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Abstract

In E-commerce, advertising is essential for mer-
chants to reach their target users. The typical
objective is to maximize the advertiser’s cumula-
tive revenue over a period of time under a budget
constraint. In real applications, an advertisement
(ad) usually needs to be exposed to the same user
multiple times until the user finally contributes
revenue (e.g., places an order). However, existing
advertising systems mainly focus on the immedi-
ate revenue with single ad exposures, ignoring the
contribution of each exposure to the final conver-
sion, thus usually falls into suboptimal solutions.
In this paper, we formulate the sequential advertis-
ing strategy optimization as a dynamic knapsack
problem. We propose a theoretically guaranteed
bilevel optimization framework, which signifi-
cantly reduces the solution space of the original
optimization space while ensuring the solution
quality. To improve the exploration efficiency of
reinforcement learning, we also devise an effec-
tive action space reduction approach. Extensive
offline and online experiments show the superior
performance of our approaches over state-of-the-
art baselines in terms of cumulative revenue.

1. Introduction

In E-commerce, online advertising plays an essential role
for merchants to reach their target users, in which Real-time
Bidding (RTB) (Zhang et al., 2014; 2016; Zhu et al., 2017)
is an important mechanism. In RTB, each advertiser is al-
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lowed to bid for every individual ad impression opportunity.
Within a period of time, there are a number of impression
opportunities (user requests) arriving sequentially. For each
impression, each advertiser offers a bid based on the impres-
sion value (e.g., revenue) and competes with other bidders
in real-time. The advertiser with the highest bid wins the
auction and thus display ad and enjoys the impression value.
Displaying an ad also associates with a cost: in Generalized
Second-Price (GSP) Auction (Edelman et al., 2007), the
winner is charged for fees according to the second highest
bid. The typical advertising objective for an advertiser is to
maximize its cumulative revenue of winning impressions
over a time period under a fixed budget constraint.

In a digital age, to drive conversion, advertisers can reach
and influence users across various channels such as display
ad, social ad, paid search ad (Ren et al., 2018). As illus-
trated in Figure 1, the user’s decision to convert (purchase a
product) is usually driven by multiple interactions with ads.
Each ad exposure would influence the user’s preferences and
interests, and therefore contributes to the final conversion.
However, existing advertising systems (Yuan et al., 2013;
Zhang et al., 2014; Ren et al., 2017; Zhu et al., 2017; Jin
et al., 2018; Ren et al., 2019) mainly focus on maximizing
the single-step revenue, while ignoring the contribution of
previous exposure to the final conversion, and thus usually
falls into suboptimal solutions. The reason is that simply
optimizing the total immediate revenue cannot guarantee
the maximazation of the long-term cumulative revenue. Be-
sides, there exist some works (Boutilier & Lu, 2016; Du
etal., 2017; Cai et al., 2017; Wu et al., 2018) which optimize
the overall revenue under an extra-long (billions) request
sequence using a single Constrained Markov Decision Pro-
cess (CMDP) (Altman, 1999). However, the optimization
of these methods above is myopic as they ignore the mental
evolution of each user and the long-term advertising effects.
The learning is particularly inefficient as well.

Apart from the myopic approaches, there exists some litera-
tures considering the long-term effect of each ad exposure.
Multi-touch attribution (MTA) (Ji & Wang, 2017; Ren et al.,
2018; Du et al., 2019) study the credits assignment to the
previous ad displays before conversion. However, these
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Figure 1. An illustration of the sequential multiple interactions (across different channels) between a user and an ad. Each ad exposure has

long-term influence on the user’s final purchase decision.

methods only attend to figure out the contribution of each
ad exposure, while not providing methods to optimize the
strategies. Besides, since all media channels could affect
users’ conversions, Li et al. (2018); Nuara et al. (2019)
propose multi-channel budget allocation algorithms to help
advertisers understand how particular channels contribute
to user conversions. They optimize the budget allocation
among all channels accordingly to maximize the overall
revenue. However, the granularity of their optimizations is
too coarse. They only optimize the budget allocation in the
channel level and do not specifically optimize the advertis-
ing sequence for each user, which could lead to suboptimal
overall performance.

Considering the shortcomings of existing works, we aim
at optimizing the budget allocation of an advertiser among
all users such that the cumulative revenue of the advertiser
could be maximized, by explicitly taking into consideration
the long-term influence of ad exposures to individual users.
This problem consists of two levels of coupled optimization:
bidding strategy learning for each user and budget alloca-
tion among users, which we termed as Dynamic Knapsack
Problem. Different from traditional Knapsack problem, a
number of challenges arise: 1) Given the estimated long-
term value and cost for each user, the optimization space of
the budget allocation grows exponentially in the number of
users. Besides, since different advertising policies for each
user will lead to different long-term values and costs, the
overall optimization space is extremely large. 2) The long-
term cumulative value and cost for each user are unknown,
which are difficult to make accurate estimations.

