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Abstract

We propose an accelerated version of stochastic
variance reduced coordinate descent — ASVRCD.
As other variance reduced coordinate descent
methods such as SEGA or SVRCD, our method
can deal with problems that include a non-
separable and non-smooth regularizer, while ac-
cessing a random block of partial derivatives in
each iteration only. However, ASVRCD incor-
porates Nesterov’s momentum, which offers fa-
vorable iteration complexity guarantees over both
SEGA and SVRCD. As a by-product of our the-
ory, we show that a variant of Katyusha (Allen-
Zhu, 2017) is a specific case of ASVRCD, recov-
ering the optimal oracle complexity for the finite
sum objective.

1. Introduction

In this paper, we aim to solve the regularized optimization
problem

min P(x) := f(x) 4+ ¢(x), (1)
TzER?
where function f is convex and differentiable, while the
regularizer v is convex and non-smooth. Furthermore, we
assume that the dimensionality d is large.

The most standard approach to deal with the huge d is
to decompose the space, i.e., use coordinate descent, or,
more generally, subspace descent methods (Nesterov, 2012;
Wright, 2015; Kozak et al., 2019). Those methods are espe-
cially popular as they achieve a linear convergence rate on
strongly convex problems while enjoying a relatively cheap
cost of performing each iteration.

However, coordinate descent methods are only feasible if
the regularizer v is separable (Richtarik & Takac, 2014). In
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contrast, if 1) is not separable, the corresponding stochastic
gradient estimator has an inherent (non-zero) variance at
the optimum, and thus the linear convergence rate is not
achievable.

This phenomenon is, to some extent, similar when apply-
ing Stochastic Gradient Descent (SGD) (Robbins & Monro,
1951; Nemirovski et al., 2009) on finite sum objective — the
corresponding stochastic gradient estimator has a (non-zero)
variance at the optimum, which prevents SGD from converg-
ing linearly. Recently, the issue of sublinear convergence
of SGD has been resolved using the idea of control vari-
ates (Hickernell et al., 2005), resulting in famous variance
reduced methods such as SVRG (Johnson & Zhang, 2013)
and SAGA (Defazio et al., 2014a).

Motivated by the massive success of variance reduced meth-
ods for finite sums, control variates have been proposed to
“fix”” coordinate descent methods to minimize problem (1)
with non-separable 1. To best of our knowledge, there are
two such algorithms in the literature — SEGA (Hanzely et al.,
2018) and SVRCD (Hanzely & Richtarik, 2019), which we
now quickly describe.'

Let z* be the current iterate of SEGA (or SVRCD) and
suppose that the oracle reveals the ¢-th partial derivative
V. f(x*) (for i chosen uniformly at random). The simplest
unbiased gradient estimator of V f(z*) can be constructed
as §¥ = dV,f(z")e; (where e; € R is the i-th standard
basis vector). The idea behind these methods is to enrich
§* using a control variate h* € R?, resulting in a new (still
unbiased) gradient estimator g":

g" = dV;f(z")e; — dhFe; + h*,

where h¥ € R stands for the i-th element of vector h*.
How to choose the sequence of control variates {h*}? In-
tuitively, we wish for both sequences {h*} and {V f(z*})
to have an identical limit point. In such case, we have
limy_ o, Var(g* ) = 0, and thus one shall expect faster con-
vergence. There is no unique way of setting {h*} to have
the mentioned property satisfied — this is where SEGA and
SVRCD differ. See Algorithm 1 for details.

'VRSSD (Kozak et al., 2019) is yet another stochastic sub-
space descent algorithm aided by control variates; however, it was
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Algorithm 1 SEGA and SVRCD

Require: Stepsize o > 0, starting point z° € R?, probabil-
ity vector p: p; =P (i € S)
Set h =0 € R4
for k=0,1,2,... do
Sample random S C {1,2,...,d}
0" = 3 (Vi) h)es+ b
[4S]
a* ! = prox,, (% — agh)
R + 37 (Vif(z%) — hE)e; for SEGA
i€s
W= (ViR wp.p
h¥ wp.1—p

for SVRCD

end for

In this work, we continue the above research along the lines
of variance reduced coordinate descent algorithms, with
surprising consequences.

