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A. Background of Online Advertising
Online advertising is a marketing strategy involving the use of advertising platform as a medium to obtain website traffics
and targets, and deliver marketing messages of advertisers to the suitable customers.

Platform. Advertising platform plays an important role in connecting consumers and advertisers. For consumers, it provides
multiple advertising channels, e.g., channels on news media, social media, E-commerce websites and apps to explore. For
advertisers, it provides automated bidding strategies to compete for consumers in all channels under the setting of real-time
bidding (RTB), in which advertisers bid for ad exposures and the exposures opportunities go to the highest bidder with a
cost which equals to the second-highest bid in the auction.

Consumers. Consumers explore multiple channels during the several visits to the platform within a couple of days. A
consumer’s final purchase of an item is usually a gradually changing process, which often includes the phases of Awareness,
Interest, Desire, and Action (AIDA) (Roberge, 2015). The consumer’s decision to purchase a product (conversion) is usually
and has to be driven by multiple touchpoints (exposures) with ads. Each advertising exposure during the sequentially
multiple interactions could influence the consumers mind (preferences and interests) and therefore contribute to the final
conversion.

Advertisers. The goal of advertisers is to cultivate the consumer’s awareness, interest and finally driving purchase. As
different ad strategies can affect consumers’ AIDA, an advertiser should develop a competitive strategy to win the ad
exposures in RTB setting. When the ad is displayed to a consumer, in Cost Per Click (CPC) setting, the advertisers should
pay commission to the platform after the consumer clicking the ad. When the consumer purchases the advertised item, the
advertiser will get the corresponding revenue.

The objective of an advertiser is usually to optimize the accumulated revenue within a time period under a budget constraint.
A strategy that maximizes short-term revenue of each ad exposure on different channels independently is obviously
unreasonable, since the final purchase is a result of long-term ad-consumer sequential interactions and the consumer’s visits
between different channels are interdependent. Therefore, the advertiser must develop a strategy to overcome following
two key challenges: (1) Find the optimal interaction sequence including interaction times, channels selection and order of
channels for a targeted consumer; (2) Choose targeted consumers and allocate predefined limited budget to them in multiple
interaction sequences.
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Figure 9. An illustration of the sequential multiple interactions (across different channels) between a user and an ad. Each ad exposure has
long-term influence on the user’s final purchase decision.

An example of a user’s shopping journey is shown in Figure 9. At time t1, a user visits the news media channel and triggers
an advertising exposure opportunity. Then, the advertising agent executes a display action and leaves an exposure on the
user. After that, the user becomes aware of and interested in the commodity, so he clicks the hyperlink. Quickly, the user
is induced into the landing (detail) page of the commodity in the shopping app. After fully understanding the product
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information, the user leaves the shopping app. After a period of time, the user comes back to the shopping app at time
t4 and triggers an exposure opportunity of banner advertising. The advertising agent executes a display action as well.
Consequently, the users desire is stimulated. At time t6, the user makes a purchase. In this example, the ad exposure at
time t1 influences the users mind and contributes to the ad exposure at time t4 and the delayed purchase, which means
the ad exposure on one channel would influence the users preferences and interests, and therefore contributes to the final
conversion. Thus, the goal of advertising should maximize the total cumulative revenue over a period of time instead of
simply maximizing the immediate revenue.

B. Proof and Analysis
B.1. Knapsack Problem in Online Advertising Settings

Theorem 2. The greedy solution to the proposed dynamic knapsack problem of online advertising is λ approximately
optimal where λ > 99.9%

Proof. In the proposed online advertising problem, each user is with value VG (i.e. the profit of advertiser when the user
purchase the commodity) and weight VC (i.e. the total budget consumption for the target user in the real-time bidding to
reach the final purchase). As the item (i.e. user) is non-splittable, the proposed dynamic knapsack problem is essentially
a 0-1 knapsack problem which aims to maximize the total value of the knapsack given a fixed capacity B. For each
item, we can calculate the Cost-Performance Ratio (CPR) as VG/VC . Sort all items in descending order of CPR, i.e.
(VG1

, VC1
) , (VG2

, VC2
) , . . . , (VGn

, VCn
) where CPRi ≥ CPRj ,∀i ≤ j ≤ n. For VC > 0, VG > 0 and B > 0, we first

define that this 0-1 knapsack problem has optimal solution K∗(VC , VG, B) and greedy solution K(VC , VG, B) where K∗

and K represent the total value of the knapsack.