To address the above challenges, we propose a novel bilevel
optimization framework: Multi-channel Sequential Bud-
get Constrained Bidding (MSBCB), which transforms the
original bilevel optimization problem into an equivalent
two-level optimization with significantly reduced searching
space. The higher-level only needs to optimize over one
dimensional variable and the lower-level learns the optimal
bidding policy for each user and computes the correspond-

ing optimal budget allocation solution. For the lower-level,
we derive an optimal reward function with theoretical guar-
antee. Besides, we also propose an action space reduction
approach to significantly increase the learning efficiency
of the lower-level. Finally, extensive offline analyses and
online A/B testing conducted on one of the world’s largest
E-commerce platforms, Taobao, show the superior perfor-
mance of our algorithm over state-of-the-art baselines.

2. Formulation: Dynamic Knapsack Problem

Within a time period of k days, we assume that there are
N users {i=1, ..., N} visiting the E-commerce platform.
Each user may interact with the app multiple times and
trigger multiple advertising requests. During the sequential
interactions between an ad and a user, each ad exposure
could influence the user’s mind and therefore contributes to
the final conversion. Given a selected ad, for each individual
user ¢, we build a separate Markov Decision Process (MDP)
(Sutton & Barto, 2018) to model their sequential interaction.
We denote the advertising policy of the ad towards user @
as 7;, which takes user ¢’s state as input and outputs the
auction bid. Details of the MDP will be discussed in Section
3.2. For the selected ad, we define Vg (i|m;) and Vo (i|m;) as
the expected long-term cumulative value and cost for each
user ¢ under policy ;. Formally,

T;
Va(ilr;) = E[Gilm] = E[S vylm]
=0 (1)

T;

Vc(i|7Ti) =K [Oi‘ﬂ'i} = E[Z Ct|7T'i]
t=0

where v, and ¢, represent the value (i.e., the revenue) and

cost obtained from each re(#uest t according to policy m;,
T; i

Gi=) ,'yvand C; = ;" c; represent the long-term

cumulative value and cumulative cost, 7 is the length of

the interaction sequence.

Given the above definitions, for an advertiser, our target is
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to maximize its long-term cumulative revenue over k days
under a budget constraint B, which is formulated as:

N
max max z; x; Ve (ilm;)
=

N 2
s.t. sz Velilm) < B
i=1

where [I={m,...,7an}, X ={z1,...,2n},and z; € {0,1}
indicates whether the user i is selected. Since whether dis-
playing an ad to user ¢ does not have any impact on user
J’s behaviors, Vi (i|m;), Ve (i|m;) and 7r; among different
users are independent. Thus, given any fixed advertising
policy Il = {my,...,mn}, Ve (i|m;) and Ve (i|m;) for each
user ¢ are fixed and the inner optimization of Equation (2)
can be viewed as a classic knapsack problem. The items
to be put into the knapsack are the users. However, differ-
ent advertising policies would lead to different Vi; (i|m;)s
and V¢ (i|m;)s for each user, thus here we define Equation
(2) as a Dynamic Knapsack Problem where the value and
cost of each item in the knapsack are dynamic. From the
perspective of optimization, Formulation (2) is a typical
bilevel optimization, where the optimization of II is em-
bedded (nested) within the optimization of X'. This bilevel
optimization is challenging due to the following reasons:

(1) The optimization space of the joint II is continuous (for
the bid space is continuous). The optimization space of
X is discrete, which grows exponentially in the number
of users (hundreds of millions). Therefore, the solution
space of the combination of II and X is enormous and
thus is difficult or even impossible to optimize directly.

(2) The value of Vi (i|m;) and Ve (i|7;) are unknown and
variable, efficient approaches are required to estimate
these values online under limited samples.

3. Methodology: MSBCB Framework

3.1. Bilevel Decomposition and Proof of Correctness

Based on the above analysis, the bilevel optimization (2) is
computationally prohibitive and cannot be solved directly.
In this paper, we first decompose it into an equivalent two-
level sequential optimization process. When taking a fixed
policy II as input, we denote the optimal solution of the
degraded and static Knapsack Problem as K = KP(II).
Further, the global optimal solution of Problem (2) could be
defined as:

K*= max

T, T2, TN

KP(IT) 3)

where 71, ..., my are independent variables and K* is the
global optimal solution. To obtain K*, we must firstly
specify the form of the function KP(II).

When taking a fixed policy II as input, computing KP(IT)
is a classic static knapsack problem. However, another
challenge in online advertising is that the user requests are
arriving sequentially in real time and thus real-time deci-
sion makings are required. Complicated algorithms (e.g.
dynamic programming) are not applicable due to the incom-
pleteness of all users values and costs.

On the contrary, the Greedy algorithm could compute a
greedy solution without completely knowing the whole set
of candidate users beforehand. We will discuss this latter.
Besides, the Greedy algorithm can achieve nearly optimal
solution in the online advertising (Zhang et al., 2014; Wu
et al., 2018). As proved by Dantzig (1957),if Vi € 1,..., N,
Ve (i|m;) < (1 —X)B,0< A <1, i.e., the cumulative cost for
each user is much less than the budget, the Greedy algorithm
achieves an approximation ratio of A, which means the
greedy solution is at least A times of the optimal solution K.
The closer the A gets to 1, the higher the quality of the greedy
solution will be. In online advertising, A is usually greater
than 99.9%. Thus, the greedy solution is approximately
optimal. We provide the detailed data and proof in Section
B.1 of the Appendix. Therefore, in this paper, we refer to
the Greedy algorithm, i.e., KP(II) +— Greedy(II).

