
Supplementary to “The Tree Ensemble Layer: Differentiability meets
Conditional Computation”

Hussein Hazimeh 1 Natalia Ponomareva 2 Petros Mol 2 Zhenyu Tan 3 Rahul Mazumder 1

A. Notation

Table A.1 lists the notation used throughout the paper.

B. Appendix for Section 2

Figure 2 was generated by training a single tree with depth
10 using the smooth-step activation function. We optimized
the cross-entropy loss using Adam (Kingma & Ba, 2014)
with base learning rate = 0.1 and batch size = 256. The
y-axis of the plot corresponds to the average number of
reachable leaves per sample (each point in the graph corre-
sponds to a batch, and averaging is done over the samples
in the batch). For details on the diabetes dataset used in this
experiment and the computing setup, please refer to Section
D of the appendix.

C. Appendix for Section 3

C.1. Example of Conditional Forward and Backward
Passes

Figure C.1 shows an example of the tree traversed by the
conditional forward pass, along with the corresponding
Tfractional used during the backward pass, for a simple
regression tree of depth d = 4. Note that only 3 leaves are
reachable (out of the 16 leaves of a perfect, depth-4 tree).
The values inside the boxes at the bottom correspond to the
regression values (scalars) stored at each leaf. The output of
the tree for the forward pass shown on the left of Figure C.1,
is given by

T (x) = 0.8 ·0.3 ·1.5+0.8 ·0.7 ·(−2.0)+0.2 ·2.1 = −0.34.

Note also that the tree used to compute the backward pass is
substantially smaller than the forward pass tree since all the

1Massachusetts Institute of Technology 2Google Research
3Google Brain. Correspondence to: Hussein Hazimeh <haz-
imeh@mit.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

hard-routing internal nodes of the latter have been removed.

C.2. Memory Complexity of the Conditional Forward
Pass

The memory requirements depend on whether the forward
pass is being used for inference or training. For inference,
a node can be discarded as soon as it is traversed. Since
we traverse the tree in a depth-first manner, the worst-case
memory complexity is O(d). When used in the context of
training, additional quantities need to be stored in order to
perform the backward pass efficiently. In particular, we need
to store l.prob for every reachable leaf l, and 〈wi, x〉 for
every internal node i ∈ F , where F is set of ancestors of the
reachable leaves whose activation is fractional—see Section
3.2 for a formal definition of F . Note that |F | = U − 1 (as
discussed after Definition 1). Thus, the worst-case memory
complexity when used in the context of training isO(d+U).

C.3. Time Complexity of the Conditional Backward
Pass

Lines 8 and 9 perform O(k) operations so each leaf re-
quires O(k) operations. Lines 11 and 12 are O(1) since
for every i ∈ F , 〈wi, x〉 is available from the conditional
forward pass. Lines 13 and 14 are O(p), while line 15
is O(1). The total number of internal nodes traversed is
|F|. Moreover, we always have |F| = U − 1 (see the dis-
cussion following Definition 1). Therefore, the worst-case
complexity is O(Up + Uk). By Theorem 1, the maxi-
mum number of non-zero entries in the three gradients is
p + p|F| + Uk = O(Up + Uk) (and it is easy to see that
this rate is achievable). The best-case complexity of Algo-
rithm 2 is O(k)—this corresponds to the case where there
is only one reachable leaf (U = 1), so the fractional tree is
composed of a single node.

A Tree Ensemble Layer for Neural Networks

Table A.1: List of notation used.

Notation Space or Type Explanation
X Rp Input feature space.
Y Rk Output (label) space.
m Z>0 Number of trees in the TEL.

T (x) Function The output of TEL, a function that takes an input sample and returns a logit which corresponds
to the sum of all the trees in the ensemble. Formally, T : X → Rk.

T (x) Function A single perfect binary tree which takes an input sample and returns a logit, i.e., T : X → Rk.
d Z>0 The depth of tree T .
I Set The set of internal (split) nodes in T .
L Set The set of leaf nodes in T .

