
Streaming Submodular Maximization under a k-Set System Constraint

Ran Haba 1 Ehsan Kazemi 2 3 Moran Feldman 4 Amin Karbasi 2

Abstract
In this paper, we propose a novel framework
that converts streaming algorithms for monotone
submodular maximization into streaming algo-
rithms for non-monotone submodular maximiza-
tion. This reduction readily leads to the currently
tightest deterministic approximation ratio for sub-
modular maximization subject to a k-matchoid
constraint. Moreover, we propose the first stream-
ing algorithm for monotone submodular maxi-
mization subject to k-extendible and k-set system
constraints. Together with our proposed reduction,
we obtain O(k log k) and O(k2 log k) approxima-
tion ratio for submodular maximization subject
to the above constraints, respectively. We exten-
sively evaluate the empirical performance of our
algorithm against the existing work in a series
of experiments including finding the maximum
independent set in randomly generated graphs,
maximizing linear functions over social networks,
movie recommendation, Yelp location summa-
rization, and Twitter data summarization.

1. Introduction
Submodularity captures an intuitive diminishing returns
property where the benefit of an item decreases as the con-
text in which it is considered grows. This property naturally
occurs in many applications where items may represent data
points, features, actions, etc. Moreover, submodularity is a
sufficient condition that leads to an efficient optimization
procedure for many discrete optimization problems. The
above reasons have led to a surge of applications in machine
learning where the gain of discrete choices shows diminish-
ing returns and the optimization can be handled efficiently.
Novel examples include non-parametric learning (Mirza-

1Depart. of Mathematics and Computer Science, The Open
University of Israel 2Yale Institute for Network Science, Yale
University 3Now at Google, Zürich, Switzerland 4Department of
Computer Science, University of Haifa, Israel. Correspondence to:
Ehsan Kazemi <ehsankazemi@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

soleiman et al., 2016b), dictionary learning (Das & Kempe,
2011), crowd teaching (Singla et al., 2014), regression un-
der human assistance (De et al., 2019), sequence selection
(Tschiatschek et al., 2017; Mitrovic et al., 2019) interpreting
neural networks (Elenberg et al., 2017), adversarial attacks
(Lei et al., 2019), fairness (Kazemi et al., 2018), social graph
analysis (Norouzi-Fard et al., 2018), data summarization
(Dasgupta et al., 2013; Tschiatschek et al., 2014; Elhamifar
& Clara De Paolis Kaluza, 2017; Kirchhoff & Bilmes, 2014;
Mitrovic et al., 2018; Kazemi et al., 2020), fMRI parcella-
tion (Salehi et al., 2017), and DNA sequencing (Libbrecht
et al., 2018).

More formally, a set function f : 2N → R≥0 is called sub-
modular if for all sets A ⊆ B ⊆ N and element u /∈ B we
have f(A∪{u})−f(A) ≥ f(B∪{u})−f(B). Moreover,
a set function is called monotone if f(A) ≤ f(B) whenever
A ⊆ B. The focus of this paper is on maximizing a gen-
eral submodular function (not necessarily monotone). More
concretely, we consider a very general form of constrained
submodular maximization, i.e.,

OPT = arg max
A∈I

f(A) , (1)

where I represents the set of feasible solutions. For in-
stance, when f is monotone and I represents a cardinal-
ity/size constraint,1 the celebrated result of (Nemhauser
et al., 1978) states that the greedy algorithm achieves a
e/(e− 1)-approximation for this problem, which is known
to be optimal (Nemhauser & Wolsey, 1978). In the recent
years, there has been a large body of literature aiming at
solving Problem (1) in the offline/centralized setting under
various types of feasibility constraints such as matroid, k-
matchoid, k-extendible system, and k-set system (formal
definitions of some of these terms appear in Section 3).

In the offline/centralized setting, the problem of maximizing
a (non-monotone) submodular function subject to the above
types of constraints is fairly well understood and easy-to-
implement algorithms have been proposed. For instance, for
maximization under a k-set system constraint, one obtains
an approximation ratio of k + O(

√
k) using roughly

√
k

invocations of the natural greedy algorithm and an algorithm
for unconstrained submodular maximization. Or, when

1Formally, I contains in this case all subsets of N of size at
most ρ for some value ρ.

Streaming Submodular Maximization under a k-Set System Constraint

the constraint is a k-extendible system, running the greedy
algorithm only once over a carefully subsampled ground
set achieves a k + 3 approximation ratio (Feldman et al.,
2017). It should also be noted that as is the greedy algorithm
fails to provide any constant factor approximation guarantee
when the submodular function is non-monotone, and thus,
the above modifications of it are necessary.

