
Data Amplification: Instance-Optimal Property Estimation

Yi Hao 1 Alon Orlitsky 1

Abstract
The best-known and most commonly used tech-
nique for distribution-property estimation uses a
plug-in estimator, with empirical frequency re-
placing the underlying distribution. We present
novel linear-time-computable estimators that sig-
nificantly “amplify” the effective amount of data
available. For a large variety of distribution prop-
erties including four of the most popular ones and
for every underlying distribution, they achieve the
accuracy that the empirical-frequency plug-in es-
timators would attain using a logarithmic-factor
more samples. Specifically, for Shannon entropy
and a broad class of Lipschitz properties includ-
ing the L1 distance to a fixed distribution, the new
estimators use n samples to achieve the accuracy
attained by the empirical estimators with n log n
samples. For support-size and coverage, the new
estimators use n samples to achieve the perfor-
mance of empirical frequency with sample size
n times the logarithm of the property value. Sig-
nificantly strengthening the traditional min-max
formulation, these results hold not only for the
worst distributions, but for each and every under-
lying distribution. Furthermore, the logarithmic
amplification factors are optimal. Experiments on
a wide variety of distributions show that the new
estimators outperform the previous state-of-the-
art estimators designed for each specific property.

1. Introduction
Recent years have seen significant interest in estimating
properties of distributions over large domains (Valiant &
Valiant, 2013; Jiao et al., 2015; 2018; Wu & Yang, 2016;
Orlitsky et al., 2016; Acharya et al., 2017a; Hao et al., 2018;
Wu & Yang, 2019; Hao & Orlitsky, 2019a;c; Charikar et al.,
2019; Hao & Li, 2020). Chief among these properties are
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support size and coverage, Shannon entropy, and L1 dis-
tance to a known distribution. The main achievement of
these papers is essentially estimating properties of distribu-
tions with alphabet size k using just k/ log k samples.

In practice however, the underlying distributions are often
simple, and their properties can be accurately estimated with
significantly fewer than k/ log k samples. For example, if
the distribution is concentrated on a small part of the domain,
or is exponential, very few samples may suffice to estimate
the property. To address this discrepancy, Hao et al. (2018)
took the following competitive approach.

The best-known distribution property estimator is the em-
pirical estimator that replaces the unknown underlying dis-
tribution by the observed empirical distribution. For exam-
ple, with n samples, it estimates entropy by the formula
−
∑

i(Ni/n) log(Ni/n) where Ni is the number of times
symbol i appeared. Besides its simple and intuitive form,
the empirical estimator is also consistent, stable, and uni-
versal. It is therefore the most commonly used property
estimator for data-science applications.

The estimator in Hao et al. (2018) uses n samples and for
any underlying distribution achieves the same performance
that the empirical estimator would achieve with n

√
log n

samples. It therefore provides an effective way to amplify
the amount of data available by a factor of

√
log n, regard-

less of the domain or structure of the underlying distribution.

In this paper we present novel estimators that increase
the amplification factor for all sufficiently smooth prop-
erties including those mentioned above from

√
log n to the

information-theoretic bound of log n. Namely, for every
distribution their expected estimation error with n samples
is that of the empirical estimator with n log n samples and
no further uniform amplification is possible.

It can further be shown (Valiant & Valiant, 2013; Jiao et al.,
2015; Acharya et al., 2017a; Wu & Yang, 2019) that the
empirical estimator estimates all of the aforementioned four
properties with linearly many samples, hence the sample
size required by the new estimators is always at most the
k/ log k guaranteed by the state-of-the-art estimators.

The current formulation has several additional advantages
over previous approaches, which we illustrate as follows.
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Fewer assumptions It eliminates the need for some com-
monly used assumptions. For example, support size cannot
be estimated with any number of samples, as arbitrarily-
many low-probabilities may be missed. Hence previous
research (Acharya et al., 2017a; Wu & Yang, 2019) unre-
alistically assumed prior knowledge of the alphabet size k,
and additionally that all positive probabilities exceed 1/k.
By contrast, the current formulation does not need these as-
sumptions. Intuitively, if a symbol’s probability is so small
that it won’t be detected even with n log n samples, we do
not need to worry about it.

Refined bounds For some properties, our results are more
refined than previously shown. For example, existing re-
sults estimate the support size to within ±εk, rendering the
estimates rather inaccurate when the true support size S is
much smaller than k. By contrast, the new estimation errors
are bounded by ±εS, and are therefore accurate regardless
of the support size. A similar improvement holds for the
support coverage that we introduce below.

Graceful degradation For the previous results to work,
one needs at least k/ log k samples. With fewer samples, the
estimators have no guarantees. By contrast, the guarantees
of the new estimators work for any sample size n. If n <
k/ log k, the performance may degrade, but will still track
that of the empirical estimators with a factor log n more
samples. See Theorem 1 for an example.