Assume Bend is the remaining budget after greedy algorithm, the following inequality holds:

B −Bend
B

K∗(VC , VG, B) ≤ K(VC , VG, B) ≤ K∗(VC , VG, B) (13)

This is because:

1) If the knapsack can hold all the items after the greedy algorithm, that is, the optimal solution is equal to the greedy
solution. As Bend ≥ 0, we have B−Bend

B K∗(VC , VG, B) ≤ K∗(VC , VG, B) = K(VC , VG, B)

2) If the knapsack cannot hold all the items after the greedy algorithm, as VG1

VC1
≥ VG2

VC2
≥ ... ≥ VGl

VCl
, we

have VGl

∑l−1
j=1 VCj

≤ VCl

∑l−1
j=1 VGj

⇔ VGl
(B −Bend) ≤ VCl

K(VC , VG, B) ⇔ VGl

VCl
≤ K(VC ,VG,B)

B−Bend
⇔

K(VC , VG, B) ≥ K∗(VC , VG, B) − BendK(VC ,VG,B)
B−Bend

where l is the index of last item picked by greedy algorithm.
This derivation can be simplified to K(VC , VG, B) ≥ B−Bend

B K∗(VC , VG, B).

In online advertising settings, the budget spent on a single user is much smaller than the advertiser’s total budget. We
conduct statistics on one of the world’s largest E-commerce platforms to prove it. On Feb 3rd of 2020, a total of 1136149
ads result in 983414548 user-ad sequences (a user sequence consists of multiple interactions of the same user with the same
ad), with an average of 865 user sequences per ad. Interactions with users of each ad forms a knapsack problem, where each
user sequence is an item in the knapsack. The average maximum budget consumed by each user sequence accounts for
0.07068% of the total budget capacity of the advertisers. We also list details of 5 ads with largest budget consumption in
Table 4, where the maximum budget consumed by each user sequence is much smaller than 1/1000 (smaller than 3/10000
specifically) of the total budget of each ad.

As proposed in Dantzig (1957), ∀i ∈ 1, 2, . . . , n, VCi
≤ (1 − λ)B, 0 ≤ λ ≤ 1, the greedy algorithm achieves an

approximation guarantee of λ. We can conclude from above statistics that maxi
VCi

B ≤
1

1000 , which means λ is much greater
than 1− 1

1000 .

The thesis above can be further proved:

1) If the knapsack can hold all the items after the greedy algorithm, that is, the greedy solution is obviously equal to the
optimal solution, which is also the λ approximately optimal solution.
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Ad #Users Sequences Budget Avg Cost (Avg Cost)/Budget Max Cost (Max Cost)/Budget

Ad 1 2460976 119352.51 0.048498039 0.0000406343% 20.04 0.0167905979%
Ad 2 2674738 114388.54 0.04276626 0.000037388% 26.22 0.0229218766%
Ad 3 2848816 90113.08 0.031631766 0.0000351023% 15.29 0.0169675701%
Ad 4 2107497 82951.82 0.03936035 0.0000474497% 5.6 0.0067509067%
Ad 5 1087011 77140.49 0.070965694 0.0000919954% 19.32 0.0250452130%

Table 4. Detailed Comparison between an ad’s total budget and cost on a user sequence.

2) If the knapsack cannot hold all the items after the greedy algorithm, we have VCl
> Bend, that is,Bend < VCl

≤ (1−λ)B.
According to Formula 13, we have

K(VC , VG, B) ≥ B −Bend
B

K∗(VC , VG, B)

>
B − (1− λ)B

B
K∗(VC , VG, B)

= λK∗(VC , VG, B)

(14)

Therefore, in theory, the greedy solution in our online advertising settings is λ approximately optimal and the λ is much
greater than 99.9% in our case.

B.2. Regretless Optimal Bidding Strategy b∗t
Theorem 3. During the online bidding phase, the bidding agent can always set the bid price as:

b∗t =

[(
QG(s, ât = 1)

CPR∗thr
−Qnext

C (s, ât = 1)

)
−
(
QG(s, ât = 0)

CPR∗thr
−Qnext

C (s, ât = 0)

)] (15)

where Qnext
C (s, ât) = E[

∑Tj

k=t+1 ck|s, ât, πj ]. b∗t is a regretless optimal bidding strategy without any loss of accuracy.