In the streaming setting, when the elements arrive one at
a time and the memory footprint is not allowed to grow
significantly with the size of the data, the landscape of con-
strained submodular maximization is much less understood.
In particular, even for the simple problem of monotone sub-
modular maximization subject to a cardinality constraint,
the best known approximation guarantee is 2 (Badanidiyuru
et al., 2014) (as opposed to e/(e− 1) in the offline setting).
Moreover, no algorithm is currently known to achieve a
non-trivial guarantee for more complicated constraints such
as k-extendible or k-set system in the streaming setting even
when the submodular objective function is monotone.

In this paper, we propose the first streaming algorithm for
maximizing a general submodular function (not necessarily
monotone) subject to a general k-set system constraint. Our
algorithm achieves an O(k2 log k) approximation ratio for
this problem. Moreover, when the constraint reduces to
a k-extendible system the approximation guarantee of our
streaming method improves to a better O(k log k) approxi-
mation ratio, nearly matching a lower bound of roughly k
due to (Feldman et al., 2017) that applies even for the offline
version of the problem. Interestingly, the last approximation
ratio is a significant improvement even compared to the best
approximation ratio previously known for the very special
case of this problem in which the objective function is lin-
ear. The current state-of-the-art algorithm for this special
case, due to (Crouch & Stubbs, 2014), guarantees only an
O(k2)-approximation.

With the exception some algorithms designed for the simple
cardinality constraint (Alaluf & Feldman, 2019; Badani-
diyuru et al., 2014; Ene et al., 2019; Kazemi et al., 2019), all
the streaming algorithms previously suggested for submodu-
lar maximization (see (Buchbinder et al., 2014; Chekuri
et al., 2015; Chakrabarti & Kale, 2015; Feldman et al.,
2018)) have been based on the same basic technique. These
algorithms maintain a feasible solution, and update it in the
following way. When an element u arrives, the algorithm (1)
determines a set of elements that have to be removed from
the current feasible solution to allow u to be added without
violating feasibility, and then (2) decides using some algo-
rithm specific rule whether it is beneficial to make this trade
(i.e., add u and remove the necessary elements to recover
feasibility). Our algorithm uses a very different technique of
maintaining multiple feasible solutions to which elements
can be added (but can never be removed), which is inspired

by the technique of (Crouch & Stubbs, 2014) for maximiza-
tion of linear functions subject to k-set systems. Intuitively,
each one of the solutions maintained by our algorithm is
associated with a particular importance of elements, and the
role of this solution is to collect enough elements of this
importance. Since we collect elements from each level of
importance, once the stream ends, the union of the solutions
we maintain is a good enough summary of the stream, and
our algorithm is able to pick a feasible subset of this union
which is competitive with respect to the optimal solution.

One component of our algorithm is a general framework
that is able to convert many streaming algorithms for mono-
tone submodular maximization to similar algorithms for
non-monotone submodular maximization. As an immedi-
ate consequence of this framework, we get a deterministic
streaming algorithm for maximizing a general (not necessar-
ily monotone) submodular function subject to a k-matchoid
constraint, which is an improvement over the state-of-the-
art deterministic approximation ratio for this problem due
to (Chekuri et al., 2015). We also compare the empirical
performance of our algorithm with the existing work and nat-
ural baselines in a set of experiments including independent
set over randomly generated graphs, maximizing a linear
function over edges of a graph, movie recommendation,
and Yelp location data summarization. In all these applica-
tions, the various constraints are modeled as an instance of
a k-extendible or a k-set system.

Before concluding this section, we need to highlight a techni-
cal issue. The standard definition of streaming algorithms re-
quires them to use poly-logarithmic amount of space, which
is less than the space necessary for keeping a solution to
our problem. Thus, no algorithm for this problem aiming
to produce a solution (rather than just estimate the value
of the optimal solution) can be a true streaming algorithm.
This is true also for all the above mentioned streaming al-
gorithms, which are in fact semi-streaming algorithms—a
semi-streaming algorithm is an algorithm that processes the
data as a sequence of elements using an amount of space
which is nearly linear in the maximum size of a feasible
solution and typically makes only a single pass over the
entire data stream. Since true streaming algorithms are
almost irrelevant to our setting, we ignore the distinction
between streaming and semi-streaming algorithms in this
paper and often use the term “streaming algorithm” to refer
to a semi-streaming algorithm.

