
CoMic: Complementary Task Learning & Mimicry for Reusable Skills
Supplementary Material

Leonard Hasenclever 1 Fabio Pardo 2 Raia Hadsell 1 Nicolas Heess 1 Josh Merel 1

1. Tasks
All tasks use the MuJoCo physics simulator (Todorov et al.,
2012) and are simulated with a timestep of 5ms. We use a
humanoid body adapted from the “CMU humanoid” avail-
able at dm control/locomotion (Merel et al., 2019a). We
adjusted limb lengths, masses, and dynamic properties of
the body to make it more consistent with an average human.
The humanoid is controlled with a control timestep of 30ms.

1.1. Motion Capture Tracking Task

In this section, we give additional details on the multi-clip
motion capture tracking task used in this work. The task
is broadly similar to others used in prior work on motion
capture tracking (Peng et al., 2018; Merel et al., 2019a;
Chentanez et al., 2018; Peng et al., 2019). Our task is
available in the dm control/locomotion package.

Associated with an instance of this task is an underlying set
of reference motion capture clips. The important aspects
of the tasks are initialization, reward function, termination
conditions and observations.

Initialization At the start of each episode we randomly
select a starting frame from all frames in the underlying set
of clips (excluding the last 10 frames from each clip). At
the beginning of each episode the humanoid is initialized to
the target pose in the selected frame.

Observations The agent receives both proprioceptive ob-
servations as well as information about the target pose in the
active mocap clip. The proprioceptive observations are the
joint angles, joint angular velocities, a velocimeter observa-
tion, a gyro observation, the end effector positions, the ‘up’
direction in the frame of the humanoid, the actuator state,
as well as touch sensors on the hands, fingers and feet and
torque sensors in both shoulders.

1DeepMind, London 2Imperial College, London, work done
during an internship at DeepMind. Correspondence to: Leonard
Hasenclever <leonardh@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

The observations about the target poses consist of the rela-
tive target positions and orientations of different body parts
in the local frame. We provide the agent with target poses
{ŝt+1, ...ŝt+5} for the next 5 timesteps (similarly to Chen-
tanez et al., 2018; Merel et al., 2019b).

Reward function and terminations. The reward func-
tion captures how close the pose of the simulated humanoid
is to the respective target pose. Similar to previous work
(Peng et al., 2018; Merel et al., 2019a) we found results to
be relatively sensitive to the reward function. Our reward
function contains five different terms:

r =
1

2
rtrunc +

1

2
(0.1rcom + rvel + 0.15rapp + 0.65rquat)

The first reward term rtrunc penalizes large deviations from
the reference in joint angles and the euclidean position of a
set of 13 different body parts:

rtrunc = 1− 1

τ
(

:=ε︷ ︸︸ ︷
‖bpos − bref

pos‖1 + ‖qpos − qref
pos‖1),

where bpos and bref
pos correspond to the body positions of

the simulated character and the mocap reference and qpos
and qref

pos correspond to the joint angles. This reward term
is linked to the termination condition of our tracking task.
Given a termination threshold τ , we terminate an episode if
ε > τ . Note that this ensures that rtrunc ∈ [0, 1]. We found
that including this termination condition and the coupled
reward speeds up training on larger clip sets but does not by
itself lead to visually appealing tracking behavior. We used
τ = 0.3

The second reward term is similar to the objective proposed
in Peng et al. (2018) with terms penalizing deviations in
terms of the center of mass, the joint angle velocities, the
end effector positions and the joint orientations but uses
slightly different weights. The first term rcom penalizes
deviations from the centre of mass:

rcom = exp
(
−10‖pcom − pref

com‖2
)
, (1)

where pcom and pref
com are the positions of the centre of mass

of the simulated character and the mocap reference, respec-
tively. The second term rvel penalizes deviations from the

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion
https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion


CoMic: Complementary Task Learning & Mimicry for Reusable Skills – Supplementary Material

reference joint angle velocities:

rvel = exp
(
−0.1‖qvel − qref

vel‖2
)
, (2)

where qvel and qref
vel are the joint angle velocities of the simu-

lated character and the mocap reference, respectively. The
third term rapp penalizes deviations from the reference end
effector positions:

rapp = exp
(
−40‖papp − pref

app‖2
)
, (3)

where papp and pref
app are the end effector positions of the sim-

ulated character and the mocap reference, respectively. Fi-
nally, rquat penalizes deviations from the reference in terms
of the quaternions describing the joint orientations:

rquat = exp
(
−2‖qquat � qref

quat‖2
)
, (4)

where � denotes quaternion differences and qquat and qref
quat

are the joint quaternions the simulated character and the
mocap reference, respectively.