Instance optimality With the recent exception of Hao
et al. (2018), all modern property-estimation research took
a min-max-related approach, evaluating the estimation im-
provement based on the worst possible distribution for the
property. In reality, practical distributions are rarely the
worst possible and often quite simple, rendering min-max
approach overly pessimistic, and its estimators, typically
suboptimal in practice. In fact, for this very reason, prac-
tical distribution estimators do not use min-max based ap-
proaches (Gale & Sampson, 1995). By contrast, our com-
petitive, or instance-optimal, approach provably ensures
amplification for every underlying distribution, regardless
of its complexity or support size.

In addition, the proposed estimators run in time near-linear
in the sample size, and the constants involved are very small,
attributes shared by some, though not all existing estimators.

Below, we formalize the foregoing discussion in definitions.

Let ∆k denote the collection of discrete distributions over
[k] := {1, . . . , k}. A distribution property is a mapping
F : ∆k → R. It is additive if it can be written as

F (p) :=
∑
i∈[k]

fi(pi),

where fi : [0, 1] → R are real functions. Many important
distribution properties are additive:

Shannon entropy H(p) :=
∑

i∈[k]−pi log pi, is the
principal measure of information (Cover & Thomas, 2012),
and arises in a variety of machine-learning (Chow &
Liu, 1968; Quinn et al., 2013; Bresler, 2015), neuro-
science (Mainen & Sejnowski, 1995; Steveninck et al., 1997;
Gerstner & Kistler, 2002), and other applications.

L1 distance Dq(p) :=
∑

i∈[k] |pi−qi|, where q is a given
distribution, is one of the most basic and well-studied prop-
erties in the field of distribution property testing (Batu et al.,
2000; Ron, 2010; Valiant & Valiant, 2016; Canonne, 2017).

Support size S(p) :=
∑

i∈[k] 1pi>0, is a fundamen-
tal quantity for discrete distributions, and plays an im-
portant role in vocabulary size (McNeil, 1973; Efron &
Thisted, 1976; Thisted & Efron, 1987) and population esti-
mation (Good, 1953; Mao & Lindsay, 2007).

Support coverage C(p) :=
∑

i∈[k](1 − (1 − pi)m), for
a given m, represents the number of distinct elements we
would expect to see in m independent samples, arises in
many ecological (Chao, 1984; Chao & Lee, 1992; Colwell
et al., 2012; Chao & Chiu, 2014), biological (Chao, 1984;
Kroes et al., 1999), genomic (Ionita-Laza et al., 2009) as
well as database (Haas et al., 1995) studies.

2. Prior and New Results
Given an additive property F and sample access to an un-
known distribution p, we would like to estimate the value
of F (p) as accurately as possible. Let [k]n denote the col-
lection of all length-n sequences, an estimator is a function
F̂ : [k]n → R that maps a sample sequence Xn ∼ p to a
property estimate F̂ (Xn). We evaluate the performance of
F̂ in estimating F (p) via its mean absolute error (MAE) 1,

LF̂ (p, n) := E
Xn∼p

∣∣∣F̂ (Xn)− F (p)
∣∣∣ .

Since we do not know p, the common approach is to con-
sider the worst-case MAE of F̂ over ∆k,

LF̂ (n) := max
p∈∆k

LF̂ (p, n).

The best-known and most commonly-used property estima-
tor is the empirical plug-in estimator. Upon observing Xn,
let Ni denote the number of times symbol i ∈ [k] appears
in Xn. The empirical estimator estimates F (p) by

F̂E(Xn) :=
∑
i∈[k]

fi

(
Ni

n

)
.

1As we aim to estimate only a single property value, the esti-
mators in this paper all have negligible variances, e.g., O(1/n0.9).
Hence the MAE is the same as MSE for our purpose, and we
choose the former because it induces cleaner expressions.
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Starting with Shannon entropy, it has been shown (Wu &
Yang, 2016) that for n ≥ k, the worst-case (max) MAE of
the empirical estimator ĤE is

LĤE(n) = Θ

(
k

n
+

log k√
n

)
. (1)

On the other hand, Jiao et al. (2015); Wu & Yang (2016);
Acharya et al. (2017a); Hao & Orlitsky (2019a;c) showed
that for n ≥ k/log k, more sophisticated estimators achieve
the best min-max performance of

L(n) := min
F̂

LF̂ (n) = Θ

(
k

n log n
+

log k√
n

)
. (2)

Hence up to constant factors, for the “worst” distributions,
the MAE of these estimators with n samples equals that
of the empirical estimator with n log n samples. A similar
relation holds for the other three properties we consider.

However, the min-max formulation is pessimistic as it eval-
uates the estimator’s performance for the worst distributions.
In many practical applications, the underlying distribution is
fairly simple and does not attain this worst-case loss, rather,
a much smaller MAE can be achieved. Several recent works
have therefore gone beyond worst-case analysis and de-
signed algorithms that perform well for all distributions, not
just those with the worst performance (Orlitsky & Suresh,
2015; Valiant & Valiant, 2016; Hao & Orlitsky, 2019b).

For property estimation, Hao et al. (2018) designed an esti-
mator F̂A that for any underlying distribution uses n sam-
ples to achieve the performance of the n

√
log n-sample

empirical estimator, hence effectively multiplying the data
size by a

√
log n amplification factor.