Paper Structure. In Section 2, we review the related
work. In Section 3, we formally define different types of
constraints and the notation we use, and then formally state
the technical results that we need. In Section 4, we describe
our above mentioned framework for converting streaming
algorithms for monotone submodular maximization into
streaming algorithms for non-monotone submodular max-

Streaming Submodular Maximization under a k-Set System Constraint

imization. Then, in Section 5, we describe and formally
analyze our algorithm, and in Section 6 we describe the ex-
periments we conducted to study the empirical performance
of this algorithm. Most of the proofs for the theoretical
results are deferred to the Supplementary Material. An
earlier version of this paper, in which the result applies only
to non-negative linear functions subject to k-extendible con-
straints (Feldman & Haba, 2019), appeared on arXiv at the
past under a different title.

2. Related Work
The study of submodular maximization in the streaming
setting was initialized by the works of Badanidiyuru et al.
(2014) and Chakrabarti & Kale (2015). As discussed above,
the work of (Chakrabarti & Kale, 2015) was based on a
technique allowing the removal of elements from the solu-
tion (also known as preemption). Originally, (Chakrabarti
& Kale, 2015) suggested this technique only for constraints
formed by the intersection of k-matroids and a monotone
submodular objective function, but later works extended
the use of the technique to the more general class of k-
matchoid constraints as well as non-monotone submodular
functions (Buchbinder et al., 2014; Chekuri et al., 2015;
Feldman et al., 2018).

The above mentioned algorithm of Badanidiyuru et al.
(2014) works only for the simple cardinality constraint and
monotone submodular objective functions, but provides an
improved approximation ratio of 2 for this setting (recently,
Feldman et al. (2020) proved the optimality of this approxi-
mation factor). The technique at the heart of this algorithm
is based on growing a set to which elements can only be
added, which becomes the output solution of the algorithm
by the end of the stream (unlike the case in the technique
of (Crouch & Stubbs, 2014) on which we base our results, in
which the final solution is obtained by combining multiple
sets grown by the algorithm). More recent works improved
the algorithm of (Badanidiyuru et al., 2014) by improving
its space complexity (Kazemi et al., 2019) and extending its
technique to non-monotone submodular functions (Alaluf
& Feldman, 2019; Ene et al., 2019).

The study of submodular maximization in the offline (cen-
tralized) setting is very vast, and thus, we concentrate here
only on results for general k-extendible or k-set system con-
straints. Already in 1978, Fisher et al. (1978) proved that
the natural greedy algorithm obtains k + 1 approximation
for the problem of maximizing a monotone submodular
function subject to a k-set system constraint (some of their
proof was given implicitly, and the details were filled in
by (Călinescu et al., 2011)). This was recently proved to
be almost optimal. Specifically, Badanidiyuru & Vondrák
(2014) proved that no polynomial time algorithm can obtain
k−ε approximation for this problem for any constant ε > 0,

and the same inapproximability result was later shown to
apply also to k-extendible constraints by (Feldman et al.,
2017). As mentioned in Section 1, Feldman et al. (2017)
presented the state-of-the-art algorithms for maximizing a
(not necessarily monotone) submodular function subject to
k-set system and k-extendible constraints. Both algorithms
obtain k + o(k) approximation, which improves over two
previous results due to (Gupta et al., 2010) and (Mirza-
soleiman et al., 2016a) that obtained roughly 3k and 2k
approximation, respectively, for the more general case of a
k-set system constraint.

This hierarchy of independence systems (including matroids,
k-matchoids, k-extendible systems, and k-set system) is
quite rich and expressive. Several recent works have used
these general constraints for modeling real-world applica-
tions. Badanidiyuru et al. (2020) cast text, location, and
video data summarization tasks to the problem of maxi-
mizing a submodular function subject to the interaction of
k-matroids and extend their results to k-matchoids. Mirza-
soleiman et al. (2018) and Feldman et al. (2018) studied the
video and location data summarization applications subject
to k-matchoid constraints in the streaming setting. Feld-
man et al. (2017) used a k-extendible constraint to model
a movie recommendation application. Mirzasoleiman et al.
(2016a) used the intersection of k matroids and ` knapsacks
to model several machine learning applications, including
recommendation systems, image summarization, and rev-
enue maximization tasks.

3. Preliminaries and Notation
We begin this section by presenting some notation that we
use in this paper. Then, we formally define some types of
constraints mentioned in Section 1, and discuss the guaran-
tee of a simple greedy algorithm for these constraints.

