid showed no difference between the
eigenvector based method (which has been upper bounded
in terms of scaling with the spectral gap) and the WLSM
(which we know to scale with resistance).

Moreover, a plausible conjecture is that the methods in
question achieve optimal performance not just in distance
between the vectors Ŵ , w but also among Ŵi−wi for each
node i (after appropriate normalization). We conjecture this
is indeed the case for the WLSM. However, our simulation
suggests this may not be the case for the eigenvector method,
as we have constructed an example (Figures 2 and 3) where
it underperforms in this metric.

4. Conclusions
Our main contribution is the determination of the asymptotic
minimax rate for inference from pairwise comparisons. In
contrast to previous work, our result is exact up to constant
factors.

Besides the conjectures discussed in Section 3, the most nat-
ural open question raised by our work is to understand how
big the number of samples per edge k has to be for the mini-
max rate derived in this paper to kick in. We would actually
conjecture that tr(L†γ)/||w||22 is, up to constant factors, not
only the minimax rate but also the sample complexity of
recovering (a scaled version of) w.
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