Lemma 1 (Hao et al. (2018)). For every property F in a
large class including the aforementioned four properties,
there is an absolute constant cF such that for all distribu-
tions p, all ε ≤ 1, and all n ≥ 1,

LF̂A(p, n)− LF̂E

(
p, εn

√
log n

)
≤ cF · ε.

In this work, we fully strengthen the above result and es-
tablish the limits of data amplification for all sufficiently
smooth additive properties including four of the most im-
portant ones, and all that are appropriately Lipschitz.

Using Shannon entropy as an example, we achieve a log n
amplification factor. Equations (1) and (2) imply that the
improvement over the empirical estimator cannot always ex-
ceed O(log n), hence up to an absolute constant, this ampli-
fication factor is information-theoretically optimal. Similar
optimality arguments hold for our results on the other three
properties (e.g., see Table 1 in Acharya et al. (2017a)).

Specifically, we derive efficient estimators Ĥ , D̂, Ŝ, Ĉ,
and F̂ for the Shannon entropy, L1 distance, support size,
support coverage, and a broad class of additive properties

which we refer to as Lipschitz properties. These estimators
run in near-linear time, take a single parameter ε, and given
samples Xn ∼ p, amplify the data as described below.

For brevity, henceforth we shall write a∧b and a . b instead
of min{a, b} and a = O(b), respectively, and abbreviate
support size S(p) by Sp and coverage C(p) by Cp.

The following five theorems hold for all ε ≤ 1, all distribu-
tions p, and all n ≥ 1.

Theorem 1 (Shannon entropy).

LĤ(p, n)− LĤE(p, εn log n) . ε ∧
(
Sp

n
+

1

n0.49

)
.

Note that the estimator requires no knowledge of Sp or k.
When ε = 1, the estimator amplifies the data by a factor
of log n. As ε decreases, the amplification factor decreases,
and so does the extra additive inaccuracy. One can also set
ε to be a vanishing function of n, e.g., ε = 1/ log log n.

This result may be interpreted as follows. For distributions
with large support sizes such that the min-max estimators
provide no or only very weak guarantees, our estimator with
n samples always tracks the performance of the n log n-
sample empirical estimator. On the other hand, for distri-
butions with relatively small support sizes, our estimator
achieves a near-optimal O(Sp/n)-error rate.

Similarly, for L1 distance to a fixed distribution q,

Theorem 2 (L1 distance). For any q, we can construct an
estimator D̂q for Dq such that

LD̂q
(p, n)− LD̂E

q

(
p, ε2n log n

)
. ε ∧

(√
Sp

n
+

1

n0.49

)
.

Besides having an interpretation similar to that of Theo-
rem 1, the above result shows that for each q and each p, we
can use just n samples to achieve the performance of the
n log n-sample empirical estimator. More generally, for any
additive property F (p) :=

∑
i∈[k] fi(pi) that satisfies the

simple condition: fi is O(1)-Lipschitz, for all i,

Theorem 3 (General additive properties). Given F , we can
construct an estimator F̂ such that

LF̂ (p, n)− LF̂E

(
p, ε2n log n

)
. ε ∧

(√
Sp

n
+

1

n0.49

)
.

The results in Kamath et al. (2015) show that no plug-in
estimators provide those theoretical guarantees presented
in Theorem 2 and 3. Henceforth, we refer to the above
collection of distribution properties as the class of Lipschitz
properties. The L1 distance Dq , for any q, is in this class.

Lipschitz properties are essentially bounded by absolute con-
stants and Shannon entropy grows at most logarithmically
in the support size, and we were able to approximate all with
just an additive error. Support size and support coverage
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can grow linearly in k and m, and can be approximated
only multiplicatively. We therefore evaluate the estimator’s
normalized performance, regarding the property value.

Note that for both properties, the amplification factor is
logarithmic in the property value, which can be arbitrarily
larger than the sample size n.

The following two theorems hold for ε ≤ e−2,
Theorem 4 (Support size).

1

Sp

(
LŜ(p, n)− LŜE

(
p, n · logSp

log2 ε

))
. ε+ S

1
| log ε|−

1
2

p .

To make the slack term vanish, one can simply set ε to be
a vanishing function of n (or Sp), e.g., ε = 1/ log n. Note
that in this case, the slack term modifies the multiplicative
error in estimating Sp by only o(1), which is negligible in
most applications. Similarly, for support coverage,
Theorem 5 (Support coverage).

1

Cp

(
LĈ(p, n)− LĈE

(
p, n · logCp

log2 ε

))
. ε+C

1
| log ε|−

1
2

p .

The next section presents implications of these results.

3. Implications
Data amplification Numerous modern scientific applica-
tions, such as those emerging in social networks and ge-
nomics, deal with properties of distributions whose support
size Sp is equal to or even larger than the sample size n.