Given an element u and a setA, we useA+u as a shorthand
for the union A ∪ {u}. We also denote the marginal gain
of adding u to A with respect to a set function f : 2N → R
using f(u | A) , f(A+u)−f(A). Similarly, the marginal
gain of adding a set B ⊆ N to another set A ⊆ N is
denoted by f(B | A) , f(B ∪ A)− f(A). Note that this
notation allows us, for example, to rewrite the definition of
submodularity as the requirement that f(u | A) ≥ f(u | B)
for every two sets A ⊆ B ⊆ N and element u 6∈ B.

A constraint is defined, for our purposes, as a pair (N , I),
whereN is a ground set and I is the collection of all feasible
subsets of N . All the types of constraints discussed in Sec-
tion 1 are independence systems according to the following
definition.

Definition 1. Given a ground setN and a collection of sets
I ⊆ 2N , the pair (N , I) is an independence system if (i)
∅ ∈ I and (ii) for B ∈ I and any A ⊆ B we have A ∈ I.

Streaming Submodular Maximization under a k-Set System Constraint

It is customary to call a setA ⊆ N independent if it belongs
to I and dependent if it does not (i.e., it is infeasible). An
independent set B ∈ I which is maximal with respect
to inclusion is called a base; that is, B ∈ I is a base if
A ∈ I and B ⊆ A imply that B = A. Furthermore, an
independent setB ∈ I which is a subset of some setE ⊆ N
is called a base of E if it is a base of the independence
system (E, 2E ∩ I). Note that this means that a set B is a
base of (N , I) if and only if it is a base of N .

With this terminology, we can now define k-set systems.

Definition 2. An independence system (N , I) is a k-set
system for an integer k ≥ 1 if for every set E ⊆ N , all the
bases of E have the same size up to a factor of k (in other
words, the ratio between the sizes of the largest and smallest
bases of E is at most k).

An immediate consequence of the definition of k-set sys-
tems is that any base of such a system is a maximum size
independent set up to an approximation ratio of k. Thus,
one can get a k-approximation for the problem of finding
a maximum size set subject to a k-set system constraint by
outputting an arbitrary base of the k-set system, which can
be done using the following simple strategy. Start with the
empty solution, and consider the elements of the ground set
N in an arbitrary order. When considering an element, add
it to the current solution, unless this will make the solution
dependent. We refer to this procedure as the unweighted
greedy algorithm.

Let us now define k-extendible systems. We remind the
reader that k-extendible systems are well-known to be a
restricted class of k-set systems.

Definition 3. An independence system (N , I) is a k-
extendible system for an integer k ≥ 1 if for any two inde-
pendent sets S ⊆ T ⊆ N , and an element u 6∈ T such that
S + u ∈ I, there is a subset Y ⊆ T \ S of size at most k
such that T \ Y + u ∈ I.

Since k-extendible systems are, in particular, k-set systems,
the above discussion already implies that the unweighted
greedy algorithm obtains k-approximation for the problem
of finding a maximum size independent set in such a system.
The following lemma strengthens this observation, and is
the key technical reason that our algorithm has a better ap-
proximation guarantee for k-extendible system constraints
than for k-set system constraints. The proof of the lemma
can be found in Appendix A.1.

Lemma 4. Given a k-extendible set system (N , I), the
unweighted greedy algorithm is guaranteed to produce an
independent set B such that k · |B \A| ≥ |A \B| for any
independent set A ∈ I.

4. A Framework: From Monotone to
Non-Monotone Streaming Maximization

Mirzasoleiman et al. (2018) proposed a framework for the
following task. Given a streaming2 algorithm for maximiz-
ing monotone submodular functions, the framework pro-
duces a similar algorithm that works also for non-monotone
submodular objectives. Unfortunately, however, this frame-
work applies only to algorithms satisfying a property which,
to the best of our knowledge, is not satisfied by any stream-
ing algorithm from the literature (except algorithms that
work for non-monotone functions by design). In particular,
this is the case for the algorithm of Chekuri et al. (2015)
explicitly mentioned by (Mirzasoleiman et al., 2018) as a
natural fit for their framework. In the rest of this section
we discuss this issue in more detail, and then introduce a
different framework which achieves the same goal (convert-
ing algorithms for monotone submodular maximization into
algorithms for non-monotone submodular maximization),
but requires a different property from the input algorithms
which is satisfied by both existing algorithms from the liter-
ature and the new algorithm we suggest in this paper.