We define CPR; = 5?8}:3 as the Cost-Performance Ratio

of each user i. The greedy solution is computed by:

(1) Sorting all users according to the Cost-Performance
Ratio CPR; in a descending order;

(2) Pick users from top to bottom until the cumulative cost
violates the budget constraint.

Ve(ilm)  Ve(ilm) CPR; = V¢ (i|m)/V(i|m;)
20 2 10 o
18 2 Budget 9 Sorting in
Constraint: descending
16 2 B=8 8 order
14 2 7
— Ty .
10 2 5 CPR,; threshold:
8 2 4 CPR;p =7

Figure 2. The solution computing process of the Greedy algorithm.

An illustration is shown in Figure 2. In this example, the bud-
get constraint B = 8. We denote the CPR; of the last picked
user as CPRy,, the threshold of the cost-performance ratio.
In this example, the CPRy,, = 7. The advantage is that the
Greedy algorithm only selects users whose CPR; > CPRy,;,.
If we could estimate the CPRy, beforehand, the Greedy
algorithm could compute the solution online, without com-
pletely knowing the values and costs of all users.

Now that KP(IT) < Greedy(II) and the Greedy algorithm
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prefers users with larger CPR; (only pick users whose
CPR; > CPRy,), according to Equation 3, to further im-
prove the solution quality, an intuitive way is to optimize ;
for each user i such that each CPR; could be maximized, i.e.,
m; = argmax,.. CPR;. However, this intuition is incorrect.
Maximizing the CPR; of each user cannot guarantee that the
greedy solution K =Greedy(II) could be maximized. Next,
we show that given all users’ CPRs are maximized, we can
still further improve the solution quality by increasing cer-
tain users’ allocated budgets and decreasing their CPRs in
exchange for greater overall cumulative value. Before we
go into the details, we firstly give Lemma 1.

Ve (i|mo) || @ optimal policies {#;} O other policies {rr;}

— curve of the optimal Vg (i|7;)
T

B! B? B} B B;

Figure 3. Vg (i]7;) is monotonic with Ve (¢]7;).
Lemma 1. For each user i, the cumulative value V¢ (i

i
increases monotonically with the increase of cost Ve (i
within the range of all possible optimal policies {7; }.

T

)

Proof. We assume that the maximum budget allocated to
each user ¢ as B; € [0, B"*], where B{™* is the maximum
cost user ¢ can consume. Then, for each user ¢, within the
current budget constraint B;, the optimal advertising policy
7; must be the one which could maximize the cumulative
value, i.e., 7; = argmax,_ Vg(ilm;), s.t. Vo(ilm) < B
Obviously, as B; moves from 0 to B"*, we will get a set
of optimal policies {7;}, whose cost V¢ (i|7;) and value
Ve (i|7;) are both increasing. An illustration is shown in
Figure 3. Thus we complete the proof.

As illustrated in Figure 4, each user’s CPR; (the width of
each rectangular slice) is maximized initially. According to
Lemma 1, for a user i, if we increase V¢ (i|m;) by AV (i),
i.e., increase the height of user ¢ by AV (i), the corre-
sponding Vg (i|m;) will also increase. We denote this in-
crease in value as AV (7). Since there is a budget limit,
a small increased height AV () will squeeze out a small
area nearby the CPRyy,,, whose height is also AV (i) and
width is CPRy,, '. We denote the increased area by re-
shaping user i as AV,S = AVg(i) and the decreased area
due to extrusion as AV = CPRy, * AV (i). Overall, if
AVg > AV, , the total area will be further increased. For

'Since AVc(j) < B, the area squeezed out could be consid-
ered as a tiny and smooth change and the width of the last user is
approximately equal to CPRur

Cost 4 CPRenr
the area squeezed out:
+4ve()] AVg = CPRuy *AVC()
the area increased by reshaping

- $ b user;: AV; = AV, (i)

=

=

& | reshape user;
+ave (K h @

\ »

CPR; «— CPRI"™* CPR

Figure 4. The x-axis denotes each user’s CPR; and y-axis denotes
the cumulative cost of the Greedy algorithm. All users are sorted
in descending order by their CPRs and arranged from bottom to
top. Each rectangular slice’s area (in gray) represents Vg (i|m;) =
CPR; * Ve (i|m;), where CPR; and Ve (¢|m;) are the width and
height. Note that, the height of each rectangular slice is much less
than the budget constraint, i.e., Vo (i|m;) < B. The red dashed
line marks the position of the budget constraint. The total area
of all rectangular slices under the red dashed line constitutes the
greedy solution.

any user i, AV} > AV, yields:
AV (i) > CPRay * AV (i) )

where AV (i) and AV (i) are caused by the change of
5, €.8., from 7} to 7). We denote AV (i) as Ve (i|n)) —
Ve (i|7}) and AV (i) as Vo (i| ) ) — Ve (i|w)). We conclude
that the greedy solution K = Greedy(II') can be further
improved if there exists any user ¢ whose current policy 7}
can be further improved to 7’ such that AV (i) > CPRyy *
AV (i). Otherwise, the current solution is optimal. Finally,
we provide the definition of the optimal 7 in Theorem 1.