1.2. Locomotion Transfer Tasks

We consider three locomotion tasks from the DM Control lo-
comotion task library (dm control/locomotion) (Tassa et al.,
2018; Merel et al., 2019a). In all tasks we initialize the
humanoid using suitable motion capture pose.

Go-To-Target We consider a sparse go-to-target task. The
simulated humanoid is randomly initialized in an arena. The
task requires locomoting to a random target location. The
agent is rewarded for being within 1 meter of the target
location for 10 steps after which the target randomly moves
to a new location. The task terminates after 25 seconds.

Gaps and Walls Obstacle Courses We consider two
challenging obstacle courses to be solved from first-person
visual observations. In both tasks the agent is rewarded for
achieving a target root velocity of 3m/s in the direction of
the corridor. We use the default reward function provided
by the task – the reward linearly increases from 0 at 0m/s to
1 at 3m/s and linearly decreases to 0 at 6m/s. In both cases
the task terminates after 45 seconds and we use corridor
length of 100m and a corridor width of 10m.

For the gaps task, the length of the gaps is randomized
between 0.75m and 1.25m and the length of the platforms
between gaps is randomized between 0.3m and 2.5m.

For the walls task, the distance between walls is 5m. The
walls are randomly placed on either side. The length of the
walls is randomized between 1m and 7m. The height of
the walls is randomized between 2.5m and 4m. We also
randomize the wall colors.

1.3. Complementary Tasks

To demonstrate our joint training approach we use two tasks
that require skills not well covered by the motion capture
data.

Get up and Stand Task The first task we consider is
a get up and stand task. The humanoid is initialized in
a large variety of poses (about 5% lying on the ground
and 95% floating slighly above the ground in a standing
pose which induces falling in a variety of different ways).
The reward function is exp(−(h − htarget)

2), where h is
the head height of the humanoid and htarget is the target
height corresponding to standing. The task terminates after
8 seconds, implying a maximum reward of about 267. The
perfect task performance the humanoid has to be able to
get up from the ground when initialized on the ground and
avoid falling for all other intializations.

Ball catching A second task involves catching a ball
thrown towards the humanoid. This task is similar to the one
considered by Merel et al. (2020). In this task the humanoid
is initialized in a standing pose. The ball is initialized in
mid-air with a random velocity components propelling it
upwards and towards the humanoid. The size and mass of
the ball, as well as its angular velocity are also randomly
sampled across episodes. Episodes terminate after 6 sec-
onds or if the ball makes contact with the ground or hits
the humanoid’s head. In the case of failure terminations
the agent receives a reward of −1. Furthermore, the agent
receives a reward of +0.01 for each hand touching the ball
with the front and a penalty of −0.01 for touching the ball
with the back. In addition, we use a small shaping reward to
encourage standing up. The reward is identical to the one
used in the get up and stand task but scaled to a maximum
of 0.01 per timestep. Upon catching the ball, there is a
small shaping reward incentivizing the humanoid to walk
forwards towards a target.

2. Training Details and Network
Architectures

We use V-MPO (Song et al., 2020), an on-policy variant of
MPO in all of our experiments (Abdolmaleki et al., 2018).
In the case of mixture networks we use an additional KL
constraint on the distribution of mixture components similar
to Wulfmeier et al. (2019). For all experiments we use a
batchsize of 128 and an unroll length of 32. We use n-
step returns to train the critics. In the V-MPO E-Step we
use the top 50% of advantages as suggested by Song et al.
(2020). All Lagrange multiplier in V-MPO were initialized
by default to 1. We used Adam with a learning rate of 10−4.
We used a discount factor of 0.95 in all experiments.

We use a distributed infrastructure with a learner with access

https://github.com/deepmind/dm_control/tree/master/dm_control/locomotion


CoMic: Complementary Task Learning & Mimicry for Reusable Skills – Supplementary Material

Hyperparameter Value
V-MPO (E-Step) ε 0.1
V-MPO (M-Step) εµ 0.1

εΣ 10−5

Table 1. Hyperparameter choices for all MLP low-level tracking
experiments.

to a 1x1 TPUv2 chip (with 2 cores) (Google, 2018) and use
4000 actor processes to produce environment interactions
for the learner. A single experiment takes about 2-3 days.

2.1. Default Architectures

We tried to keep most architectural choices similar across
our experiments. In this section we describe the default ar-
chitectural choices which were used unless otherwise stated.