In this data-sparse regime, the estimation error of the empir-
ical estimator often decays at a slow rate, e.g., 1/ logc n for
some c ∈ (0, 1), hence the proposed estimators yield a much
more accurate estimate, paralleling that of the empirical with
n log n samples. For applications where n ≥ 25, 000 and
regardless of the distribution structure, our approach signifi-
cantly amplifies the number of samples by at least a factor
of 10, known by practitioners as an “order of magnitude”.

As for the data-rich regime where n� Sp, our method es-
sentially recovers the the standard

√
Sp/n rate of maximum

likelihood methods in general, without knowing Sp.

Instance optimality With just n samples, our method em-
ulates the performance of the n log n-sample empirical es-
timator for every distribution instance. The method hence
possesses the vital ability of strengthening all MAE guar-
antees of the empirical estimator by a logarithmic factor,
which is optimal in many settings.

The significance of such “instance optimality” arises from
1) empirical estimators are often simple and easy to analyze;
2) there is a rich literature on their estimation attributes, e.g.,
Bustamante (2017) and the references therein; 3) empirical
estimators are the best-known and most-used.

Consequently, we can work on a simple problem, analyzing
the performance of the empirical estimator, and immediately
strengthen the result we obtain by a logarithmic-factor using
the theorems in this paper. In many cases, the strength-
ened results are challenging to establish via other statistical
methods. We present two examples below.

Entropy Consider entropy estimation over ∆k. As Equa-
tion 2 shows, the min-max MAE is known for n ≥ k/ log k,
and essentially becomes a constant when n gets close to
the k/ log k lower bound. Nevertheless, over an alphabet of
size k, the value of entropy can go up to log k. Hence, it
is still possible to get meaningful estimation results in the
n = o(k/ log k) large-alphabet regime.

We follow the above strategy to solidify the statement. First,
for empirical estimator ĤE, Paninski (2003) [see Proposi-
tion 1] provides a short argument showing that its worst-case
MAE, for all n and k, satisfies

LĤE(n) ≤ log

(
1 +

k − 1

n

)
+

log n√
n
.

Consolidating this inequality with Theorem 1 then implies
Corollary 1. In the n = o(k/ log k) large-alphabet regime,
the min-max MAE of estimating Shannon entropy satisfies

L(n) ≤ (1 + o(1)) log

(
1 +

k − 1

n log n

)
.

Lipschitz Property The same type of arguments apply to
any Lipschitz property F . Again, we begin with character-
izing the performance of the empirical estimator F̂E. By
Lemma 3 and the Cauchy-Schwarz inequality, the bias of
F̂E is at mostO(

√
k/n). By the Efron-Stein inequality, the

standard deviation is no more than O(1/
√
n).

It then follows by Theorem 3 that: F̂ estimates F over ∆k

to an MAE of ε with O(k/(ε3 log k)) samples. Note that
1) this yields the first estimator for Lipschitz properties
with optimal sample dependence on k; 2) after a draft of
this paper became available online, Hao & Orlitsky (2019c)
improved the sample dependence on ε to the optimal ε2.

4. Estimator Construction and Analysis
For clarity, we focus on the proof of Theorem 1 about en-
tropy estimation, and explain only necessary modifications
for similar arguments to go through for other properties.
We begin by relating the empirical entropy estimator to the
“Bernstein polynomial” of function −x log x.

Notation For a sampling parameter n and accuracy ε ≤ 1,
define the amplification factor as a := ε log n. Without loss
of generality, assume that ε ≥ 1/ log n and hence a ≥ 1.
For simplicity, write h(x) := −x log x, m := na, τn :=
Θ(log n/n) and dn := Θ(log n), where the asymptotic
notations hide only properly chosen absolute constants.
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4.1. Bernstein Polynomial

Drawing i.i.d. samples Y m from any distribution p, the
expected value of the empirical estimator for entropy is

E[ĤE(Y m)] =
∑
i∈[k]

E
Mi∼bin(m,pi)

[
h

(
Mi

m

)]
.

Note that for any function f , m ∈ N, and x ∈ [0, 1], the
degree-m Bernstein polynomial of f is

Bm(f, x) :=

m∑
j=0

f

(
j

m

)(
m

j

)
xj(1− x)m−j .

Therefore, we can express the expectation of the empirical
entropy estimator as

E
Y m∼p

[ĤE(Y m)] =
∑
i∈[k]

Bm(h, pi).

As modifying a sample changes the value of ĤE(Y m) by
at most 2 logm/m, the Efron-Stein inequality bounds its
variance by 2 log2m/m, which is negligible in magnitude.
Hence, for our purpose, we focus on finding a good approx-
imation of each Bm(h, pi).

4.2. Estimator Construction and Computation

In the subsequent sections, given i.i.d. samples Xn ∼ p, we
construct our estimator as follows.

Substitute n by 2n for simplicity. According to Section 4.4,
we first split the samples into two halves, Xn

1 and X2n
n+1,

and respectively denote by Ni and N ′i the empirical counts
of each symbol i ∈ [k] in them.