1.1. Contributions
Here we list the main contributions of this paper.

> Exploiting prox in SEGA/SVRCD. Assume that the reg-
ularizer 7 includes an indicator function of some affine
subspace of R, We show that both SEGA and SVRCD
might exploit this fact, resulting in a faster convergence
rate. As a byproduct, we establish the same result in the
more general framework from (Hanzely & Richtarik, 2019)
(presented in the appendix).

> Accelerated SVRCD. We propose an accelerated version
of SVRCD - ASVRCD. ASVRCD is the first accelerated
variance reduced coordinate descent to minimize objectives
with non-separable, proximable regularizer.

> SEGA/SVRCD/ASCRVD generalizes SAGA/L-
SVRG/L-Katyusha. We show a surprising link between
SEGA and SAGA. In particular, SAGA is a special
case of SEGA; and the new rate we obtain for SEGA
recovers the tight complexity of SAGA (Qian et al., 2019b;
Gazagnadou et al., 2019). Similarly, we recover loopless
SVRG (L-SVRG) (Hofmann et al., 2015; Kovalev et al.,
2020) along with its best-known rate (Hanzely & Richtarik,
2019; Qian et al., 2019a) using a result for SVRCD.
Lastly, as a particular case of ASVRCD, we recover
an algorithm which is marginally preferable to loopless
Katyusha (L-Katyusha) (Qian et al., 2019a): while we

proposed to minimize f only (i.e., considers ¥ = 0).

2We shall note that an accelerated version of SEGA was already
proposed in (Hanzely et al., 2018) for ¢ = 0 — this was rather an
impractical result demonstrating that SEGA can match state-of-the
art convergence rate of accelerated coordinate descent from (Allen-
Zhu et al., 2016; Nesterov & Stich, 2017; Hanzely & Richtarik,
2018). In contrast, our results cover any convex .

recover their iteration complexity result, our proof is more
straightforward, and at the same time, the stepsize for the
proximal operator is smaller.

1.2. Preliminaries

As mentioned in Section 1.1, the new results we provide
are particularly interesting if the regularizer ¢/ contains an
indicator function of some affine subspace of R?. This step
is crucial in order to recover the tight convergence rate of
the finite-sum variance reduced methods, as we shall see
later.

Assumption 1.1 Assume that W is an orthogonal projec-
tion matrix such that

U(z) = {¢/($) if € {2+ Range(W)}

00 if x¢{2°+ Range (W)} @

Sor some convex function i’ (). Furthermore, suppose that
the proximal operator of Y is cheap to compute.

Example 1.1 Given that )’ = 0, the regularizer 1 becomes
the indicator function of the affine subspace given by {x° +
Range (W)}.

Remark 1.2 If v is convex, there is always some W such
that (2) holds as one might choose W = 1.

Next, we require smoothness of the objective, as well as
the strong convexity over the affine subspace given by
Range (W).

Assumption 1.2 Function f is M-smooth, i.e., for all
x,y € RLA

7)< F0) + (VFw)w— ) + e — ol

Function f is p-strongly convex over {z° + Range (W)},
ie, forall z,y € {z° + Range (W)}:

F@) = )+ (V@) =) + Gl —ol”. ©)

Remark 1.3 Smoothness with respect to matrix M arises
naturally in various applications. For example, if f(x) =
f'(Ax), where f' is L'-smooth (for scalar L' > 0), we can
derive that f is M = L' AT A-smooth.

In order to stress the distinction between the finite sum setup
and the setup from the rest of the paper, we are denoting
the finite-sum variables that differ from the non-finite sum
case in red and with an extra tilde on top of them. We thus,
recommend printing this paper in color.