Reference Encoder For the reference encoder, we con-
catenate the reference observations for the next 5 timesteps,
proprioceptive observations and the sampled latent zt−1

from the previous timestep. This combined observation is
fed into an MLP with 2 hidden layers with 1024 hidden
units each. We use layer norm but found that this makes
little difference empirically. In the case of MLP low-level
controller we also use an additional linear pathway from the
input to the output of the MLP. We found that this change
slightly improved results but made no difference for other
low-level architectures. We use linear layers on top of the
resulting representations to produce mean and log standard
deviation for the stochastic latent embedding.

Value function For the value function we concatenate the
reference observations for the next 5 timesteps, propriocep-
tive observations as well as a 30-dimensional learned clip
embedding. This is fed into an MLP with 3 hidden layers
with 1024 hidden units each. We use layer norm. We predict
a value for each reward component separately on top of this
representation.

2.2. KL regularization and Embedding Size
Experiments

For this experiment, we use an MLP low-level policy with
2 hidden layers with 1024 hidden units each followed by
linear layers to produce mean and log standard deviation.
The inputs are a concatenation of the latent embedding zt
and the proprioceptive observations. Hyperparameters for
this experiment are shown in table 1.

2.3. Architecture Comparison

In this experiment we compared a number of different low-
level architectures across a range of data regimes. For all
architectures, we optimized the V-MPO hyperparameters

separately on the locomotion clip set (40min) based on
downstream transfer performance and kept them the same
across all other data regimes. We chose low-level archi-
tecture with a similar number of parameters as the MLP
low-level.

MLP For the MLP low-level we used the same architec-
ture as in the KL regularization and embedding size experi-
ment with an embedding size of 60 and a KL regularization
strength of 5× 10−4. The hyperparameters are the same as
in table 1.

LSTM For the LSTM experiments we use two stacked
LSTM with 384 and 256 units. In addition we use a recur-
rent value function instead of the feedforward value function
described above. We used an embedding size of 60 and a
KL regularization strength of 5× 10−4. The V-MPO hyper-
parameters are the same as in table 1.

Mixture and Product For the mixture architecture and
the product architecture we use a shared torso with two hid-
den layers with 512 hidden units each followed by separate
MLPs with 256 hidden units per primitive and 5 primitives.1

The V-MPO hyperparameters for the mixture architecture
and the product architecture can be found in tables 2 and 3,
respectively. For mixture and product architectures, directly
regularizing the space of mixture weights or exponents with
a KL penalty does not seem sensible. Thus, for both mix-
ture and product low-level architectures, we experimented
with different ways to include regularization in the architec-
ture. In addition to the default implementation without a
latent bottleneck or KL regularization we also experimented
with a latent bottleneck of dimensionality 60. In this case
the latent produced by the reference encoder is concaten-
tated with the proprioceptive information and fed through
a two-layer MLP with 400 hidden units each to produce
the mixture weights or exponents, respectively. For each
data regime we compare the default implementation without
KL regularization and version with a latent bottleneck and
different regularization strengths. We also tried explicitly
initializing the different components far away from each
other to encourage use of different primitives by using a
fixed bias in the mean of each component. Specifically, we
explored biases of -0.66, -0.33, ..., 0.66 for the 5 primitives.
We report the best performing architectures in table 4. We
note that we found training a product architecture without
additional regularization very unstable.

2.4. Joint Training Experiments

In our joint training experiments we used an MLP low-level
architecture and per task high level controllers and value

1We note that in preliminary experiments we also explored
using more primitives without substantially different results.



CoMic: Complementary Task Learning & Mimicry for Reusable Skills – Supplementary Material

Hyperparameter Value
V-MPO (E-Step) ε 0.1
V-MPO (M-Step) εµ 0.1

εΣ 10−3

εdiscrete 10−3

Table 2. V-MPO hyperparameter choices for all mixture low-level
experiments.

Hyperparameter Value
V-MPO (E-Step) ε 0.1
V-MPO (M-Step) εµ 0.1

εΣ 10−3

Table 3. V-MPO hyperparameter choices for all product low-level
experiments.

functions. For the mocap tracking task we used the same
default architecture as above. We used the same architec-
tures for high-level controllers and value functions in both
the tracking task and the complementary tasks. We did
not learn separate value function per reward term in these
experiments. In the experiments involving the get up and
stand task we sampled the get up and stand task in 10% of
all episodes. In the experiments involving the ball catch-
ing task we sampled the ball catching task in 20% of all
episodes.