The algorithm of (Chekuri et al., 2015) discussed above is a
streaming algorithm for maximizing monotone submodular
functions under a k-matchoid constraint, and Mirzasoleiman
et al. (2018) applied their framework to it in order to get
such an algorithm for non-monotone function. Formally,
this framework requires the input streaming algorithm to
satisfy the inequality

f(S) ≥ α · f(S ∪ T) , (2)

where S as the output of the algorithm, T is an arbitrary
feasible solution and α is a positive value. Unfortunately,
the algorithm of (Chekuri et al., 2015) fails to satisfy Eq. (2)
for any constant α, so does the algorithms of Buchbinder
et al. (2019) and Chakrabarti & Kale (2015). In Appendix B
we provide examples showing that this is the case for all
these algorithms even under a simple cardinality constraint.

Interestingly, Chekuri et al. (2015) presented, prior to the
work of (Mirzasoleiman et al., 2018), an alternative method
to convert their algorithm into a deterministic algorithm for
non-monotone functions based on a technique due to Gupta
et al. (2010). The framework we suggest in this paper,
can be viewed as a formalization and generalization of this
technique. As an alternative to the property (2), which
does not have counterparts in most of the existing streaming
algorithms, our framework uses the property described by
Definition 5.

2Recall that in this paper we use the term “streaming algorithm”
to refer to algorithms that are technically “semi-streaming algo-
rithms”, i.e., their space complexity is allowed to be nearly-linear
in the size of the output set.

Streaming Submodular Maximization under a k-Set System Constraint

Definition 5. Consider a data stream algorithm3 for maxi-
mizing a non-negative submodular function f : 2N → R≥0

subject to a constraint (N , I). We say that such an algo-
rithm is an (α, γ)-approximation algorithm, for some α ≥ 1
and γ ≥ 0, if it returns two sets S ⊆ A ⊆ N such that
S ∈ I, and for all T ∈ I we have

E[f(T ∪A)] ≤ α · E[f(S)] + γ .

Intuitively, the set S in Definition 5 is the output of the
streaming algorithms, and the set A is the set of “bad” el-
ements in the sense that the approximation guarantee of
the algorithm is with respect to f(OPT ∪ A) rather than
f(OPT) (for non-monotone functions f(OPT ∪A) might
be smaller than f(OPT)). Many previous algorithms sat-
isfy Definition 5 even with γ = 0, when the set A is the
set of all elements that are “seriously” considered by the
algorithm at some point. Unfortunately, however, this set
A can be quite large, and therefore, cannot be stored by the
algorithm if we want it to remain a streaming algorithm.
Chekuri et al. (2015) described a technique to bypass this
issue by creating a tradeoff between the size of A and the
value of γ. They do that by guessing the value of the optimal
solution, and discarding elements whose marginal is very
small compared to the guess. This shrinks the size of the
elements that are “seriously” considered, and thus, the size
of the set A, but requires a positive value for γ representing
the value of elements of OPT that are discarded. By setting
the parameters right, it is possible to keep both γ and |A|
reasonably small. The same technique can be used to get a
similar result for the algorithms of (Buchbinder et al., 2019;
Chakrabarti & Kale, 2015) as well. More generally, as far
as we know, similar modifications can be used to make ev-
ery currently existing streaming algorithm for submodular
maximization fit Definition 5, and thus, our framework is
applicable to all these algorithms.

We are now ready to describe the algorithm at the heart of
our framework. This algorithm is given as Algorithm 1,
and it assumes access to two procedures: (1) a data stream
algorithm STREAMINGALG for the problem of maximiz-
ing a non-negative submodular function f : 2N → R≥0

subject to a constraint (N , I), and (2) an offline algo-
rithm CONSTRAINEDALG for the same problem. For the
data stream algorithm STREAMINGALG we use the follow-
ing, not very standard, semantics. Algorithm 1 has two
ways to call STREAMINGALG. In the first way, every time
that Algorithm 1 would like to pass additional elements
to STREAMINGALG, it calls it with the set of these new
elements, and STREAMINGALG updates its internal data
structures accordingly and returns a set including all the

3We remind the reader that a data stream algorithm is any
algorithm that receives its input in the form of a stream. A (semi-
)streaming algorithm is a data stream algorithm whose space com-
plexity is nearly linear.

S1

A1

S2

A2

Sr

Ar

S′1 S′2 S′r
ConstrainedAlg ConstrainedAlg ConstrainedAlg

StreamingAlg1 StreamingAlg2 StreamingAlgr

ui

{ui} D1 D2 Dr−1· · ·

Figure 1. Schematic representation of Algorithm 1.