3This is preferable especially if the proximal operator has to be
estimated numerically.
*We define ||z||? == (x,z) and ||z||3; == (Mz, z).



Variance Reduced Coordinate Descent with Acceleration

2. Better Rates for SEGA and SVRCD

In this section, we show that a specific structure of nons-
mooth function 1) might lead to faster convergence of SEGA
and SVRCD.

The next lemma is a direct consequence of Assumption 1.1
— it shows that proximal operator of 1) is contractive under
‘W-norm.

Lemma 2.1 Let {z%} ;>0 be a sequence of iterates of Algo-
rithm 1 and let ©* be optimal solution of (1). Then

2% € {24+Range (W)}, z* € {2°+Range (W))}. (4)
for all k. Furthermore, for any x,y € R% we have

I proxg, (z) — prox,, (W)|° < llz =yl )

Next, we state the convergence rate of both SEGA and
SVRCD under Assumption 1.1 as Theorem 2.2. We also
generalize the main theorem from (Hanzely & Richtarik,
2019) (fairly general algorithm which covers SAGA, SVRG,
SEGA, SVRCD, and more as a special case; see Sec-
tion D of the appendix); from which the convergence rate
of SEGA/SVRCD follows as a special case.

Theorem 2.2 Let Assumptions 1.1, 1.2 hold and denote
p; = P (i € S). Consider vector v = Z?Zl eV, v; > 0
such that

1 1

M:E lz —eieiTWZ eieiﬂ M:z < D(p_1 o),
ies Pi ies i

(6)

where D(-) is a diagonal operator which returns a ma-
trix with the input on the diagonal, and zeros everywhere

else. Then, iteration complexity of SEGA with a =
min; 471’;;# is max; (%) log % At the same time, it-

eration complexity of SVRCD with o = min, Toipi

1
“lppt
. 4max; (vip; !
is ( max; (vip; )+ pp ) log L.
nw €

Let us look closer to convergence rate of SVRCD from
Theorem 2.2. The optimal vector v is a solution to the
following optimization problem

4max;{vip; ! ! 1
min ( maxi{vipi~} + pp )1og s. t. (6) holds.
vER? o €

Clearly, there exists a solution of the form v o p; let us thus
choose v := Lp with £ > 0. In this case, to satisfy (6) we
must have

1 1 1 1
L= >\max (M;E [Z feieiTWZ m6161T] M;>

i€S Pi i€S
@)

and the iteration complexity of SVRCD becomes?

(4£—|—,u,0_1> 1
L Jlog-.
U

€

How does W influence the rate? As mentioned, one can
always consider W = 1. In such a case, we recover the
convergence rate of SEGA and SVRCD from (Hanzely &
Richtérik, 2019). However, the smaller rank of W is, the
faster rate is Theorem 2.2 providing. To see this, it suffices
to realize that if £ is increasing in W (in terms of Loewner
ordering).

Example 2.3 Letr M = I and S = {i} with probability
dl forall1 < i < d. Given that W = 1, it is easy
to see that L = d. In such case, the iteration complexity

of SVRCD is (%) log % In the other extreme, if
W = éee—r, we have L = 1, which yields complexity (of

SVRCD) (%) log % Therefore, given that i = O(p),

the low rank of W caused the speedup of order ©(d).

We shall also note that the tight rate of SAGA and L-SVRG
might be recovered from Theorem 2.2 only using a non-
trivial W (see Section 3), while the original theory of SEGA
and SVRCD only yield a suboptimal rate for both SAGA
and L-SVRG.

Connection with Subspace SEGA (Hanzely et al., 2018).
Assume that function f is of structure f(z) = h(Ax). As
a consequence, we have Vf(z) = ATVh(Az) and thus
Vf(z) € Range (AT). This fact was exploited by Sub-
space SEGA in order to achieve a faster convergence rate.
Our results can mimic Subspace SEGA by setting v to be
an indicator function of z° + Range (AT) , given that there
is no extra non-smooth term in the objective.