Then, we follow Dobrushin (1958) to classify the symbols
into two categories and decompose the sum

E
Y m∼p

[ĤE(Y m)] =
∑
i∈[k]

Bm(h, pi)

into two parts by thresholding the empirical counts N ′i at
level 1/ε. The first part, VL :=

∑
i∈[k]Bm(h, pi)1N ′

i>1/ε,
corresponds to the contribution of symbols with potentially
large probabilities. Illustrated in Section 4.3, this quantity
is well approximated by the large-probability estimator

V̂L :=
∑
i∈[k]

h

(
Ni

n

)
· 1N ′

i>
1
ε
,

to an MAE of 2(ε∧Sp/n). As for the small-probability part,

VS :=
∑
i∈[k]

Bm(h, pi) · 1N ′
i≤

1
ε
,

we follow the arguments in Section 4.4 and 4.5 to learn each
summand adaptively (to the magnitude of the probability)
and compute the summation.

Concretely, recall τn = Θ(log n/n) and dn = Θ(log n).
For a given function and domain, the polynomial achieving
the minimal maximum deviation from the function over the
domain is the min-max polynomial. Then, denote by

h̃m(x) :=

dn∑
t=0

btx
t

the degree-dn min-max polynomial of B′m(h, pi) over inter-
val In := [0, τn]. The small-probability estimator is

V̂S :=
∑
i∈[k]

(
d+1∑
t=1

bt−1

t
· N

t
i

nt

)
· 1Ni.log n · 1N ′

i≤
1
ε
,

where for each symbol i, the term in the parentheses is an
unbiased estimator for H̃m(pi) :=

∫ pi

0
h̃m(s)ds. Next, we

illustrate the technique and intuition behind the construction.

Differential smoothing The construction of V̂S presents
a generic method for designing a polynomial G̃ that closely
approximates a given differentiable function G with point-
wise error bounds.

More precisely, for a fixed interval I := [0, τ ] and degree
bound d ∈ N, we want to find a polynomial G̃ of degree at
most d, satisfying

max
x∈I
|G̃(x)−G(x)| ≤ c · x,

for a number c ≥ 0 that is as small as possible.

We propose a novel method, differential smoothing, that ad-
dresses this approximation problem and operates as follows.

1. Compute G′(x) and write g := G′.

2. Approximate g by its min-max polynomial g̃ over I .

3. Let c be the min-max approximation error in Step 2.

4. Compute G̃(x) :=
∫ x

0
g̃(t)dt.

By the triangle inequality for integrals, the resulting c and
G̃ satisfy the desired inequality. Besides, Step 2 and 3 can
be jointly performed using the well-known Remez algo-
rithm (Pachón & Trefethen, 2009; Trefethen, 2013).

Turning back to our estimator V̂S , by the reasoning in Sec-
tion 4.6 and 4.7, the min-max polynomial h̃m(x) approxi-
mates B′m(h, x) to within O(ε) over In. Hence, applying
the method of differential smoothing yields

|Bm(h, x)− H̃m(x)| . ε · x.

Further relating this inequality to the expectation of the
empirical entropy estimator implies∣∣∣ E

Y m∼p
[ĤE(Y m)]−

∑
i∈[k]

H̃m(pi)
∣∣∣ . ∑

i∈[k]

ε · pi = ε.
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In Section 6.1 of the supplementary, we prove that the ab-
solute bias is also at most O(Sp/n), which requires some
additional work. Finally, Section 7.1 bounds the mean abso-
lute deviation of the estimator by O(1/n0.49).

Consequently, we approximate H(p) by

Ĥ := V̂L + V̂S .

Computational complexity The dominant computation
step is finding the min-max polynomial of B′m(h, x), for
which we utilize the well-known Remez algorithm (Pachón
& Trefethen, 2009; Trefethen, 2013). In Section 9 of the
supplementary, we shall argue that the algorithm takes only
Õ(n) time to well approximate B′m(h, x).

4.3. Large-Probability Estimator

Following the previous arguments, we say that i ∈ [k] is a
large-probability symbol if N ′i > 1/ε. To the expectation of
the m-sample empirical estimator, these symbols contribute

VL =
∑
i∈[k]

Bm(h, pi) · 1N ′
i>

1
ε
.

We estimate VL by respectively reweighing the empirical
estimator associated with the first-half samples:

V̂L =
∑
i∈[k]

h

(
Ni

n

)
· 1N ′

i>
1
ε
.

To bound the estimation bias, we leverage the next lemma,
stating that the Bernstein polynomial of h closely approxi-
mates the function over [0, 1].

Lemma 2. For any t ∈ Z+ and x ∈ [0, 1],

−1− x
t
≤ Bt(h, x)− h(x) ≤ 0.

The number of symbols satisfying N ′i > 1/ε is at most nε.
Together with the lemma and triangle inequality, this yields

|E[VL]−E[V̂L]| ≤
∑
i∈[k]

(
1 + a

m

)
(1−pi)E

[
1N ′

i>
1
ε

]
≤ 2ε.

Furthermore, the number of such symbols is also at most
Sp, implying an alternative upper bound of 2Sp/n.