Theorem 1. Under the Greedy paradigm (K = Greedy(11)),
for any given CPRyy,, the optimal advertising policy w} for
each user i is the one which could maximize Vg (i|m;) —
CPRy, * Vo (i|m;). In other words, 7} is defined as:

71': = argmax [Vg(i|7'l',‘) —CPRthr*Vc(ﬂ?Ti)] 5)
We denote IT* = {7}, ..., mx }. The corresponding solution
K 3reeqy = Greedy (II7) is the optimal Greedy solution of the
Dynamic Knapsack Problem defined in Equation (2).

Proof of Theorem 1. We define IT* ={~7, ..., 7% }, where
7¥ is defined according to Equation (5), Vi € {1,...,N}.
We prove Theorem 1 by contradiction. Given the thresh-
old CPRy,, we firstly assume that Greedy(I1*) is not the
optimal greedy solution of the Dynamic Knapsack Problem,
which means we could at least find a user %, whose policy 7
could be further improved to policy 7}’ such that the overall
area is increased. This means we could find a better policy
7 for user ¢ such that AV(7) > CPRy, * AV (4) accord-
ing to Equation (4), where AV (i) = Ve (j|n!') — Ve (i|n))
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and AV (i) = Ve (i) — Ve (i|nf) (Va(i|7;) increases
monotonically with the increase of Vi (i|7;) according to
Lemma 1). Further, AV(i) > CPRyy, * AV (2) yields:

[V (ilm}) — CPRyy * Ve (il 7)] >

6
Ve (i) — CPRyy * Ve (i) ©

Equation (6) indicates that

7; # argmax [V (i|m;) — CPRyy * Vo (i|m;)]

i

which contradicts the definition of 7} in Equation (5). Thus,
the theorem statement is obtained.

Algorithm 1 MSBCB Framework.

1: Inmput: an initial CPRy,,;

2: Qutput: optimal greedy solution of the Dynamic Knap-

sack Problem:;

3: for each period until convergence do

4:  Taking the current estimated CPRy, as input, the
agent optimizes the advertising policy 7; for each
user ¢ according to Section 3.2 and acquires the opti-
mal IT* = {7, ..., 75 }.

5: Based on the current estimated CPRy,, and the ob-
tained IT*, the agent calculates the greedy solution
according to Section 3.3 and collects the actual feed-
back cost and the predefined budget.

6:  Update the estimated CPRy,, towards CPR},, by min-
imizing the gap between the actual feedback cost and
the budget according to Section 3.4.

7: end for

We present the overall MSBCB framework in Algorithm
1, which involves a two-level sequential optimization pro-
cess. (1) Lower-level: Given any CPRy,, we could obtain
the optimal advertising policy IT* following Equation 5 of
Theorem 1, which will be discussed in Section 3.2. Then,
based on CPRy,, and the optimized II*, we could acquire the
Greedy solution by selecting users whose CPR; > CPRy,,
which will be detailed in Section 3.3. (2) Higher-level:
However, the current CPRy,, might # CPR,, which means
selecting all users whose CPR; > CPRy,, might violate the
budget constraint or lead to a substantial budget surplus.
Thus, we optimize the current CPRy, towards CPRy, in
Section 3.4. Overall, the optimization space of X is reduced
from 2"V to a one-dimensional continuous variable CPRy,.
We conclude that Algorithm 1 could iteratively converge to
a unique and approximate optimal solution. We present the
proof of convergence in Section B.3 of the Appendix.

3.2. Lower-level Advertising Policy Optimization with
Reinforcement Learning

Given a threshold CPRy, as input, we aim to acquire the
optimal advertising policy 7} defined in Equation (5) of

Theorem 1. Combining the definitions of Vg (i|m;) and
Ve (i]m;) with Equation (5), we have
m} =argmax [V (i|m;) — CPRyy * Vo (i]m;)]

=argmax (E[G;|m;] — CPRy, * E[C;|m;])

Krs

=argmax E [(G; — CPRy,; x C) | ] (7)
T;
= argmax E[Z(vt — CPRyy * ¢t)|m]
i t=0

Accordingly, we define r, = vy — CPRy; * ¢4, i.e., value —
CPRy, * cost, as the immediate profit acquired at each step
t. The objective of Equation (7) is to obtain the optimal
advertising policy 7} which could maximize the expected
long-term cumulative profit. To solve this sequential de-
cision making problem, we formulate it as an MDP and
use Reinforcement Learning (RL) (Sutton & Barto, 2018)
techniques to acquire the optimal policy 7.