2.5. Locomotion and Joint Training Transfer
Experiments

We used the same high-level controller architecture, algo-
rithm and hyperparameters for all transfer experiments on a
given task. We used SVG(0) (Heess et al., 2015) with the
Retrace off-policy correction (Munos et al., 2016) in all of
our experiments. In all of our experiments we used shared
observation encoders. These are small MLPs for the propri-
oceptive observations and the non-visual task observations
in the go-to-target, get up and ball catching tasks. For the

Data regime Best mixture architecture
Walking (2min) No bottleneck, bias init
Running (2min) No bottleneck, bias init

Locomotion (40min) No bottleneck, bias init
Large (3.5h) Bottleneck β = 5× 10−4, bias init

Best product architecture
Walking (2min) Bottleneck β = 5× 10−4

Running (2min) Bottleneck β = 5× 10−4

Locomotion (40min) Bottleneck β = 5× 10−4

Large (3.5h) Bottleneck β = 1× 10−4

Table 4. Best performing modular architectures for each data
regime.

image observations in the walls and gaps tasks we use a
small ResNet. The observation encodings are concatenated
and processed by an LSTM with 128 units that is shared
between policy and action-value function. On top of this
LSTM we have a one-layer MLP with 256 hidden units for
the action-value function function and another LSTM with
128 units followed by linear layers to produce the high-level
policy.

References
Abdolmaleki, A., Springenberg, J. T., Tassa, Y., Munos,

R., Heess, N., and Riedmiller, M. Maximum a posteri-
ori policy optimisation. In International Conference on
Learning Representations (ICLR), 2018.

Chentanez, N., Müller, M., Macklin, M., Makoviychuk, V.,
and Jeschke, S. Physics-based motion capture imitation
with deep reinforcement learning. In International Con-
ference on Motion, Interaction, and Games (MIG). ACM,
2018.

Google. Cloud TPU. 2018. URL https://cloud.
google.com/tpu/.

Heess, N., Wayne, G., Silver, D., Lillicrap, T., Erez, T., and
Tassa, Y. Learning continuous control policies by stochas-
tic value gradients. In Advances in Neural Information
Processing Systems, pp. 2944–2952, 2015.

Merel, J., Ahuja, A., Pham, V., Tunyasuvunakool, S., Liu,
S., Tirumala, D., Heess, N., and Wayne, G. Hierarchi-
cal visuomotor control of humanoids. In International
Conference on Learning Representations (ICLR), 2019a.

Merel, J., Hasenclever, L., Galashov, A., Ahuja, A., Pham,
V., Wayne, G., Teh, Y. W., and Heess, N. Neural proba-
bilistic motor primitives for humanoid control. In Interna-
tional Conference on Learning Representations (ICLR),
2019b.

Merel, J., Tunyasuvunakool, S., Ahuja, A., Tassa, Y., Hasen-
clever, L., Pham, V., Erez, T., Wayne, G., and Heess, N.
Catch & carry: Reusable neural controllers for vision-
guided whole-body tasks. In SIGGRAPH 2020, 2020.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare,
M. Safe and efficient off-policy reinforcement learning.
In Advances in Neural Information Processing Systems,
pp. 1054–1062, 2016.

Peng, X. B., Abbeel, P., Levine, S., and van de Panne,
M. Deepmimic: Example-guided deep reinforcement
learning of physics-based character skills. Transactions
on Graphics (TOG), 2018.

https://cloud.google.com/tpu/
https://cloud.google.com/tpu/


CoMic: Complementary Task Learning & Mimicry for Reusable Skills – Supplementary Material

Peng, X. B., Chang, M., Zhang, G., Abbeel, P., and Levine,
S. Mcp: Learning composable hierarchical control with
multiplicative compositional policies. In Advances in
Neural Information Processing Systems (NeurIPS), 2019.

Song, H. F., Abdolmaleki, A., Springenberg, J. T., Clark,
A., Soyer, H., Rae, J. W., Noury, S., Ahuja, A., Liu,
S., Tirumala, D., Heess, N., Belov, D., Riedmiller, M.,
and Botvinick, M. M. V-MPO: On-policy maximum a
posteriori policy optimization for discrete and continu-
ous control. In International Conference on Learning
Representations (ICLR), 2020.

Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.
d. L., Budden, D., Abdolmaleki, A., Merel, J., Lefrancq,
A., Lillicrap, T., and Riedmiller, M. DeepMind control
suite. arXiv preprint arXiv:1801.00690, 2018.

Todorov, E., Erez, T., and Tassa, Y. Mujoco: A physics
engine for model-based control. In International Con-
ference on Intelligent Robots and Systems (IROS). IEEE,
2012.

Wulfmeier, M., Abdolmaleki, A., Hafner, R., Springenberg,
J. T., Neunert, M., Hertweck, T., Lampe, T., Siegel, N.,
Heess, N., and Riedmiller, M. A. Regularized hierarchical
policies for compositional transfer in robotics. arXiv
preprint arXiv:1906.11228, 2019.