Algorithm 1: Non-monotone Data Stream Algorithm

1 Input: a positive integer r
2 Output: a set S ∈ I
3 Initialize r independent copies of STREAMINGALG:

STREAMINGALG(1), . . . , STREAMINGALG(r).
4 while there are more elements in the stream do
5 Let D0 be a singleton set containing the next

element of the stream.
6 for i = 1 to r do

Di ← STREAMINGALG(i)(Di−1).

7 Let D0 ← ∅.
8 for i = 1 to r do

[Si, Ai, Di]← STREAMINGALG
(i)
end(Di−1).

9 Let S′ ← CONSTRAINEDALG(Ai).
10 return the set maximizing f among S′ and {Si}ri=1.

elements that it decided to remove from its memory. In
the second way, once the stream ends, Algorithm 1 calls
STREAMINGALG (denoted by the subscript end) and passes
to it any final elements it would like STREAMINGALG to get.
STREAMINGALG then process these elements and returns
three sets: the sets S and A produced by STREAMINGALG
(as described in Definition 5) and a setD consisting of all the
elements that are still in the memory of STREAMINGALG
and did not end up in A. Figure 1 is a graphic representation
of the flow of elements within Algorithm 1.

It is clear that Algorithm 1 outputs a feasible solution. The
following theorem gives additional properties of this algo-
rithm. Its proof can be found in Appendix A.2.

Theorem 6. Given an (α, γ)-approximation data stream
algorithm STREAMINGALG for maximizing a non-negative
submodular function subject to some constraint and an of-
fline β-approximation algorithm CONSTRAINEDALG for
the same problem. There exists a data stream algorithm
returning a feasible set S that obeys

E[f(S)] ≥ (1− 1/r) · OPT− γ
α+ β

.

Furthermore,

• this algorithm is deterministic if STREAMINGALG and

Streaming Submodular Maximization under a k-Set System Constraint

CONSTRAINEDALG are both deterministic.

• the space complexity of this algorithm is upper
bounded by O(r ·MSTREAMINGALG +MCONSTRAINEDALG),
where MSTREAMINGALG and MCONSTRAINEDALG repre-
sent the space complexities of their matching al-
gorithms under the assumption that the input for
STREAMINGALG is a subset of the full input and the
input for CONSTRAINEDALG is the set A produced by
STREAMINGALG on some such subset.

We note that the algorithm guaranteed by Theorem 6 is a
streaming algorithm when STREAMINGALG is a stream-
ing algorithm, the algorithm CONSTRAINEDALG is a
nearly-linear space algorithm and r is upper bounded by
a poly-log function (note that the sets Si and Ai are pro-
duced by STREAMINGALG, and thus, their space complex-
ity is already accounted for by the space complexity of
STREAMINGALG).

In Appendix C we show that by plugging one of the versions
of the algorithm of Chekuri et al. (2015) into our frame-
work it is straightforward to get a deterministic streaming
algorithm for the problem of maximizing a non-negative
(not necessarily monotone) submodular function subject
to a k-matchoid constraint whose approximation ratio is
(5 + 15ε)k + O(

√
k) for every constant ε > 0, which is

an improvement over the guarantee of the previous state-of-
the-art deterministic streaming algorithm for this problem
(also due to (Chekuri et al., 2015)) which has an approx-
imation guarantee of 8k + γ, where γ is the best offline
approximation ratio for the same problem.

5. Streaming Submodular Maximization
under a k-System Constraint

In this section, we formally prove our results for the prob-
lem of maximizing a non-negative submodular function
f : 2N → R≥0 subject to a k-set system and k-extendible
system constraint (N , I). A simple version of the algorithm
we use to prove these results is given as Algorithm 2. This
version assumes pre-access to a value ρ equal to the size of
the largest independent set in I and a threshold τ estimating
the valueM = maxu∈N ,{u}∈I f({u}). In Appendix D, we
present a more involved version of our algorithm that does
not need this pre-access, but has a space complexity larger
than that of Algorithm 2 by a factor ofO(log ρ+log k)—the
approximation guarantee remains unchanged.

Intuitively, Algorithm 2 maintains ` independent sets Ei,
where each one of these sets corresponds to a different
range of marginal contributions: the larger i, the smaller
the marginal contributions Ei is associated with. When
an element u arrives, the algorithm calculates the marginal
contribution m(u) of u with respect to the union of the

Ei sets,4 and then adds u to the Ei corresponding to this
marginal contribution, unless this violates the independence
of this Ei. Once the entire input has been processed, the
algorithm combines the Ei sets into h possible output sets
T0, T1, . . . , Th−1. Each output sets Tj is constructed by
greedily taking elements from the Ei sets obeying i ≡ j
(mod h) (the algorithm scans the sets obeying this condition
in an increasing i order, which is a decreasing order with
respect to the marginal contributions associated with these
sets). The final output of the algorithm is simply the best set
among the sets T0, T1, . . . , Th−1.