We consider an episodic MDP, where an episode starts with
the first interaction between a user and an ad, and ends up
with a purchase or exceeding the maximum step 7T; as:

o State S: The state s; should in principle reflect the
user request status, ad info, user-ad interaction history
info and the RTB environment.

e Action A: The action each agent can take in the RTB
platform is the bid, which is a real number between 0
and the upper bound biday, i.€., a; € [0, bidmax]-

e Reward R(S x A — R): The immediate reward at
step t is defined as 7y = vy — CPRyy * ¢4.

e Transition probability P(S x Ax S — [0, 1]): Tran-
sition probability is defined as the probability of state
transitioning from s; to s, when taking action a;.

e Discount factor v: The bidding agent aims to max-
imize the total discounted reward R; = Zf:t v Tk
from step ¢ onwards, where y € [0, 1].

For each user ¢, we define the state-action value function
Q(s,a) = E[R;]s, a, ;] as the expected cumulative reward
achieved by following the advertising policy ;. The MDP
can be solved using existing Deep Reinforcement Learning
(DRL) algorithms such as DQN (Mnih et al., 2013), DDPG
(Lillicrap et al., 2015) and PPO (Schulman et al., 2017).
After sufficient training, we would acquire the optimized
advertising policies IT* = {7}, ...} } for all users.

3.3. Lower-level User Selection by Greedy Algorithm

Taking the current CPRy,; and the optimized advertising
policies IT* = {n], ... } as inputs, we aim to obtain the
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greedy solution of the Dynamic Knapsack Problem. In real-
ity, we cannot know all users’ request sequences and their
values and costs beforehand because the user requests are
arriving sequentially in real time. Thus, many complicated
methods depending on the completeness of all users’ data,
e.g., the dynamic programming approach (Martello et al.,
1999), are not applicable. Even the traditional Greedy al-
gorithm cannot be applied either. Fortunately, the greedy
solution could be computed online in an easy way: given
the threshold CPRy,, the agent only has to select users
online whose CPRs are greater than the threshold (an illus-
tration is shown in Figure 2). Therefore, we only have to
estimate the CPR; = %8":1; for each user . To acquire
Ve (ilm;) and Ve (i]m;), besides Q(s,a), we also maintain
two other state value functions V() and Vo (s) according
to the Bellman Equation (Sutton & Barto, 2018), where
Ve (s) = E[G,|s, ;] and Vo (s) = E[C}|s, 7 ].

3.4. Higher-level Optimization by Feedback Control

However, the current estimated threshold CPRy,, might have
some bias from the optimal CPRj,,. Thus, selecting all users
whose CPR; > CPRy, might violate the budget constraint
or lead to a substantial budget surplus. Only when the esti-
mated CPRy,, is exactly the same with the optimal CPRj ,
the actual total advertising cost will be equal to the budget.
To achieve this, we design a feedback control mechanism,
i.e., a PID controller (Astrom & Higglund, 1995), to dynam-
ically adjust the CPRy,, towards CPRy;,. according to actual
feedback of the overall cost. The core formula is:

CPRyy #= [1+0 (S5 — 1) +ap (S22 —1)] (8)

where cost; is the actual feedback cost of the current period,
B is the budget, cost;_,.; and nx* B are the overall cost and
the overall budget of the most recent n periods. o1 and ay
are two learning rates. The main idea is when the actual cost
exceeds (is less than) the budget, the threshold CPR,, will
be increased (decreased) accordingly such that less (more)
users will be selected, which will reduce (increase) the cost
in turn. The first term a1 (<55t — 1) is designed to keep up

St : .
COSttm:t 1) is

with the latest changes. The second term ao (=17

designed to stabilize learning.

3.5. Action Space Reduction for RL in Advertising

However, when applying the RL approaches mentioned in
Section 3.2 to online advertising, one typical issue is that
the sample utilization is inefficient. The main reason is that
the action space of the agent is continuous, thus the range of
[0, bidmax ] needs to be fully explored in all states. To resolve
this problem, we reduce the magnitude of the continuous
action space (i.e., a; € [0,bidya.x]) to a binary one (i.e.,
ay € {0,1}) by making full use of the prior knowledge in
advertising, which greatly improves the sample utilization

of the RL approaches. Specifically, since different bids
a; can only result in two different outcomes a; € {0, 1},
where a; = 1 or 0 indicates whether the ad is displayed to
the user, we only have to evaluate the different expected
returns resulted by a; = 1 or a; = 0 for Q(s, a). We denote
the greedy action a; * based on the current value estimations
as:

& = { 0 otherwise ®)

Then, to obtain an executable bid, for ;" = 0, we could
offer a low enough bid, e.g., a; = 0, to make sure that it is
impossible to win the auction. For @;* =1, we propose an
optimal bid function which could output a bid greater than
the second highest bid while not overbidding.