Proof. Since bid2nd
t is unknown until the current auction is finished, we prove the regretless of b∗t from the following two

cases:

1) If b∗t >bid2nd
t : b∗t >bid2nd

t ⇔Q(s, ât=1)>Q(s, ât=0), which means the agent should take action ât = 1 in this case.
Exactly, b∗t is greater than the second highest price bid2nd

t based on the condition for entering the current branch. Thus,
the agent will always win the auction and the executed action is indeed ât = 1.

2) If b∗t ≤ bid2nd
t : b∗t ≤bid2nd

t ⇔Q(s, ât=1)≤Q(s, ât=0), which means the agent should take action ât = 0 in this case.
Exactly, b∗t is less than the second highest price bid2nd

t according to the condition. Thus, the agent will always lose the
auction and the executed action is indeed ât = 0.

Thus, we complete the proof.

B.3. Convergence Analysis of MSBCB

The overall framework of MSBCB can be described as follows:

(1) Let the budget constraint of an advertiser be B. Given a CPRthr, we can use reinforcement learning algorithms to ensure
that each user i is optimized according to π∗i := argmaxπi

[VG(i|πi)− CPRthr ∗ VC(i|πi)] and converges to the optimal
policy π∗i under the current CPRthr. Further, picking all users whose CPRi ≥ CPRthr will result in a total cost of B′ (i.e.,
the advertiser spends a budget B′).



Appendix

Starting 𝜋
Ground-truth 
𝜋∗ and  CPR௧

∗

Figure 10. Convergence demonstration of MSBCB

(2) As the current estimated threshold CPRthr might have some bias from the optimal CPR∗thr, B
′ may not equal to the

budget B. Thus, we design a PID controller to dynamically adjust the estimated CPR∗thr so as to minimize the gap
between the budget constraint B and the actual feedback of the daily cost B′.

As described in Figure 10, MSBCB repeats the above two steps iteratively. Given an updated CPRthr, each π will be
optimized by the lower-level reinforcement learning algorithms and π will move towards the optimal π∗. As a result, users
whose optimized CPRi ≥ CPRthr will be selected and we get the daily cost B′. Then, the current CPRthr will be updated so
that the gap between the cost B′ and the budget B will be further minimized. Thus, CPRthr will move towards the optimal
CPR∗thr gradually. As long as the learning rates of π and CPRthr are small enough, the overall iterations will finally converge.
In this paper, we also validate the convergence of our MSBCB in the experiments. As shown in Section 4.2 of the paper, our
method converges quickly and finally reaches an approximation ratio of 98.53%.

C. Deployment
Here we give the online deployment details of our MSBCB.

C.1. Myopic to Non-Myopic Advertising System Upgrade Solution
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Figure 11. Online System

A myopic advertising system includes several key components as Figure 11 shows: (1) Log module collects auction
information and user feedback. (2) Training data are constructed based on log followed by model training with offline
evaluation. (3) Real-time prediction (RTP) module provides service for myopic value prediction of user-ad pairs. RTP
periodically pulls newly trained models. (4) Merger module receives the user visit, requests RTP for myopic value with
which ad bid adjustment ratios and ranking scores are calculated (In advertising, ranking score is ecpm = pCTR ∗ bid
where pCTR is predicted Click Through Rate and bid is the bidding price). Finally, top-scored ads are delivered to the
user. Above myopic advertising system can upgrade to a non-myopic system by considering the following key changes.
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(1) Log module needs to keep long-term auction information and users’ feedback, and these data are used to construct
features and long-term labels for training. Besides, logged data have to track each advertised item’s budget and current
cost data which are fed to a PID control module to compute CPRthr for users selection in Merger. (2) Model training can
use Monte Carlo (MC) or Temporal Difference (TD) methods. For MC, the long-term labels are cumulative rewards of a
sequence and the training becomes a supervised regression problem. For TD, one-step or multi-step rewards are used to
compute a bootstrapped long-term value using a separate network for training. (3) RTP module should periodically pull both
myopic and non-myopic newly trained models and provide corresponding value prediction service. (4) Merger maintains an
< item,CPRthr > table which is updated periodically from PID module. When a user visit comes, Merger requests RTP for
both pCTR and long-term values (long-term GMV i.e. VG and cost i.e. VC in our paper), and with CPRthr decides the
selection of current user and bid adjustment.