For Shannon entropy, we note that adding 1/(2n) to the
empirical estimate h(Ni/n) may reduce its bias. This par-
ticular method, known as the “Miller-Mallow estimator”,
appears in Miller (1955) and eliminates the first-order term
of Bn(h, x) − h(x). Applying the method will introduce
extra complications in the analysis, and hence for entropy
and general non-differentiable properties, we employ the
original empirical estimator. On the other hand, substituting
the Miller-Mallow estimate into our algorithm in Theorem 1
retains its theoretical guarantee.

For Lipschitz properties, the rich literature on Bernstein
operators presents us with the following bound.

Lemma 3 ((Bustamante, 2017) Proposition 4.9). For any
t ∈ Z+, x ∈ [0, 1], and c-Lipschitz function f ,

|Bt(f, x)− f(x)| ≤ c ·
√
x(1− x)

t
.

Combined with the Cauchy-Schwarz inequality, the lemma
shows that the estimation bias of the respective V̂L admits

|E[VL]− E[V̂L]| ≤ 2

(
ε ∧
√
Sp

n

)
.

This completes the bias analysis of the large-probability
estimator, while Section 6.2 in the supplementary provides
additional technical details. For the variance analysis, see
Section 7.2. The following three sections proceed to con-
struct the small-probability estimator and introduce funda-
mental results from polynomial approximation theory.

4.4. Choice of Parameters and Sample Splitting

Section 4.1 calls for estimating Bm(h, x). Applying the
method of differential smoothing in Section 4.2, we first
choose some domain I = [0, τ ] and degree d, and estimate
B′m(h, x) by its min-max polynomial h̃m(x) =

∑d
t=0 btx

t

over I . Then, we approximate Bm(h, x) by

H̃m(x) =

∫ x

0

h̃m(t)dt =

d∑
t=0

bt
t+ 1

xt+1.

To estimate H̃m(x), note that given a binomial variableX∼
bin(n, x), an unbiased estimator for xt is Xt/nt, where
t ∈ N and AB denotes the B-th order falling factorial of A.
Hence, we employ

Ĥm(X) :=

d+1∑
t=1

bt−1

t
· X

t

nt
,

an unbiased estimator for H̃m(x) that corresponds to the
parenthetical component in estimator V̂S’s expression. Next,
we illustrate the intuitions behind our choice of τ and d.

For any X ∼ bin(n, x), the variance of Ĥm(X) generally
gets larger as the degree d increases. On the other hand, a
higher-degree polynomial is able to achieve a lower approx-
imation error. To balance this bias-variance trade-off, we
want to reduce both the interval length, τ , and the polyno-
mial degree, d, while maintaining the approximation power.

As in Section 4.2, we set parameter τ = τn = Θ(log n/n)
since below this threshold, sample statistics are insufficient
for inferring the relative magnitudes of the underlying prob-
abilities with high confidence. Regarding the degree pa-
rameter τ = τn = Θ(log n), below the log n threshold, the
approximation H̃m loses the ε · x guarantee; in contrast,
above the threshold, the final estimator may no longer pos-
sess a vanishing variance. For more details, see derivations
in Section 7.1 and Appendix A of the supplementary.
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One thing that follows the construction of H̃m and Ĥm is
how to apply these approximations to only probabilities of
order τn. This issue arises from the fact that we observe
symbol counts, not ranges of the actual probability values.
It is straightforward to deal with such uncertainty by infer-
ring the magnitudes of unknowns leveraging the counting
statistics concentration.

For concentration, binomial random variables are sums of
independent indicator variables and possess Gaussian-type
tail bounds. To avoid introducing additional statistical de-
pendency, we 1) split the sample sequence into two halves
of equal length; 2) denote respectively the empirical counts
of each symbol i in the first and second halves by Ni and
N ′i (where we slightly abused the notation); 3) classify each
i ∈ [k] as a large- or small- probability symbol by thresh-
olding the count N ′i at 1/ε. The supplementary material
presents relevant details in Section 5 and 6.2.

In the literature, the above procedure is often referred to as
sample splitting. This idea of classifying the symbols in
the alphabet into two categories dates back to Dobrushin
(1958), and has been applied to estimate a variety of specific
distribution properties in the past decade (Acharya et al.,
2014; Jiao et al., 2015; Wu & Yang, 2016; Hao et al., 2018).
Recently, Hao & Orlitsky (2019c) generalize this idea to
estimate general properties by partitioning the unit inter-
val into Θ̃(

√
n) pieces; Hao & Orlitsky (2019b) apply the

method to derive state-of-the-art distribution estimators.

Sample splitting and additiveness of the property enable us
to estimate the contributions from the large and small prob-
abilities separately. The rest sections assume this separation
and address the small-probability approximation error.

4.5. Min-Max Polynomial

Polynomials have extensive applications to statistical infer-
ence, ranging from approximating the norms of Gaussian
parameters (Cai & Low, 2011) to learning structured distri-
butions (Chan et al., 2014; Acharya et al., 2017b; Hao & Or-
litsky, 2019b) to estimating properties of distributions (Jiao
et al., 2015; Orlitsky et al., 2016; Wu & Yang, 2016; Hao
et al., 2018; Hao & Orlitsky, 2019c).