Remark 2.4 Throughout all proofs of this section, we have
used a weaker conditions than Assumption 1.2. In par-
ticular, instead of-M-smoothness, it is sufficient to have®
Dy(z,z*) > ||V f(x) = Vf(a*)|zg-r for all 2 € R
(Lemma D.3 shows that it is indeed a consequence of M
smoothness and convexity). At the same time, instead of
-strong convexity, it is sufficient to have p-quasi strong
convexity, i.e., for all v € {2° + Range (W)}: f(z*) >
f(@) +(Vf(z),z* — ) + §|lx — 2*||>. However, the ac-
celerated method (presented in Section 4) requires the fully
general version of Assumption 1.2.

>We decided to not present this, simplified rate in Theorem 2.2
for the following two reasons: 1) it would yields a slightly subpoti-
mal rate of SEGA and 2) the connection of to the convergence rate
of SAGA from (Qian et al., 2019b) is more direct via (6).

5By D (x,y) we denote Bregman distance between z, y, i.e.,

Dy(z,y) = f(z) = f(y) = (Vf(z)
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3. Connection between SEGA (SVRCD) and
SAGA (L-SVRG)

In this section, we show that SAGA and L-SVRG are spe-

cial cases of SEGA and SVRCD, respectively. At the
same time, the previously tightest convergence rate of
SAGA (Gazagnadou et al., 2019; Qian et al., 2019b) and
L-SVRG (Hanzely & Richtarik, 2019; Qian et al., 2019a)
follow from Theorem 2.2 (convergence rate of SEGA and
SVRCD).

3.1. Convergence rate of SAGA and L-SVRG

We quickly state the best-known convergence rate for both
SAGA and L-SVRG to minimize the following objective:

Ynen]Rr}' P(#) = % ; fj (%) +1(2). (8)
e

Assumption 3.1 Each f ; is convex, Mj—smooth and [ is
[i-strongly convex.

Assuming the oracle access to Vf;(i*) for i € S

(where S is a random subset of {1, ..., n}), the minibatch

SGD (Gower et al., 2019) uses moves in the direction of

the “plain” unbiased stochastic gradient 1 - [%V]F (7%),
ieS

where p; =P (2 S 5’)

In contrast, variance reduced methods such as SAGA and
L-SVRG enrich the “plain” unbiased stochastic gradient
with control variates:

=32

Y2
ies "t

(Vﬂ(fr’“) - ini) + %J’“( ©)

where J¥ € RY*" is the control matrix and ¢ € R" is
vector of ones. The difference between SAGA and L-SVRG
lies in the procedure to update J*; SAGA uses the freshest
gradient information to replace corresponding columns in
Ik e,
F (kY ses -~ Q

J ifi € 5.
On the other hand, L-SVRG sets J* to the true Jacobian of
f upon a successful, unfair coin toss:

gt VA, V@] wepp
Jk w.p.1—p.
(1)
The formal statement of SAGA and L-SVRG is provided as

Algorithm 2, while Proposition 3.1 states their convergence
rate.

Algorithm 2 SAGA/L-SVRG
Require: « >0, p € (0,1)

',1~70 c R‘],JO =0¢c Rdxn
for k=0,1,2,...do

Sample random S C {1,. }
¢ = 1%+ 1 ¥ L(V (&) - 3%
ZES
P = prox,,, (I — agh)
Update Jh+1 according to (10) or (11)
end for

Proposition 3.1 Suppose that Assumption 3.1 holds and let

v be a nonegative vector such that for all hq, ..., h, € R4
we have
2
~ 1 o
E Y MzZh| | <D misllhglP. (2)
jes =1

Then the iteration complexity of SAGA with o =
np; 40, +nf
ming 4= gy is max; ( ih;

iteration complexity of L-SVRG with & = min; 4]7}
+ n

) log ¢ L At the same time,

3.2. SAGA is a special case of SEGA

Consider setup from Section 3.1; i.e., problem (8) along
with Assumption 3.1 and v defined according to (12). We
will construct an instance of (1) (i.e., specific f, ©), which
is equivalent to (8), such that applying SEGA on (1) is
equivalent applying SAGA on (8).