C.2. Long-Term Value Prediction Model

Figure 12. Long-Term Value Prediction Model

C.2.1. FEATURES AND LABELS

Features for long-term value prediction should contain sufficient user’s static profile and historical behavior information.
Most myopic advertising systems already have a sound feature system which can summarize user-oriented, ad-oriented and
user-ad interactive history very well. Besides, due to the large amount of data collected by the online advertising system,
these features are able to generalize across large number users where each user-ad pair’s interaction is considered as a
separate MDP, thus, help the prediction model learning. To be specific, the state st at step t includes: 1) user profile features;
2) user behavior features; 3) real-time user behavior features; 4) context features; 5) user-ad interaction histories; 6) user
feedback before current step t and so on. Features are constructed based on past 7-14 days data before user visit time t. For
the MC training method, labels are constructed using the following 7 days data after user visit time t. For the TD method,
labels are the instant rewards at time t and the long-term labels are constructed using a bootstrap method.
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C.2.2. MODEL ARCHITECTURE

The long-term value model architecture is shown in Figure 12, where the model takes the features as input and output
long-term value of GMV (i.e. VG in our formulation) and cost (i.e. VC in our formulation) for both action=1 (display the
ad) and action = 0 (do not display the ad).

We use one model to output multiple long-term values (GMV and cost for action=1 and action=0). Multiple prediction
tasks share the same bottom layers because we consider the underlying knowledge of the user’s sequence behaviors such
as opening the app, jumping across channels, turning off the phone and revisiting the app should be learned together and
shared. The shared layer converts input features to embeddings and embeddings in the same group are concatenated. The
user-behavior group embeddings are then pooled with sum operation. User-profile embeddings, user-behavior embeddings,
candidate ad embeddings, and real-time features are finally concatenated and flattened as the output of the bottom layers.

Following the shared bottom layers, the network is split into two forward-pass branches where one is for long-term GMV
prediction and one for long-term cost prediction. We find this two-branch design can reduce the influences among different
tasks and stabilize the learning. For the long-term GMV prediction, since each user usually buys a commodity only
once, we only have to predict P (buy > 0|feature) denoted as CTCV R. In the online inference phase, the long-term
GMV is computed with GMV = P (buy > 0|feature) ∗ item price where item price is the price of the commodity.
For the long-term cost prediction, in CPC (Cost-Per-Click) advertising, a user usually clicks several times before buys
and the cost per click along with each click varies, thus, the long-term cost prediction cannot be decomposed as the
long-term GMV prediction and the only way is to regress the long-term cost value. However, as most sequences’ costs
are zero, the direct regression learning process will be very noisy. Therefore, we design an additional hidden layer to
compute P (cost > 0|feature), P (cost = 0|feature) and E(cost|cost > 0, feature). Then, the predicted long-term
cost is computed as pcost = P (cost > 0|feature) ∗E(cost|cost > 0, feature) +P (cost = 0|feature) ∗ 0 = P (cost >
0|feature)∗E(cost|cost > 0, feature) where P (cost > 0|feature) and P (cost = 0|feature) are learned using logistic
regression loss and pcost is learned using mean-square error loss (pcost− cost)2. We find the above designs help improve
the model’s prediction performance in practice. For CTCV R and P (cost > 0|feature), P (cost = 0|feature), we use
GAUC (Zhou et al., 2018) as metric, and for pcost regression, we use mean-square error and reverse order metrics.

D. Empirical Evaluation: Supplementary of Offline Experiments
D.1. Experiments Settings.

Considering the potential losses of assets and money, it’s usually forbidden to do a lot of trial and error and thoroughly
comparisons between available baselines in a live advertising system. Thus we implement a fairly general simulation
environment so that we could make extensive analyses of our approach. All experiments are conducted on an Intel(R)
Xeon(R) E5-2682 v4 processor based Red Had Enterprise Linux Server, which consists of two processors (each with 16
cores), running at 2.50GHz (16 cores in total) with 32KB of L1, 256 KB of L2, 40MB of unified L3 cache, and 128 GB of
memory and 2 Tesla M40 GPUs.

D.2. Simulation Environment.

Here, we give the detail of the simulation environment. Similar to (Ie et al., 2019), the simulation environment includes the
following 5 modules:

• Advertisements and Users Interests Model: We assume a set of ads D representing the content available for advertising.
We also assume a set of commodity categories T that capture fundamental characteristics of users interest to the ad; we
assume categories are indexed 1, 2, ...|T |. Each commodity d ∈ D has an associated user interest vector d ∈ [0, 1]|T |,
where dj is the degree to which d reflects user interest j. Each ad d ∈ D also have an inherent quality Qd ∈ [0, 1],
representing the category-independent attractiveness to the average user.

