Supplementary Information:
Data-Efficient Image Recognition with Contrastive Predictive Coding

A. Self-supervised pre-training

Model architecture: Having extracted 80x80 patches
with a stride of 36 x36 from an input image with 260x260
resolution, we end up with a grid of 6x6 image patches.
We transform each one with a ResNet-161 encoder which
terminates with a mean pooling operation, resulting in a
[6,6,4096] tensor representation for each image. We then
aggregate these 1atents into a 6x6 grid of context vectors,
using a pixelcnn. We use this context to make the predic-
tions and compute the cec loss.

def pixelCNN(latents):
# latents: [B, H, W, D]
cres = latents
cres_dim = cres.shape[-1]
for _ in range(5):
Conv2D(output_channels=256,
kernel_shape=(1, 1)) (cres)
ReLU(c)
Conv2D(output_channels=256,
kernel_shape=(1, 3))(c)
Pad(c, [[0, O], [1, O], [0, O], [0, O]])
Conv2D(output_channels=256,
kernel_shape=(2, 1),
type=’VALID' ) (c)
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c = RelU(c)

¢ = Conv2D(output_channels=cres_dim,
kernel_shape=(1l, 1))(c)

cres = cres + cC

cres = ReLU(cres)
return cres

def CPC(latents, target_dim=64, emb_scale=0.1,
steps_to_ignore=2, steps_to_predict=3)

# latents: [B, H, W, D

loss = 0.0

context = pixelCNN(latents)

targets = Conv2D(output_channels=target_dim,

kernel_shape=(1, 1)) (latents)

batch_dim, col_dim, rows = targets.shapel[:-1]

targets = reshape(targets, [-1, target_dim])

for 1 in range(steps_to_ignore, steps_to_predict):
col_dim i = col_dim - i - 1

total_elements = batch_dim * col_dim_ i * rows

preds_i = Conv2D(output_channels=target_dim,
kernel_shape=(1, 1)) (context)
preds_i preds_i[:, :-(i+1), :, :] * emb_scale

preds_i reshape(preds_i, [-1, target_dim])

logits = matmul(preds_i, targets, transp_b=True)
b = range(total_elements) / (col_dim_i * rows)
col = range(total_elements) % (col_dim_i * rows)

labels = b * col_dim % rows + (i+1) % rows + col

loss += cross_entropy_with_logits(logits, labels)
return loss

Image preprocessing: The final CPC v2 image process-
ing pipeline we adopt consists of the following steps. We

first resize the image to 300x300 pixels and randomly ex-
tract a 260x260 pixel crop, then divide this image into a
6x6 grid of 80x 80 patches. Then, for every patch:

1. Randomly choose two transformations from Cubuk
et al. (2018) and apply them using default parameters.

2. Using the primitives from De Fauw et al. (2018), ran-
domly apply elastic deformation and shearing with
a probability of 0.2. Randomly apply their color-
histogram automentations with a probability of 0.2.

3. Randomly apply the color augmentations from
Szegedy et al. (2014) with a probability of 0.8.

4. Randomly project the image to grey-scale with a prob-
ability of 0.25.

Optimization details: We train the network for the CPC
objective using the Adam optimizer (Kingma & Ba, 2014)
for 200 epochs, using a learning rate of 0.0004, 5; = 0.8,
B2 = 0.999, ¢ = 10~® and Polyak averaging with a decay
of 0.9999. We also clip gradients to have a maximum norm
of 0.01. We train the model with a batch size of 512, which
we spread across 32 workers.

B. Linear classification

Model architecture: For linear classification we encode
each image in the same way as during self-supervised
pre-training (section A), yielding a 6x6 grid of 4096-
dimensional features vectors. = We then use Batch-
Normalization (Ioffe & Szegedy, 2015) to normalize the
features (omitting the scale parameter) followed by a 1x 1
convolution mapping each feature in the grid to the 1000
logits for ImageNet classification. We then spatially mean-
pool these logits to end up with the final log probabilities
for the linear classification.

Image preprocessing: We use the same data pipeline as
for self-supervised pre-training (section A).

Optimization details: We use the Adam optimizer with
a learning rate of 0.0005. We train the model with a batch
size of 512 images spread over 16 workers.
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C. Efficient classification
C.1. Purely supervised

Model architecture: We investigate using ResNet-50,
ResNet-101, ResNet-152, and ResNet-200 model architec-
tures, all of them using the ‘v2’ variant (He et al., 2016),
and find larger architectures to perform better, even when
given smaller amounts of data. We insert a DropOut layer
before the final linear classification layer (Srivastava et al.,
2014).

Image preprocessing: We extract a randomly sized crop,
as in the augmentations of Szegedy et al. (2014). We fol-
low this with the same image transformations as for self-
supervised pre-training (steps 1-4).

Optimization details: We use stochastic gradient descent,
varying the learning rate in {0.05, 0.1, 0.2}, the weight de-
cay logarithmically from 10~° to 10~2, the DropOut lin-
early from O to 1, and the batch size per worker in {16,
32}. We search for the best-performing model separately
for each subset of labeled training data, as more labeled data
requires less regularization. Having chosen these hyperpa-
rameters using a separate validation set (approximately 10k
images which we remove from the training set), we eval-
uate each model on the test set (i.e. the publicly available
ILSVRC-2012 validation set).

C.2. Semi-supervised with CPC

Model architecture: We apply the CPC encoder directly
to the image, resulting in a 14 x 14 grid of feature vectors.
These features are used as inputs to an 11-block ResNet
classifier with 4096-dimensional hiddens layers and 1024-
dimensional bottleneck layers. As for the supervised base-
line, we insert DropOut after the final mean-pooling opera-
tion and before the final linear classifier.

Image preprocessing: We use the same pipeline as the
supervised baseline.

Optimization details: We start by training the classifier
while keeping the CPC features fixed. To do so we search
through the same set of hyperparameters as the supervised
baseline. After training the classifier till convergence, we
fine-tune the entire stack for classification. In this phase we
keep the optimization details of each component the same
as previously: the classifier is fine-tuned with SGD, while
the encoder is fine-tuned with Adam.
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