Let d == dn. For convenience, define R; := {d(j — 1) +

1,d(j —1)+1,...,dj} (ie., |R;| = d) and lifting operator
T
Q(): R - R defined as Q () = |i',..., 7"
S e—
n times

Construction of f, ). Let I be indicator function of the
set’ xg, = --+ = g, and choose

%Zf (zR,;), Y(z):= I(:v)+'z;'(le) (13)

Now, it is easy to see that problem (8) and problem (1)
with the choice (13) are equivalent; each z € R¢ such tha}
P(x) < oo must be of the form x = Q (i) for some 7 € R,
In such case, we have P(z) = P(i). The next lemma goes
further, and derives the values M, p, W and v based on M;
1<i<n),n,0.

"Indicator function of a set returns 0 for each point inside of
the set and oo for each point outside of the set.
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Lemma 3.2 Consider f,1 defined by (13). Function
f satisfies Assumption 1.2 with p = % and M =
L Blocleag(Ml, .M n). Function ¢ and 2° = Q (;io)
sansfy Assumption with W = %(ﬁ—'— ® L. At the same
time, given that v satisfies (12), inequaility (6) holds with
v=1on"L

Next, we show that running Algorithm 1 in this particular
setup is equivalent to running Algorithm 2 for the finite sum
objective.

Lemma 3.3 Consider f,v from (13), S as described in the
last paragraph and z° = Q (.770). Running SEGA (SVRCD)
on (1) with S = UjeS'Rj and o = na is equivalent to
running SAGA (L-SVRG) on (8).; i.e., we have for all k

b =Q (i%). (14)

As a consequence of Lemmas 3.2 and 3.3, we get the next
result.

Corollary 3.4 Let f,1), S be as described above. Conver-
gence rate of SAGA (L-SVRG) given by Proposition 3.1 to
solve (1) is identical to convergence rate of SEGA (SVRCD)
given by Theorem 2.2.

4. Accelerated SVRCD

In this section we present SVRCD with Nesterov’s momen-
tum (Nesterov, 1983) — ASVRCD. The development of
ASVRCD along with the theory (Theorem 4.1) was moti-
vated by Katyusha (Allen-Zhu, 2017), ASVRG (Shang et al.,
2018) and their loopless variants (Kovalev et al., 2020; Qian
et al., 2019a). In Section 5.2, we show that a variant of L-
Katyusha (Algorithm 4) is a special case of ASVRCD, and
argue that it is slightly superior to the methods mentioned
above.

The main component of ASVRCD is the gradient estimator
g* constructed analogously to SVRCD. In particular, g* is
an unbiased estimator of V f(2*) controlled by V f(w"):®

Z — Vif(w"))e;.

ZGS

15)

Next, ASVRCD requires two more sequences of iterates
{y*}x>0, {#* }x>0 in order to incorporate Nesterov’s mo-
mentum. The update rules of those sequences consist of
subtracting ¢* alongside with convex combinations or in-
terpolations of the iterates. See Algorithm 3 for specific
formulas.

We are now ready to present ASVRCD along with its con-
vergence guarantees.

8This is efficient to implement as sequence of iterates {w"} is
updated rarely.

Algorithm 3 Accelerated SVRCD (ASVRCD)
Require: 0 < 61,0, < 1,7,8,7v > 0, p € (0,1), y° =
2V =29 e R?
for k=0,1,2,...do
k=025 + 0yuwh + (1 — 0, — 02)y*
Sample random S C {1,2,...,d}
0" = VIwh) £ X V) -

yF = prox,, (¥ — ng")

Vif(w*))e;

B = B2k 4 (1 — B)ak + %(ykﬂ — z%)
Wil y*,  with probability p
wk,  with probability 1 — p

end for

Theorem 4.1 Let Assumption 1.1, 1.2 hold and denote
L = Anax (M%WM%). Further, let L' be such that

for all k we have

E[llg" - Vi) ] <2605k a%). a6

Define the following Lyapunov function:

P+ 28 [P - P

Uk = sz—x*

bhp
and let
1 I -1
n = ZmaX{E,L} ,
i
b =
2max{L, L'}
_ 1
= x40, /)
= 1—~ypand
#1 = min 1 ma. 19—2
1 = 9’ ny X va .