• Consumer Interest and Satisfaction Model: Each user i has various degrees of interests in categories, ranging
from 0 (completely uninterested) to 1 (fully interested), with each user i associated with an interest vector u ∈
[0, 1]|T |. Consumer i’s interest in advertisement d is given by the dot product I(u, d) = ud. We assume some
prior distribution Pu over user interest vectors, but user i’s interest vector is dynamic, i.e., influenced by their
advertisement consumption (see below). Besides, a user’s satisfaction S(u, d) with a consumed (viewed) advertisement
d is a function f(I(u, d), Qd) of user i’s interest and ad d’s quality. Here, we assume a simple convex combination
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S(u, d) = (1− α)I(u, d) + αQd. Satisfaction influences user dynamics as we discuss below.

• Consumer Choice Model: The user’s Click-Through Rate (CTR) and Conversion Rate (cvr) are represented by I(u, d)
and S(u, d) respectively. Each user has the probability of clicking and buying an advertising commodity according the
CTR and CVR.

• Consumer Dynamics: We assume that a user’s interest evolves as a function of the ads consumed (viewed). When user
i consumes ad d, her interest in category T (d) is nudged stochastically, biased slightly towards increasing her interest,
but allows some chance of decreasing her interest. In this paper, we set u ← γu + β ∗ S(u, d) ∗ d, where γ is the
interest decay rate and β ∈ [−1, 1] is a user independent parameter.

• Consumer Visiting Model and Advertising System Dynamics: The users’ request sequence are generated from a stable
distribution Preq. For each user’s request, all advertisements d ∈ D give a bid and competes with other bidders in
real-time. The winner has the privilege to display its ad to the user, which could further influence the user’s interest and
behavior.

D.3. Codes.

The codes to reproduce our offline experiments are provided here.

D.4. Cost Comparison.

The consumption of budget during the training process is shown in Figure 13. As we can see, the costs of all approaches
converge to about 12000, which is exactly equal to the budget we set in experiments. Specific costs of each approach can be
found in Table 1 of paper.

Figure 13. The learning curves of costs of our MSBCB and the other baseline approaches.

D.5. Convergence Analyses

D.5.1. CONVERGENCE OF EACH π∗i GIVEN ANY CPRTHR .

As shown in Figure 14, given a CPRthr, the learned advertising policy π of our MSBCB converges to the optimal π∗j . In
Figure 14, the x-axis denotes the cumulative cost, the y-axis denotes the cumulative value and the dots in blue represent
the cumulative values and costs of all possible policies for each user. The red line represents y = CPRthr ∗ x, whose slope
is CPRthr. The orange point represents the optimal policy π∗i computed by enumerating all possible policies (blue points)
and finding the one which maximize VG(i|πi) − CPRthr ∗ VC(i|πi) according to Theorem 1. The green point denotes
the learned policy of MSBCB. In theory, the point of the optimal policy is the one whose CPR > CPR∗thr and vertical
distance is the farthest from the red line. A proof is provided in the Theorem 4 in the later part. We present 3 convergence
examples of different types in Figure 14. In Figure 14 (a) and (b), the learned π by the RL algorithm is exactly the same
with the optimal π∗. In Figure 14 (b), the optimal policy is do not advertise to this user. In Figure 14 (c), the learned π is
approximately optimal. Detail convergence statistics on the proportion of users whose policies converged to the optimal
ones among all users are shown in Table 5. For each user, we denote the vertical distance of the learned policy to the

https://github.com/tjuHaoXiaotian/ICML-2020-MSBCB
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(a) user #1’s learned policy. (b) user #2’s learned policy. (c) user #3’s learned policy.

Figure 14. Three examples of the convergence of each π∗
i given a fixed CPRthr.

CPR∗thr line as dis∗learned and the vertical distance of the optimal policy π∗ to the CPR∗thr line as dis∗optimal. We denote
R∗opt = dis∗learned/dis∗optimal as the approximation ratio. According to Theorem 4, if the R∗opt is 100%, then the learned
strategy is exactly the optimal strategy. Otherwise, we denote that the learned strategy is the R∗opt-approximation strategy.
As shown in Table 5, there are 74.9% policies achieve more than 90%-approximation ratios and 53.3% policies achieve
exactly the optimal.