Algorithm 2: Streaming Algorithm for k-set Systems

1 Input: a threshold τ ∈ [M, 2M], the size ρ of the
largest independent set, and the parameter k of the
constraint. // M = maxu∈N ,{u}∈I f({u}).

2 Output: a solution T ∈ I
3 Let `← blog2(4ρ)c and h← dlog2(2k + 1)e.
4 for i = 0 to ` do Initialize Ei ← ∅.
5 for every element u arriving do

/* Adds u to a set Ei(u) based on its

marginal gain. */

6 Let m(u)← f
(
u | ∪`i=0Ei

)
.

7 if m(u) > 0 then Let i(u)← blog2(τ/m(u))c
else Let i(u)←∞.

8 if 0 ≤ i(u) ≤ ` and Ei(u) + u ∈ I then Update
Ei(u) ← Ei(u) + u.

9 for j = 0 to h− 1 do
10 Let i← j and Tj ← ∅.
11 while i ≤ ` do
12 while there is an element u ∈ Ei such that

Tj + u ∈ I do Update Tj ← Tj + u.
13 i← i+ h. // Greedily generates

solution Tj from sets Ei for i ≡ j
(mod h).

14 return the set T maximizing function f among sets
T0, T1, · · · , Th−1.

Let’s denote E = ∪`i=0Ei. It is not difficult to argue that
the value of f(E) is large. In Lemma 7, we show that the
value of the output set of the algorithm is proportional to
f(E) subject to a k-set system constraint.5

Lemma 7. If (N , I) is a k-set system, then Algorithm 2
returns a set T such that

f(T) ≥ f(E ∪ U)− τ/4
4kh(2k + 1)

=
f(E ∪ U)− τ/4
O(k2 log k)

4The notationm(u) might suggest that the valuem(u) depends
only on the identity of the element u. However, this is not the case.
In fact, m(u) might depend also on the set of elements that arrived
before u and the order of their arrival.

5In the supplementary material, we provide a stronger version
of this result for k-extendible constraints.

Streaming Submodular Maximization under a k-Set System Constraint

for every set U ∈ I.

Following (see Lemma 8) is the key result that we use to
prove Lemma 7. This lemma relates the value of f(Tj) to
the sum of the m(u) values of the elements u that belong
to the sets Ei that are combined to create Tj (recall that
these are exactly the sets Ei for which i ≡ j (mod h)).
Intuitively, the lemma holds because when Algorithm 2
adds elements of a set Ei to a set Tj , this increases the size
of the set Tj to at least Ei/k (since the constraint is k-set
system). Thus, either about 1/k of the elements of Ei are
added to Tj , or the size of Tj before the addition of the
elements of Ei is already significant compared to the size
of Ei. Moreover, in the latter case, the elements of Tj can
pay for the elements of Ei that they have blocked because
they all have a relatively high value (as they originate in a
set Ei′ for some i′ ≤ i− h).
Lemma 8. If (N , I) is a k-set system, then for every integer
0 ≤ j < h we have

f(Tj | ∅) ≥ 1

4k
·
∑

0≤i≤`
i≡j(mod h)

∑

u∈Ei

m(u) .

From the result of Lemma 7, we can directly guarantee the
performance of our algorithm for monotone submodular
functions. Furthermore, Lemma 7 implies that Algorithm 2
is a (4kh(2k + 1), τ/4)-approximation data stream algo-
rithm subject to a k-set system constraint.6 Therefore, we
can use the framework of Algorithm 1 to make this algo-
rithm suitable for non-monotone submodular functions. The
following two theorems describe the guarantees we provide
for Algorithm 2, and their complete proofs can be found in
Appendix A.3.
Theorem 9. There is a streaming O(k2 log k) = Õ(k2)-
approximation algorithm for maximizing a non-negative
submodular function subject to a k-set system constraint.
Theorem 10. There is a streaming O(k log k) = Õ(k)-
approximation algorithm for maximizing a non-negative
submodular function subject to a k-extendible system con-
straint.

6. Experiments
In this section, we compare our proposed algorithms (both
monotone and non-monotone versions) with two other
groups of algorithms: other streaming algorithms and state-
of-the-art offline algorithms.