In detail, we maintain two state-action value functions
QG(Sv d\t) :E[Gz‘sv &\tv 7Ti] and QC(Sv (J/,;g) :E[CZ‘Sv d\tv 7Ti]'
Since the reward function is defined as r; = vy — CPRy, * ¢4,
we have Q(s,a:) = Q¢(s, @) —CPRy * Q¢ (8, az). Then
Q(s,a:=1)>Q(s,a; =0) yields:

[QG(Saé\t = 1) - CPlqthr * QC(&@ = 1)] >

1
Qo (s, = 0) — CPRyy + Qo (s, = 0 (10)

If a; = 0, the expected immediate cost is O (since the ad
is not exposed). If a; = 1, we denote the expected im-
mediate cost as E[c;|a; = 1], whose value depends on the
pricing model. In online advertising, typical pricing mod-
els includes CPM (Cost Per Mille, the advertiser bid for
impressions and is charged based on impressions), CPC
(Cost Per Click, the advertiser bid for clicks and is charged
based on clicks) and CPS (Cost Per Sales, the advertiser bid
for conversions and is charged based on conversions). If
CPM is used, E[¢;|a; = 1] = bid?™, where bid?™ de-
notes the second highest bid in the auction. If CPC is
used, E[c;|@; = 1] = bid?™ % pCTR, where pCTR rep-
resents the predicted Click-Through Rate. If CPS is used,
E[e;la; = 1] = bid™ % pCTR * pCVR, where pCVR
represents the predicted Conversion Rate. For ease of pre-
sentation, we take CPM for an example. Under CPM,

T;
Qo(s, @ =1)=FEle, + Y cxls, @ =1, 7]
k=t+1

T;
=bid™ +E[ Y cxls,a =1,m] (1)
k=t+1
T;
Qc(s,a: =0) =0+ E] Z ckls, ay = 0, ;]
k=t+1

Notice that the second highest bid bid%nd is unknown until
the current auction is finished. Substituting Equation (11)
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into Equation (10), we acquire
- -
< [ (98B0 )
T

([ Qals,a =0)
CPRthr

12)
(s, = o>>}

where QEY (s, a;) = E[Zfltﬂ ck|s, az, m;]. We denote
the term on the right of the *<” in Equation (12) as b;. And
we conclude that the bidding agent can always set the bid
price a; = b} during the online bidding phase, which is
the optimal action without any loss of accuracy. Refer to
Section B.2 of the Appendix for proof. For CPC or CPS,
the optimal bid formula b can be easily acquired by sub-
stituting the corresponding E[c;|@; = 1] into Equation 11.
Here, we reaffirm that our action space reduction technique
is a generalized design and is applicable to different pricing
models.

4. Empirical Evaluation: Simulations

We start with designing simulation experiments to shed light
on the contributions of the proposed framework MSBCB
under more controlled settings. Similar to the simulation
settings of (Ie et al., 2019), we assume there are a set of
users {¢ = 1,..., N}, a set of ads D and a set of commodity
categories 7. Each ad d € D has an associated category.
Each user ¢ has various degrees of interests in commodity
categories, which is influenced by the displayed ad. When
user ¢ consumes ad d, his interest in category 7'(d) is nudged
stochastically, biased slightly towards increasing his interest,
but allows some chance of decreasing his interest. We set
N = 10000, |D| = 2000 and |7| = 20 in the following ex-
periments. Detailed settings of the simulation environment
can be found in Section D.1 of the Appendix.

4.1. Baselines

We compare our MCBCB with following baseline strategies:

e Myopic Approaches: (1) Manual Bid is a strategy that
the agent continuously bids at the same price initialized
by the advertiser. (2) Contextual Bandit (Zhang et al.,
2014) aims at maximizing the accumulated short-term
value of each request based on the Greedy framework.

e Greedy with maximized CPR: This approach is similar
to our method under the Greedy framework except that
each 7; is optimized by maximizing the long-term CPR.
In the offline simulation, we enumerate all policies for
each user and select the one which could maximize its
CPR. This approach is named as Greedy+maxCPR.

e Greedy with state-of-the-art RL approaches: These
baselines, i.e., Greedy+DQN, Greedy+DDPG and

Greedy+PPO, utilize the same reward function with
our MSBCB to optimize the lower-level optimization
of II. The difference is that our MSBCB leverages the
action space reduction technique. For DQN and PPO,
we discretize the bid action space [0, bidpy,x] evenly
into 11 real numbers as the valid actions.

e Undecomposed Optimization: These baselines are
RL approaches (DQN,DDPG and PPO) based on the
Constrained Markov Decision Process (CMDP). They
are named as Constrained+DQN, Constrained+DDPG,
Constrained+PPO respectively. We follow the CMDP
design and settings in (Wu et al., 2018).

e Offline Optimal: The optimal solution of the Dynamic
Knapsack Problem can be computed by dynamic pro-
gramming in offline simulation because we could enu-
merate all possible policies to get the corresponding
long-term values and costs for each user. Note that
since users’ request sequences are unknown before-
hand and there is only one chance for the ad to bid for
each request in the online advertising systems, the opti-
mal solution can only be obtained in offline simulation.

4.2. Experimental Results

We conduct extensive analysis of our MSBCB in the fol-
lowing 5 aspects. All approaches aim to maximize the
advertiser’s cumulative revenue under a fixed budget con-
straint. All experimental results are averaged over 10 runs.
The hyperparameters for each algorithm are set to the best
we found after grid-search optimization.

== |ISBCB

=== (Contextual Bandit
Manual Bid

= Offline Optimal

40000

200 400 600 800
Training Episode

1000

Figure 5. Values comparisons (learning curves) of the myopic ap-
proaches with non-myopic approaches and the offline optimal.