A(i) Set The set of ancestors of node i.
{x→ i} Event The event that sample x ∈ Rp reaches node i.
wi Rp Weight vector of internal node i (trainable). Defines the hyperplane split used in sample routing.
W R|I|×p Matrix of all the internal nodes weights.
S Function Activation function R → [0, 1]

S(〈wi, x〉) [0, 1] Probability (proportion) that internal node i routes x to the left.
[l ↙ i] Event The event that leaf l belongs to the left subtree of node i ∈ I.
[l ↘ i] Event The event that leaf l belongs to the right subtree of node i ∈ I.
ol Rk Leaf l’s weight vector (trainable).
O R|L|×k Matrix of leaf weights.
γ R≥0 Non-negative scaling parameter for the smooth-step activation function.
L Function Loss function for training (e.g., cross-entropy).

U , N Z>0 Number of leaves and internal nodes, respectively, that a sample x reaches.
R Set The set of reachable leaves.
F Set The set of ancestors of the reachable leaves, whose activation is fractional, i.e., F =

{i ∈ I | i ∈ A(l), l ∈ R, 0 < S(〈x,wi〉) < 1}.

Figure C.1: Left: Reachable sub-tree for the conditional forward pass. Right: Corresponding (fractional) tree for the
conditional backward pass where most of the internal (splitting) nodes of the forward pass sub-tree have been eliminated.

A Tree Ensemble Layer for Neural Networks

C.4. Proof of Theorem 1

Gradient of Loss w.r.t. x: By the chain rule, we have:

∂L

∂x︸︷︷︸
1×p

=
∂L

∂T︸︷︷︸
1×k

∂T

∂x︸︷︷︸
k×p

(1)

The first term in the RHS above is available from backprop-
agation. The second term can be written more explicitly as
follows:

∂T

∂x
=
∂
∑

l∈L P ({x→ l})ol
∂x

=
∑
l∈L

ol
∂

∂x

∏
j∈A(l)

rj,l(x)

=
∑
l∈L

ol
∑

i∈A(l)

∂

∂x
ri,l(x)

∏
j∈A(l),j 6=i

rj,l(x)

We make three observations that allows us to simplify the
expression above. First, if a leaf l is not reachable by x, then
the inner term in the second summation above must be 0.
This means that the outer summation can be restricted to the
set of reachable leavesR. Second, if an internal node i has
a non-fractional ri,l(x), then ∂

∂xri,l(x) = 0. This implies
that we can restrict the inner summation to be only over
A(l) ∩ F . Third, the second term in the inner summation
can be simplified by noting that the following holds for any
l ∈ R: ∏

j∈A(l),j 6=i

rj,l(x) =
P ({x→ l})
ri,l(x)

(2)

Note that in the above, ri,l(x) cannot be zero since l ∈ R
(otherwise, l will be unreachable). Combining the three
observations above, ∂T

∂x simplifies to:

∂T

∂x
=

∑
l∈R

ol
∑

i∈A(l)∩F

∂

∂x
ri,l(x)

P ({x→ l})
ri,l(x)

. (3)

Note that:

∂

∂x
ri,l(x) = S ′(〈x,wi〉)wT

i (−1)1[i↘l]. (4)

Plugging (4) into (3), and then using (1), we get:

∂L

∂x
=

∑
l∈R

g(l)
∑

i∈A(l)∩F

wT
i (−1)1[i↘l]S ′(〈x,wi〉)

ri,l(x)
(5)

where

g(l) = P ({x→ l})〈∂L
∂T

, ol〉. (6)

Finally, we switch the order of the two summations in (5) to
get:

∂L

∂x
=

∑
i∈F

∑
l∈R|i∈A(l)

g(l)wT
i (−1)1[i↘l]S ′(〈x,wi〉)

ri,l(x)

=
∑
i∈F

S ′(〈x,wi〉)
S(〈x,wi〉)

wT
i

∑
l∈R|[l↙i]

g(l)

−
∑
i∈F

S ′(〈x,wi〉)
1− S(〈x,wi〉)

wT
i

∑
l∈R|[i↘l]

g(l)