Table 5. Optimal types of each π∗
i of 10000 users

R∗opt 100% [90%, 100%) [0%, 90%)

Percentage 53.3% 21.6% 25.3%

Theorem 4. The point of the optimal policy is the one whose CPR > CPR∗thr and vertical distance to CPR∗thr line (red line)
is the farthest among all policy dots in Figure 14.

𝑥୧

C
on

su
m

er
 

Consumer 

𝑥୧ ∗ CPR୲୦୰

O

A

B

C

: ሺ𝑥୧, 𝑦ሻD

𝑦 െ 𝑥୧ ∗ CPR୲୦୰

∆y CPR୲୦୰ line

Figure 15. Proof of Optimal Policy Dot

Proof. Here we give a simple proof of Theorem 4. As we can see in Figure 15, the blue dot D : (xi, yi) is an arbitrary policy
i in Figure 14. Suppose the vertical distance ofD toCPR∗thr line (red line) is ∆yi (segmentDC in the figure). We then draw
a vertical line of x-axis from dot D to dot B. We can then calculate the length of segments: OB = xi, BA = xi ∗ CPRthr,
DA = yi − xi ∗ CPRthr. It’s evident that4OAB ∼ 4DAC, which means DC

OB = DA
OA = DA√

(OB)2+(AB)2
. We can derive

that

∆yi
xi

=
yi − xi ∗ CPRthr√
x2i + (xi ∗ CPRthr)2)

(16)
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As xi > 0, we can further derive that

∆yi =
yi − xi ∗ CPRthr√

1 + CPR2
thr

(17)

Suppose the dot of a policy is (x∗, y∗), which has farthest vertical distance ∆y∗ from the CPR∗thr line, that is, for a dot of
arbitrary policy i, we have ∆yi ≤ ∆y∗. According to Equation 17, we have

yi − xi ∗ CPRthr√
1 + CPR2

thr

≤ y∗ − x∗ ∗ CPRthr√
1 + CPR2

thr

(18)

Then we get yi − xi ∗ CPRthr ≤ y∗ − x∗ ∗ CPRthr, which means (x∗, y∗) is the dot of the optimal policy. Thus, we
complete the proof.

D.5.2. CONVERGENCE OF CPR∗THR .

In Figure 16, we plot the learning curves of the CPRthr of our MSBCB as well as 3 RL approaches. The dotted blue line
denotes the optimal CPR∗thr computed by the MSBCB (enum) of Table 1 of paper. Figure 16 shows that the learned CPRthr
of our MSBCB could gradually converge to the optimal CPR∗thr approximately, which is much better than the other 3 RL
approaches.

Figure 16. The convergence of CPR∗
thr

D.6. Gap to Market Second Price.

Figure 17 shows average gaps between the bid of the agent of different approaches and the second price in the auction.
Results indicate that the bid prices given by the MSBCB agent are closer to the second price in the auction, which can reduce
the risk of economic loss when the market price fluctuates.

D.7. Effectiveness of Action Space Reduction.

Here we give a more detailed comparison of MSBCB and RL baselines to demonstrate the effectiveness of action space
reduction. As shown in Figure 18 and Table 6, MSBCB (with action space reduction) can reach exactly the same cumulative
value much more quickly than the other 3 RL baselines. MSBCB can reach a cumulative value of 85000 in only 104 epochs,
which proves that action space reduction can effectively improve the sample utilization to converge to higher performance
with faster speed.

E. Empirical Evaluation: Supplementary of Online A/B Testing
In online A/B Testing, we conduct further analyses to verify the effectiveness of our MSBCB and find out whether our
approach could benefit most advertisers.
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Figure 17. The average gaps of the bids to the second prices in the auction by different methods.

Table 6. The training epochs and the number of samples needed by different approaches when achieving the same revenue level.
Cumulative Value 60000 65000 70000 75000 80000 85000
Method #Epoch #Samples #Epoch #Samples #Epoch #Samples #Epoch #Samples #Epoch #Samples #Epoch #Samples

Greedy + PPO 251 1280000 299 1530880 776 3973120 817 4183040 - - - -
Greedy + DDPG 68 343040 76 389120 92 471040 154 788480 853 4362240 - -
Greedy + DQN 90 455680 109 558080 153 783360 373 1909760 754 3855360 - -
MSBCB 22 112640 33 163840 48 245760 61 312320 71 363520 104 532480

Firstly, we analyze the performance of our MSBCB for each advertiser. To guarantee the statistical significance, only the
advertisers with more than 100 conversions in a week are included. The detail results of top-10 advertisers with the largest
costs are shown in Table 7. In Table 7, under the same budget constraint, our MSBCB can increase the Revenues and ROIs
of most advertisers compared with the myopic Contextual Bandit approach. Although the ROI of advertiser 7 drops slightly,
our MSBCB contributes to much more PVs (Page Views).