As illustrated in Section 4.2 and 4.4, we aim to find a poly-
nomial h̃m(x) of degree dn = Θ(log n) that satisfies the
pointwise bound |B′m(h, x)−h̃m(x)| . ε over In = [0, τn].

The task naturally calls for a polynomial achieving the mini-
mal maximum deviation from B′m(h, x), commonly known
as the respective min-max polynomial. Moreover, direct
computation shows that B′m(h, x) is the order-(m−1) Bern-
stein polynomial of another function:

B′m(h, x) = Bm−1(hm, x),

where function hm is defined as

hm(y) :=− log
m− 1

m
+(m−1)

(
h

(
y+

1

m− 1

)
−h(y)

)
.

Hence, our objective reduces to bounding the error of min-
max polynomial approximations of Bm−1(hm, x) over In.
As one could expect, the analysis gets more involved since
1) Bm−1(hm, x) is a high-degree polynomial with transcen-
dental coefficients; 2) in general, there are no closed-form
formulas for the min-max polynomials of a real function.

Though sophisticated in its form, function Bm−1(hm, x) is
continuous and relatively smooth, as hinted by Lemma 2.
This simple observation serves as the starting point for our
subsequent analysis. In the next section, we dive into ap-
proximation theory and present fundamental connections
between the smoothness of a function (characterized by spe-
cific quantities) and its min-max polynomial approximation
error over a given interval. The desired result then follows
by a sequence of inequalities and simplifications that enable
us to gauge the smoothness of Bm−1(hm, x).

For the proof of the derivative identity on hm and a more
straightforward argument leading to a weaker result, see
Section 4 and 5 of the supplementary.

4.6. Moduli of Smoothness

In this section, we introduce some notable results in approx-
imation theory (Ditzian & Totik, 2012) that are crucial for
simplifying the problem. Denote ϕ(x) :=

√
x(1− x). For

any function f : [0, 1] → R, the first- and second- order
Ditzian-Totik moduli of smoothness quantities of f are

w1
ϕ(f, t) := sup {|f(u)− f(v)| : 0 ≤ u, v ≤ 1,

|u− v| ≤ t · ϕ
(
u+ v

2

)}
,

and

w2
ϕ(f, t) := sup

{∣∣∣∣f(u) + f(v)− 2f

(
u+ v

2

)∣∣∣∣ :

0 ≤ u, v ≤ 1, |u− v| ≤ 2t · ϕ
(
u+ v

2

)}
,

respectively. Let Pd denote the collection of polynomials
with real coefficients and degree at most d. For any d ∈ Z+,
interval I ⊂ R, and function f : I → R, denote by

Ed[f, I] := min
f̃∈Pd

max
x∈I
|f(x)− f̃(x)|

the best approximation error of the degree-d min-max poly-
nomial of f over I . For a bounded domain I , we can always
shift and rescale f to make it a real function over [0, 1].
Hence, without loss of generality, it suffices to consider and
analyze Ed[f ] := Ed[f, [0, 1]].

The connection between the best polynomial-approximation
error Ed[f ] of a continuous function f and the second-order
Ditzian-Totik moduli of smoothness w2

ϕ(f, t) is established
in the following lemma (Ditzian & Totik, 2012).
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Lemma 4. There are absolute constants C1 and C2 such
that for any continuous function f over [0, 1] and d > 2,

Ed[f ] ≤ C1w
2
ϕ(f, d−1),

and
1

d2

d∑
t=0

(t+ 1)Et[f ] ≥ C2w
2
ϕ(f, d−1).

The above lemma shows that the second-order smoothness
quantity w2

ϕ(f, ·) essentially characterizes E·[f ], and thus
transforms the problem of showing

|h̃m(x)−Bm−1(hm, x)| . ε, ∀x ∈ In,

to that of establishing

w2
ϕ(Bm−1(hm, τn · x), d−1

n ) . ε,

where τn = Θ(log n/n) and dn = Θ(log n) by definition.

4.7. Simplification via Poissonization

The last block in our analysis is Poissonization, which helps
decompose and simplify the function to approximate. For
any y ∈ [0,∞], define two functions:

f1(y) := E
X∼Poi(y)

[h(X)] = −e−y
∞∑
j=1

yj

j!
(j log j)

and
f2(y) := E

X∼Poi(y)
[h(X + 1)].

Let z(x) := (m− 1)x for simplicity. The following lemma,
appearing in Appendix A.1 of the supplementary relates
Bm−1(hm, x) to these functions and base function h(x).
Lemma 5. For any m ∈ Z+ and x ∈ [0, log4m/m],

hm(x)−Bm−1(hm, x) = [h(z(x) + 1)− f2(z(x))]

− [h(z(x))− f1(z(x))] + Õ
(

1

m

)
.