Gradient of Loss w.r.t. wi: By the chain rule:

∂L

∂wi
=
∂L

∂T

∂T

∂wi
(7)

The first term in the summation is provided from backprop-
agation. The second term can be simplified as follows:

∂T

∂wi
=
∂
∑

l∈L P ({x→ l})ol
∂wi

=
∑
l∈L

ol
∂

∂wi

∏
j∈A(l)

rj,l(x)

=
∑

l∈L|i∈A(l)

ol
∂

∂wi
ri,l(x)

∏
j∈A(l),j 6=i

rj,l(x), (8)

If i ∈ Fc then the term inside the summation above must
be zero, which leads to ∂T

∂wi
= 0.

Next, we assume that i ∈ F . If if a leaf l is not reachable,
then the term inside the summation of (8) is zero. Using
this observation along with (2), and simplifying we get the
following for every i ∈ F :

∂L

∂wi
=
S ′(〈x,wi〉)
S(〈x,wi〉)

xT
∑

l∈R|[l↙i]

g(l)

− S ′(〈x,wi〉)
1− S(〈x,wi〉)

xT
∑

l∈R|[i↘l]

g(l)

Gradient of Loss w.r.t. O: Note that

∂T

∂ol
=
∂
∑

v∈L P ({x→ v})ov
∂ol

(9)

= P ({x→ l})Ik, (10)

where Ik is the k × k identity matrix. Applying the chain
rule, we get:

∂L

∂ol
=
∂L

∂T
P ({x→ l}). (11)

A Tree Ensemble Layer for Neural Networks

D. Appendix for Section 4

Datasets: We consider 23 classification datasets from the
Penn Machine Learning Benchmarks (PMLB) repository1

(Olson et al., 2017). No additional preprocessing was done
as the PMLB datasets are already preprocessed—see Olson
et al. (2017) for details. We randomly split each of the
PMLB datasets into 70% training and 30% testing sets.
The three remaining datasets are CIFAR-10 (Krizhevsky
et al., 2009), MNIST (LeCun et al., 1998), and Fashion
MNIST (Xiao et al., 2017). For these, we kept the original
training/testing splits (60K/10K for MNIST and Fashion
MNIST, and 50K/10K for CIFAR) and normalized the pixel
values to the range [0, 1]. A summary of the 26 datasets
considered is in Table D.2.

Table D.2: Dataset Statistics

Dataset # samples # features # classes

ann-thyroid 7200 21 3
breast-cancer-w. 569 30 2
car-evaluation 1728 21 4
churn 5000 20 2
CIFAR 60000 3072 10
crx 690 15 2
dermatology 366 34 6
diabetes 768 8 2
dna 3186 180 3
ecoli 327 7 5
Fashion MNIST 70000 784 10
flare 1066 10 2
heart-c 303 13 2
hypothyroid 3163 25 2
MNIST 70000 784 10
nursery 12958 8 4
optdigits 5620 64 10
pima 768 8 2
satimage 6435 36 6
sleep 105908 13 5
solar-flare 2 1066 12 6
spambase 4601 57 2
texture 5500 40 11
twonorm 7400 20 2
vehicle 846 18 4
yeast 1479 8 9

Computing Setup: We used a cluster running CentOS
7 and equipped with Intel Xeon Gold 6130 CPUs (with
a 2.10GHz clock). The tuning and training was done in
parallel over the competing models and datasets (i.e., each
(model,dataset) pair corresponds to a separate job). For the
experiments of Sections 4.1 and 4.2, each job involving
TEL and XGBoost was restricted to 4 cores and 8GB of
RAM, whereas LR and CART were restricted to 1 core
and 2GB. The jobs in the experiment of Section 4.3 were

1https://github.com/EpistasisLab/
penn-ml-benchmarks

each restricted to 8 cores and 32GB RAM. We used Python
3.6.9 to run the experiments with the following libraries:
TensorFlow 2.1.0-dev20200106, XGBoost 0.90, Sklearn
0.19.0, Hyperopt 0.2.2, Numpy 1.17.4, Scipy 1.4.1, and
GCC 6.2.0 (for compiling the custom forward/backward
passes).