Then the following inequality holds:

Y
2 max {L, g}
P

As a consequence, iteration complexity of Algorithm 3 is

1 L L 1
Ol =+4/=+4/—|log=|.
P M P €
Convergence rate of ASVRCD depends on constant £’ such

that (16) holds. The next lemma shows that £’ can be ob-
tained indirectly from M-smoothness (via £), in which case

E U] < |1- L mind p, oo

4
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the convergence rate provided by Theorem 4.1 significantly
simplifies.

Lemma 4.2 Inequality 16 holds for L' = L (defined in (7)).
Further, we have L < L. Therefore, setting p > \/% yields
the following complexity of ASVRCD:

O ( £ log 1) (17)
\/ on

Setting £’ = L might be, however, loose in some cases.
In particular, inequality (16) is slightly weaker than (6)
and consequently, the bound bound from Theorem 4.1 is
slightly better than (17). To see this, notice that the proof of
Lemma 4.2 bounds variance of g* + V f(w") by its second
moment. Admittedly, this bound might not worsen the rate
by more than a constant factor when “S” is not close to
1. Therefore, bound (17) is good in essentlally all practical
cases. The next reason why we keep inequality (16) is that
an analogous assumption was required for the analysis of
L-Katyusha in (Qian et al., 2019a) (see Section 5.1) — and
so we can now recover L-Katyusha results directly.

Let us give a quick taste how the rate of ASVRCD behaves
depending on W. In particular, Lemma 4.3 shows that
nontrivial W might lead to speedup of order ©(v/d) for
ASVRCD.

Lemma 4.3 Let S = i for each 1 < i < d with prob-
ability 5 Land p = é. Then, if W = 1, iteration com-

plexity of ASVRCD is (’)( . “‘Z"M log = ) If, how-

ever, W = %ee—r, iteration complexity of ASVRCD is

o (ﬁ%log %)

5. Connection between ASVRCD and
L-Katyusha

Next, we show that L-Katyusha can be seen as a particular
case of ASVRCD.

5.1. Convergence rate of L-Katyusha

In this section, we quickly introduce the loopless Katyusha
(L-Katyusha) from (Qian et al., 2019a) along with its con-
vergence guarantees. In the next section, we show that an
improved version of L-Katyusha can be seen as a special
case of ASVRCD, and at the same time, the tight conver-
gence guarantees from (Qian et al., 2019a) can be obtained
as a special case of Theorem 4.1.

Consider problem (8) and suppose that f is L-smooth and
[i-strongly convex. Let S be a random subset of {1,...,n}
(sampled from arbitrary fixed distribution) such that p; :=

P (z € 5) For each k let §* be the following unbiased,

variance reduced estimator of V f(z*):

> (v

ieS

Next, L-Katyusha requires the variance of §* to be bounded
by Bregman distance between " and #* with constant £,
as the next assumption states.

Assumption 5.1 For all k we have

E[l3" - V/@")I?] < 200", 3%). ()

Proposition 5.1 provides a convergence rate of L-Katyusha.
Proposition 5.1 (Qian et al., 2019a) Let [ be L-smooth

and [i-strongly convex while Assumption 5.1 holds. Iteration
complexity of L-Katyusha is

RO
-~ — | log —
m up €

5.2. L-Katyusha is a special case of ASVRCD

’Ez\k—‘

In this section, we show that a modified version of L-
Katyusha (Algorithm 4) is a special case of ASVRCD.
Furthermore, we show that the tight convergence rate of
L-Katyusha (Qian et al., 2019a) follows from Theorem 4.1
(convergence rate of ASVRCD).