Myopic vs Non-myopic. To show the benefits of upgrading
the myopic advertising system into a farsighted one, we
compare the cumulative revenue achieved by our MSBCB
with two other myopic baselines. The learning curves and
results are shown in Figure 5 and Table 1. We see that MS-
BCB outperforms the Manual Bid and the Contextual Bandit
by a large margin, which indicates that taking account of
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the long-term effect of each ad exposure could significantly
improve the cumulative advertising results.

MSBCB vs the Offline Optimal. In Figure 5, we also
compare our MSBCB with the Offline Optimal, which is
computed by a modified dynamic programming algorithm.
We see that as the training continues, our MSBCB gradu-
ally achieves an approximately optimal solution. Detailed
results are summarized in Table 1. Our MSBCB empirically
achieves an approximation ratio of 98.53%(£0.36%).

MSBCB vs Greedy with maximized CPR. As discussed
in Section 3.1, under the Greedy framework, maximizing
each user’s CPR; cannot guarantee that the greedy solution
of the Dynamic Knapsack Problem (2) could be maximized.
The optimal advertising policy m; for each user is given
by Theorem 1. To experimentally verify the correctness of
Theorem 1, we compare the cumulative revenue achieved by
MSBCB and the Greedy with maximized CPR. As shown
in Figure 6 and Table 1, MSBCB outperforms Greedy with
maximized CPR and achieves a +5.11% improvement.

—

(0]

280000

(0]

>

[0}

x

2 60000

g —e— MSBCB

o Greedy + PPO

T 40000 Greedy + DDPG

g Greedy + DQN

(@] —o— Greedy + maxCPR
20000

200 400 600 800 1000
Training Episode

Figure 6. Value comparisons of MSBCB with the Greedy with
maximized CPR and the Greedy with state-of-the-art RL.

MSBCB vs Greedy with state-of-the-art RL approaches.
Besides, to show the effectiveness of the action-space reduc-
tion proposed in Section 3.5, we compare MSBCB with the
state-of-the-art DRL approaches under the Greedy frame-
work. As shown in Figure 6 and Table 1, MSBCB out-
performs Greedy+DQN, Greedy+DDPG and Greedy+PPO
both in the cumulative revenue and the convergence speed,
which shows that the action space reduction effectively im-
proves the sample efficiency of RL approaches.

Decomposed MSBCB vs Undecomposed optimization.
Similar to (Wu et al., 2018), the undecomposed optimization
baselines consider all users requests as a whole and model
the budget allocations among all request as a CMDP. As
shown in Figure 7 and Table 1, MSBCB outperforms the
CMDP based RL approaches by a large margin. The reason
of the poor performance in CMDP-based approaches is that
these methods model all users’ requests as a whole sequence
and thus the learning process is particularly inefficient. In

90000
S 80000 [’"
[0}
>
& 70000
F
260000
>
250000 1 —— MSBCB
(_:? Constrained + PPO
g 40000 Constrained + DDPG
© 30000 Constrained + DQN

200 400 600 800
Training Episode
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Figure 7. Values comparison (learning curves) of MSBCB and
state-of-the-art CMDP based RL approaches.

contrast, our MSBCB decomposes the whole sequence op-
timization into an efficient two-level optimization process,
thus can achieve better performance more easily.

Table 1. Cumulative values, costs, value improvements (over Con-
textual Bandit) and the approximation ratio of all approaches.

Method Revenue Cost Revenue Impro  Approximation Ratio
Manual Bid 38838.28 11995.10 -48.31% 43.5%
Contextual Bandit 75137.30  11995.46 0% 84.15%
Constrained + PPO 61890.92 11954.07 -17.63+16.11% 69.31+13.56%
Constrained + DDPG ~ 74259.12  11996.12  -1.1943.66% 83.17+3.08%
Constrained + DQN  70662.65  11881.12  -5.96+7.83% 79.14£6.59%
Greedy + maxCPR 83668.70 11914.12  11.354+2.84% 93.70+2.36%
Greedy + PPO 76970.35  11825.59 2.444+3.52% 86.20+2.93%
Greedy + DDPG 80424.69 11841.28 7.04+1.13% 90.07+0.92%
Greedy + DQN 84117.09 11794.24 11.954+4.96% 94.21+4.14%
MSBCB 87947.99 11957.57  17.95+0.42% 98.50-£0.33%
MSBCB (enum) 89251.77 11988.36 18.78% 99.96%
Offline Optimal 89291.11  11999.23 18.84% 100.00%

The complete comparisons of all approaches are shown in
Table 1. The budget constraint B is set to 12000 for all
experiments. In Table 1,we also add an MSBCB (enum),
which is the theoretical upper bound of our MSBCB. The
difference between MSBCB (enum) and MSBCB is that: the
MSBCB (enum) computes the optimal advertising policy 7
for each user ¢ by enumerating all possible policies. Instead
of utilizing the RL approach, MSBCB (enum) could find the
one which maximizes Vg (i|m;) — CPRyy * Ve (i|m;). We
see MSBCB (enum) is very close to the optimal solution
and reaches an approximation ratio of 99.96%.