D.1. Tuning Parameters and Architectures:

A list of all the tuning parameters and their distributions is
given for every experiment below. For experiment 4.3, we
also describe the architectures used in detail.

Experiment of Section 4.1 For the predictive performance
experiment, we use the following:

• Learning rate: Uniform over {10−1, 10−2, . . . , 10−5}.

• Batch size: Uniform over {32, 64, 128, 256, 512}.

• Number of Epochs: Discrete uniform with range
[5, 100].

• α: Log uniform over the range [10−4, 104].

• γ: Log uniform over the range [10−4, 1].

Experiment of Section 4.2:

TEL:

• Learning rate: Uniform over {10−1, 10−2, . . . , 10−5}.

• Batch size: Uniform over {32, 64, 128, 256, 512}.

• Number of Epochs: Discrete uniform over [5, 100].

• γ: Log uniform over [10−4, 1].

• Tree Depth: Discrete uniform over [2, 8].

• Number of Trees: Discrete uniform over [1, 100].

• L2 Regularization for W : Mixture model of 0 and
the log uniform distribution over [10−8, 102]. Mixture
weights are 0.5 for each.

XGBoost:

• Learning rate: Uniform over {10−1, 10−2, . . . , 10−5}.

• Tree Depth: Discrete uniform over [2, 20].

• Number of Trees: Discrete uniform over [1, 500].

https://github.com/EpistasisLab/penn-ml-benchmarks
https://github.com/EpistasisLab/penn-ml-benchmarks

A Tree Ensemble Layer for Neural Networks

• L2 Regularization (λ): Mixture model of 0 and the log
uniform distribution over [10−8, 102]. Mixture weights
are 0.5 for each.

• min child weight = 0.

Logistic Regression: We used Sklearn’s default optimizer
and increased the maximum number of iterations to 1000.
We tuned over the L2 regularization parameter (C): Log
uniform over [10−8, 104].

CART: We used Sklearn’s “DecisionTreeClassifier” and
tuned over the depth: discrete uniform over [2, 20].

Experiment of Section 4.3: CNN-Dense has the following
architecture:

• Convolutional layer 1: has f filters and a 3× 3 kernel
(where f is a tuning parameter).

• Convolutional layer 2: has 2f filters and a 3× 3 kernel.

• 2× 2 max pooling

• Flattening

• Dropout: the dropout rate is a tuning parameter.

• Batch Normalization

• Dense layers: a stack of ReLU-activated dense layers,
where the number of layers and the units in each is a
tuning parameter.

• Output layer: dense layer with softmax activation.

CNN-TEL has the following architecture:

• Convolutional layer 1: has f filters and a 3× 3 kernel
(where f is a tuning parameter).

• Convolutional layer 2: has 2f filters and a 3× 3 kernel.

• 2× 2 max pooling

• Flattening

• Dropout: the dropout rate is a tuning parameter.

• Batch Normalization

• Dense layer: the number of units is a tuning parameter.

• TEL

• Output layer: softmax.

We used the following hyperparameter distributions:

• Learning rate: Uniform over {10−1, 10−2, . . . , 10−5}.

• Batch size: Uniform over {32, 64, 128, 256, 512}.

• Number of Epochs: Discrete uniform over [1, 100].

• γ: Log uniform over [10−4, 1].

• Tree Depth: Discrete uniform over [2, 6].

• Number of Trees: Discrete uniform over [1, 50].

• f : Uniform over {4, 8, 16, 32}.

• Number of dense layers in CNN-Dense: Discrete Uni-
form over [1, 5].

• Number of units in dense layers of CNN-Dense: Uni-
form over {16, 32, 64, 128, 256, 512}.

• Number of units in the dense layer of CNN-TEL: Uni-
form over {16, 32, 64}.

• Dropout rate: Uniform over [0.1, 0.5].