Consider again f,1 chosen according to (13). With this
choice, problem (1) and (8) are equivalent. At the same
time, Lemma 3.3 establishes that f satisfies Assumption 1.2

with u = ’ and M = 1 BlockD1ag(M1, ..., M,,) while ¢
and 2° satlsfy Assumptlon with W = %éé—r QL
k koK

Note that the update rule of sequences ", z*, w" are identi-
cal for both algorithms; we shall thus verify that the update
rule on %* is identical as well. The last remaining thing is
to relate £’ and £. The next lemma establishes both results.

Lemma 5.2 Running ASVRCD on (1) with S = UjeS'Rj

and n = n1), vy = n7y is equivalent to running Algorithm 4

on (8). At the same time, inequality 16 holds with L =
n~LL, while we have L = n~'L.

As a direct consequence of Lemma 5.2 and Theorem 4.1,
we obtain the next corollary.
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Corollary 5.3 Let f,1, S be as described above. Iteration
complexity of Algorithm 4 is

1 L L 1
@ -+ -+ - log -
D i op €

As promised, the convergence rate of Algorithm 4 matches
the convergence rate of L-Katyusha from Proposition 5.1
and thus matches the lower bound for finite sum minimiza-
tion by Lan & Zhou (2018); Woodworth & Srebro (2016).
Let us now argue that Algorithm 4 is slightly superior to
other accelerated SVRG variants.

First, Algortihm 4 is loopless; thus has a simpler anal-
ysis and slightly better properties (as shown by Ko-
valev et al. (2020)) over Katyusha (Allen-Zhu, 2017) and
ASVRG (Shang et al., 2018). Next, the analysis is simpler
than (Qian et al., 2019a) (i.e., we do not require one page
of going through special cases). At the same time, Algo-
rithm 4 uses a smaller stepsize for the proximal operator
than L-Katyusha, which is useful if the proximal operator
does is estimated numerically. However, Algorithm 4 is
almost indistinguishable from L-Katyusha if ¢/ = 0.

Remark 5.4 The convergence rate of L-Katyusha
from (Qian et al., 2019a) allows exploiting the strong
convexity of regularizer 1) (given that it is strongly convex).
While such a result is possible to obtain in our case, we
have omitted it for simplicity.

Algorithm 4 Variant of L-Katyusha (special case of Algo-
rithm 3)
Require: 0 < 601,02 < 1,7,6,7>0,p € (0,1)
70 =29 =30 e R?
for k=0,1,2,...do
;k = 917:k + 9212;’“ + (1 — 91 — 92)(?/’6
Samplergndomg c{1,2,...,n} )
gt = Vi(@*) + 3 L(Vi(@h) = V(i)
ieS
JFF = proxg,, (2% — ng")
PR = g2k 4 (1 - B)ak + 2§+ — )

ok
~ k1 Y
Wt =47 )
w®,

end for

with probability p
with probability 1 — p

6. Experiments

In this section, we numerically verify the performance of
ASVRCD, as well as the improved performance of SVRCD
under Assumption 1.1. In order to better understand and
control the experimental setup, we consider a quadratic min-
imization (four different types) over the unit ball intersected

with a linear subspace.’ The specific choice of the objective
is presented in Section 6.1.

In the first experiment we demonstrate the superiority of
ASVRCD to SVRCD for problems with W = 1. We con-
sider four different methods — ASVRCD and SVRCD, both
with uniform and importance sampling such that |S| = 1
with probability 1. The importance sampling is the same as
one from (Hanzely & Richtérik, 2019). In short, the goal is
to have £ from (7) as small as possible. Using W = 1, it
is easy to see that £ = Apax (D(p)_%MD(p)_%). While
the optimal p is still hard to find, we set p; oc M, ; (i.e.,
the effect of importance sampling is the same as the ef-
fect of Jacobi preconditioner). Figure 1 shows the result.
As expected, accelerated SVRCD always outperforms non-
accelerated variant, while at the same time, the importance
sampling improves the performance too.
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Figure 1. Comparison of both ASVRCD and SVRCD with impor-
tance and uniform sampling.