In particular, the above equation holds for any sufficiently
large n and x ∈ In = [0, τn]. Since 1/m = 1/(na− 1) ≤
min{1/ log n, Sp/n}, the last term on the right-hand side
is negligible. These results, together with the function-wise
triangle inequality on w2

ϕ, further reduce the last inequality
in Section 4.6 to bounds in the form of

w2
ϕ(g(x), d−1

n ) . ε,

for function g(x) being hm(τn · x), h(z(x)), h(z(x) + 1),
f1(z(x)), and f2(z(x)), respectively.

We prove these bounds in Appendix A.2 and A.3 of the
supplementary. In Appendix B, a similar yet more involved
argument extends the result to all Lipschitz properties. One
reason for the extra complication is the absence of concrete
expression, as we impose only the Lipschitz condition.

While these proofs are technical, a critical insight is that the
optimization problems induced by computing w2

ϕ for the
above choices of g are all convex. Consequently, it suffices
to consider only the boundary cases of parameters.

5. Experiments
We demonstrate the efficacy of the proposed estimators by
comparing their performance to two state-of-the-art estima-
tors (Wu & Yang, 2016; 2019), and empirical estimators
with logarithmic larger sample sizes. Due to method similar-
ity, we present only the results for entropy and support size.
Additional estimators for both properties were compared
in Orlitsky et al. (2016); Wu & Yang (2016; 2019); Hao
et al. (2018); Hao & Orlitsky (2019a) and found to perform
similarly to or worse than the estimators we tested, hence we
exclude them here. For each property, we considered nine
natural-synthetic distributions, shown in Figure 1 and 2.

Settings We experimented with nine distributions having
support size S = 10,000: uniform distribution; a two-steps
distribution with probability values 0.5S−1 and 1.5S−1;
Zipf distribution with power 1/2; Zipf distribution with
power 1; binomial distribution with success probability 0.3;
geometric distribution with success probability 0.9; Pois-
son distribution with mean 0.3S; a distribution drawn from
Dirichlet prior with parameter 1; a distribution drawn from
Dirichlet prior with parameter 1/2.

The geometric, Poisson, and Zipf distributions were trun-
cated at S and re-normalized. The horizontal axis shows the
number of samples, n, ranging from S0.2 to S. Each experi-
ment was repeated 100 times and the reported results, shown
on the vertical axis, reflect their mean values and standard
deviations. Specifically, the real property value is drawn as
a dashed black line, and the other estimators are color/shape
coded, with the solid line displaying their mean estimate,
and the shaded area corresponding to one standard deviation.

We compared the estimators’ performance with n samples
to that of two other recent estimators as well as the empirical
estimator with n, n

√
logA, and n logA samples, where for

Shannon entropy, A = n and for support size, A = Sp, the
actual distribution support size (which is S). We chose the
parameter ε = 1. The graphs denote our proposed estimator
by Proposed, F̂E with n samples by Empirical, F̂E with
n
√

logA samples by Empirical+, F̂E with n logA samples
by Empirical++, the entropy and support-size estimators
in Wu & Yang (2016) and Wu & Yang (2019) by WY.

Results As Theorem 1 and 4 would imply and the experi-
ments confirmed, for both properties, the proposed estima-
tors with n samples achieved the accuracy as the empirical
estimators with at least n log n samples for entropy and
n logSp samples for support size. In particular, for entropy,
the proposed estimator with n samples performed signifi-
cantly better than the n log n-sample empirical estimator,
for all tested distributions and all values of sample size n.
For both properties, the proposed estimators outperformed
the state-of-the-art estimators in terms of accuracy and sta-
bility regarding distribution structures.
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Figure 1. Shannon entropy estimation. For clarity, the horizontal axis is in logarithmic scale. The WY curve is flipped vertically around
Truth for all the curves to have similar trends. Besides the samples, the WY estimator takes as input an upper bound of the support size,
which is set to be the actual support size in the experiments. The vertical axis shows only nonnegative values.

0

5000

10000

E
st

im
at

es

Uniform

0

5000

10000

Two steps

0

200

400

Binomial 0.3

0

50

100

E
st

im
at

es

Geometric 0.9

0

200

400

600
Poisson 0.3

0

5000

10000

Zipf 1/2

101 102 103 104

n

0

5000

10000

E
st

im
at

es

Zipf 1

101 102 103 104

n

0

5000

10000

Dirichlet-1 prior

101 102 103 104

n

0

5000

10000

Dirichlet-1/2 prior

Truth

Empirical

Empirical+

Empirical++

WY

Proposed

Figure 2. Support size estimation. For clarity, the horizontal axis is in logarithmic scale. Besides the samples, the WY estimator takes
as input a lower bound of the smallest positive probability p+min, which is set to be max{1/(10S), 4p+min} in the experiments. Here,
1/(10S) is used to avoid division by zero in numerical computation, and factor 4 represents a reasonable uncertainty about p+min. For
several distributions, such as uniform and geometric, knowing p+min yields the full knowledge of the entire probability multiset. Finally,
while estimator WY’s bias is slightly lower on a few distributions, the corresponding standard deviation is too high to be acceptable.
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