4.3. Effectiveness of Action Space Reduction

As shown in Table 2, MSBCB achieves a revenue of 75000
in only 61 epochs, reducing more than 60% samples com-
pared with the state-of-the-art RL baselines without using
the action-space reduction technique. As for learning pro-
cess, our MSBCB achieves the same revenue (80000) more
than 10 times faster than the baselines, reducing more than
90% samples and finally reaches the highest revenue. Thus,
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with the action space reduction technique, our MSBCB
could reach a higher performance with a faster speed and
significantly improve the sample efficiency. More analysis
of our MSBCB, e.g., the convergence of IT* and CPR},,, and
the hyperparameter settings of the offline experiments are
shown in Section D. of the Appendix.

Table 2. The training epochs and the number of samples needed by
different approaches when achieving the same revenue level.

Revenue 75000 80000 85000
Method #Epoch #Samples | #Epoch #Samples | #Epoch #Samples
Greedy+PPO 817 4183040 - -

Greedy+DDPG 154 788480 853 4362240

Greedy+DQN 373 1909760 754 3855360 - -
MSBCB 61 312320 71 363520 104 532480

5. Empirical Evaluation: Online A/B Testing

We deployed MSBCB on one of the world’s largest E-
commerce platforms, Taobao. Our platform is authorized
by the advertisers to dynamically adjust their bid prices for
each user request according its value in the real-time auction.
In the online experiments, we compare MSBCB with two
models widely used in the industry.

e Cross Entropy Method (CEM), which is a deployed
production model, whose target is to optimize the im-
mediate rewards. We consider CEM as the control
group in the following evaluations.

o Contextual Bandit, which has been explained in previ-
ous section and is reserved as a contrast test.

The experiment involves 135,858,118 users and 72,147 ad
items from 186 advertisers. For fair comparison, we con-
trol the consumers and the advertisers involved in the A/B
testing to be homogeneous. In detail, the 135,858,118 users
are randomly and evenly divided into 3 groups. For users in
group #1, all 186 advertisers adopt the CEM algorithm. For
users in group #2, all 186 advertisers adopt the Contextual
Bandit algorithm. For users in group #3, all 186 advertisers
adopt our MSBCB. Table 3 summarises the effects of the
Contextual Bandit and our MSBCB compared to the Cross
Entropy Method from Dec.10 to Dec.20 in 2019. From
Table 3, we see that our MSBCB achieves a +10.08% im-
provement in revenue and a +10.31% improvement in ROI
with almost the same cost (-0.20%). The results indicate that
upgrading the myopic advertising strategy into a farsighted
one could significantly improves the cumulative revenue.
Besides, as shown in Figure 8, the daily ROI improvement
also demonstrates the effectiveness of our MSBCB com-
pared with the Contextual Bandit.

Given that there are only 186 advertisers take part in our
online experiment, one frequently asked question is“How

Table 3. The overall performance comparisons of the A/B testing.
CVR represents the Conversion Rate of the users. #PV represents
the number of page views. ROI = % means Return On Invest-
ment. (Notice that CEM is the control group and the improvements

of Contextual Bandit and MSBCB are compared over CEM.)

Method ‘ Revenue Cost CVR #PV ROI
Contextual Bandit | +0.91% -3.26% +4.78% +4.62%  +4.31%
MSBCB +10.08% -0.20% +6.04% +15.37% +10.31%

does the MSBCB work across all ads?” Since 186 is rela-
tively small compared with the total number of advertisers,
their policy updates would not cause dramatic changes to
the RTB environment. In other words, the RTB environment
is still approximately stationary from a single-ad perspec-
tive. This setting also works well with our practical business
model-providing better service for VIP advertisers (about
0.2% of all the advertisers). In the case that the majority
of the advertisers adopt MSBCB, the system cannot be esti-
mated as being stationary from any single-ads perspective
and explicit multi-agent modeling and coordination should
be incorporated. Detailed analysis of the improvement in
revenue for each advertiser is presented in Table 7 and Fig-
ure 19 of the Appendix. More details about the deployment
and experimental results (e.g., the online model architecture)
can also be found in Section C. and E. of the Appendix.

20%
=8— Contextual Bandit

MSBCB
15%
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\/\\/\/
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% Improvement in ROI
o
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Figure 8. Daily ROI improvement comparisons of Contextual Ban-
dit and MSBCB over Cross Entropy Method.

6. Conclusion

We formulate the multi-channel sequential advertising prob-
lem as a Dynamic Knapsack Problem, whose target is to
maximize the long-term cumulative revenue over a period
of time under a budget constraint. We decompose the origi-
nal problem into an easier bilevel optimization, which sig-
nificantly reduces the solution space. For the lower-level
optimization, we derive an optimal reward function with
theoretical guarantees and design an action space reduc-
tion technique to improve the sample efficiency. Extensive
offline experimental analysis and online A/B testing demon-
strate the superior performance of our MSBCB over the
state-of-the-art baselines in terms of cumulative revenue.
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