The second experiment compares the performance of both
ASVRCD and SVRCD for various W. We only consider
methods with the importance sampling (p; o< M, ;W ;)
and theory supported stepsize. Figure 2 presents the result.
We see that the smaller Range (W) is, the faster the conver-
gence is. This observation is well-aligned with our theory:
L is increasing as a function of W (in terms of Loewner
ordering).

Note that the practicality of ASVRCD immediately follows as
it recovers Algorithm 4 as a special case, which is (especially for
1 = 0) almost indistinguishable to L-Katyusha — state-of-the-art
method for smooth finite sum minimization. For this reason, we
decided to focus on less practical, but better-understood experi-
ments.



Variance Reduced Coordinate Descent with Acceleration

Table 1. Choice of M. Ogq is set of all odd positive integers smaller than d + 1, while matrix U was set as random orthonormal matrix
(generated by QR decomposition from a matrix with independent standard normal entries).

’ Type \ M \ Figure 1: L \ Figure 2: L ‘
1 [ U(T+10,D (L= 1)#) %) 1o, ) UT [ 100 1000
2 U (I + 0L — 1)61-6;'—) Ul 100 1000
3 U (n1- 218 - Dere] ) UT 100 1000
4 I+ 21.0,,D(1:500)10,,.) 100 1000
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Figure 2. Comparison of ASVRCD and SVRCD for various W.
Label ’r’ indicates the dimension of Range (W).

6.1. Experiments: The choice of the objective

In all experiments from this paper, we have chosen f(z) =
%zTMz — bz, where z € R1000 while 1) is an indicator
function of the unit ball intersected with Range (W). First,
matrix M was chosen according to Table 1. Next, vector
b was chosen as follows: first we generate T € R? with
independent normal entries, then compute b = M~1% and

setb = ﬁb. Lastly, for Figure 2, the projection matrix
‘W of rank r was chosen as a block diagonal matrix with r

blocks, each of them being the matrix of ones multiplied by

a-

7. Implications

Finite sum algorithms are a special case of methods
with partial derivative oracle. Using the trick described
in Sections 3 and 5.2, it is possible to show that essen-
tially any finite-sum stochastic algorithm is a special case
of analogous method with partial derivative oracle (those
are yet to be discovered/analyzed) in a given setting (i.e.,
strongly convex, convex, non-convex). Those include, but

are not limited to SGD (Robbins & Monro, 1951; Ne-
mirovski et al., 2009), over-parametrized SGD (Vaswani
et al., 2018), SAG (Roux et al., 2012), SVRG (Johnson
& Zhang, 2013), S2GD (Kone¢ny & Richtarik, 2017),
SARAH (Nguyen et al., 2017), incremental methods such
as Finito (Defazio et al., 2014b), MISO (Mairal, 2015) or ac-
celerated algorithms such as point-SAGA (Defazio, 2016),
Katyusha (Allen-Zhu, 2017), MiG (Zhou et al., 2018b),
SAGA-SSNM (Zhou, 2018), Catalyst (Lin et al., 2015;
Kulunchakov & Mairal, 2019), non-convex variance re-
duced algorithms (Reddi et al., 2016; Allen-Zhu & Hazan,
2016; Fang et al., 2018; Zhou et al., 2018a) and others.
In particular, SGD can be seen as a special case of block
coordinate descent, while SAG is a special case of bias-
SEGA from (Hanzely et al., 2018) (neither of CD with
non-separable prox, nor bias-SEGA were analyzed yet).

Zero order optimization with non-separable non-
smooth regularizer. We believe it would be interesting to
develop an inexact version of ASVRCD, as this would im-
mediately enable the application in zero-order optimization,
where the partial derivatives are (inexactly) estimated using
finite differences.
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