Besides, in Figure 19, we give the detail proportions of advertisers whose ROIs are improved. Among all advertisers, 85.1%
advertisers obtain positive ROI improvements while the rest of 14.9% advertisers are in the so-called quantity and quality
exchange situations: their PV increments are larger than the ROI drops. We say that its also acceptable for some advertisers
because the PV increments might lead to secondary exposures to an advertiser and thus lower the ROI within the current time
period. But the increase in PV may leave deeper impressions to the users and contribute to the long-term future revenues. In
addition, Figure 19 demonstrates that our MSBCB can be well applied to the multi-agent setting (which involves multiple
advertisers) in the real-world auction environment, which could increase the overall revenue for most advertisers.

In order to highlight the advantage of our method in long-term revenue optimization, we compared the average number of

Figure 18. The comparison of the number of training episodes needed by different approaches when achieving the same revenue level.
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Revenue Cost CVR PV ROI

Advertiser 1 5.1% -6.3% 17.2% 9.6% 12.2%
Advertiser 2 7.5% 2.1% 5.2% 12.2% 5.3%
Advertiser 3 48.6% 10.9% 27.6% 28.9% 33.9%
Advertiser 4 3.1% 2.8% 1.1% 9.6% 0.3%
Advertiser 5 12.7% 1.7% 12.9% 17.8% 10.8%
Advertiser 6 10.8% 2.2% 4.4% 13.8% 8.4%
Advertiser 7 1.9% 3.8% 4.6% 31.5% -1.8%
Advertiser 8 5.6% -4.8% 2.9% 10.7% 11.1%
Advertiser 9 6.7% -2.4% 6.3% 21.0% 9.4%

Advertiser 10 5.8% -0.8% 2.5% 8.0% 6.7%

Table 7. The improvements in Revenue, CVR, PV and ROI of our MSBCB compared with the myopic Contextual Bandit method.

Figure 19. The distribution of ROI improvements for all advertisers of our MSBCB compared with the myopic Contextual Bandit method.

times (we call the sequence length) that a user contact with an advertisement under different approaches. Figure 20 shows
the extent of MSBCB’s improvement relative to Contextual Bandit in the proportion of the user sequence length. The results
show that our MSBCB can increase the proportion of the sequences with larger sequence length. Especially, the ratio of
sequence length of 7 is increased by nearly 30%. It shows that our method can promote longer user behavior sequences, and
longer user behavior sequence means more opportunities to affect the user’s mentality towards an advertisement, thereby
improving the long-term revenue for an advertisement.

Figure 20. The proportion improvements in the sequence length of our MSBCB compared with the myopic Contextual Bandit method.

Further, we also analyze the ROI performances of the compared 3 algorithms (i.e., CEM, Contextual Bandit and our MSBCB)
in different channels. Figure 21 shows the budget allocation distributions of all approaches among 6 channels and the
corresponding ROIs. The left axis represents the ROI, and the ROI performances of each algorithm among different channels
are given by the corresponding bar charts. The right axis represents the increments or decrements of the actual costs of
MSBCB and Contextual Bandit relative to CEM, which are indicated by the line charts. In Figure 21, we observe the
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Figure 21. ROI and budget allocation among different channels.

following two phenomena:

1) MSBCB and Contextual Bandit both spend more budgets on channels with higher ROIs, especially on the Payment
Successful channel, where the average ROI is much higher.

2) Compared with Contextual Bandit, MSBCB allocates more budget from the Guess What You Like channel to other
channels, especially the Favorites channel, Confirmed Receipt channel and the Payment Successful channel.

These phenomena show that our MSBCB can reasonably allocate budgets among different channels and spend more budgets
in channels with higher ROIs. In addition, compared with the myopic method Contextual Bandit, our long-term MSBCB
is more optimistic about channels during and after purchasing, which shows that our MSBCB prefers a longer interaction
sequence to optimize cumulative long-term values.
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