We consider three baseline streaming algorithms: i) The
Streaming-Greedy algorithm: this algorithm keeps a so-
lution S which is initially set to the empty set. For every

6In the supplementary material, we prove that Algorithm 2 is a
(4h(2k + 1), τ/4)-approximation data stream algorithm subject
to a k-extendible constraint.

incoming element u, it is added to the set S if this does
not violate feasibility (i.e., S ∪ {u} ∈ I). ii) The Pre-
emption algorithm: Inspired by the streaming algorithms
of (Chekuri et al., 2015; Buchbinder et al., 2019), we con-
sider a heuristic preemptive algorithm. For every incoming
element u, given that S is the current solution, this algo-
rithm generates a set U ⊆ S such that (S ∪ {u}) \ U
is feasible under the non-knapsack constraints. The ele-
ment u is then added to the solution in exchange for the
elements of U if this does not violate the knapsack con-
straints and the exchange is beneficial in the sense that f(u |
S) ≥∑u′∈U f(u′ : S), where f(u′ : S) = f(u′ | S′) for
S′ = {s ∈ S : element s arrived before u′}. For more de-
tail refer to (Chekuri et al., 2015; Feldman et al., 2018). iii)
The Sieve-Streaming algorithm: this heuristic algorithm
is implemented based on the ideas of (Badanidiyuru et al.,
2014). In the first step, it finds an accurate estimation of
OPT. Then, each incoming element u is added to the solu-
tion S if S ∪ {u} ∈ I and f(u | S) ≥ OPT/(2ρ), where ρ
is the maximum cardinality of a feasible solution.

For the offline algorithms we consider 1) the vanilla greedy
algorithm (referred to as Greedy), 2) Fast (Badanidiyuru
& Vondrák, 2014) and FANTOM (Mirzasoleiman et al.,
2016a). Both Fast and FANTOM are designed to maxi-
mize submodular functions under a k-set system constraint
combined with ` knapsack constraints.

Sections 6.1 and 6.2 compare the above algorithms on tasks
of maximizing linear and cut objective functions over in-
stances produced using synthetic and real-world data, re-
spectively. Then, in Section 6.3 and Appendices E.4 and E.5,
we evaluate the performance of the same algorithms on three
different real-world applications. In a movie recommenda-
tion system application, we are given movie ratings from
users, and our goal is to recommend diverse movies from
different genres. In a Yelp location summarization appli-
cation, we are given thousands of business locations with
several related attributes. Our objective is to find a good
summary of the locations from six different cities. In a third
application, our goal is to generate real-time summaries for
Twitter feeds of several news agencies.

6.1. Independent set

In the experiments of this section we define submodular
functions over the nodes of a given graph G = (V,E),
and consider the maximization of such functions subject
to an independent set constraint, i.e., we are not allowed
to select a set of vertices if there is any edge of the graph
connecting any two of these vertices. It is easy to show
that this constraint is a dmax-extendible system, where dmax

is the maximum degree in graph G. In our experiments
in this section, we use two types of synthetically gener-
ated random graphs: Erdős Rény graphs (Erdős & Rény,

Streaming Submodular Maximization under a k-Set System Constraint

1960) and Watts–Strogatz graphs (Watts & Strogatz, 1998).
For the Erdős Rény graphs we vary in our experiments
the probability p that each possible edge is included in the
graph (independently from every other edge), and for the
Watts-Strogatz graphs we vary the rewiring probability β.
The number of nodes is set to n = 2000 in all the graphs,
and in the Watts–Strogatz model each node is connected to
k = 100 nearest neighbors in the ring structure.

In our first experiment of the section, we study the maxi-
mization of the following monotone linear function f(S) =∑
u∈S wu, where S ⊆ V and wu is the weight of node

u ∈ S. Figs. 2a and 2b compare different algorithms for
optimizing this function over a random graph chosen from
the above discussed random graph models. We observe
that our proposed algorithm consistently outperforms the
other baseline streaming algorithms. We also observe that
the performance our algorithm is comparable with (or even
better at times) the greedy algorithm, which is provably
optimal for the maximization of linear functions subject to
k-extendible constraints (Feldman et al., 2017).

In the second experiment, we study the non-monotone sub-
modular graph-cut function: f(S) =

∑
u∈S

∑
v∈V \S wu,v,

where wu,v is the weight of the edge e = (u, v). Again, in
Figs. 2c and 2d we observe that the solutions provided by
our algorithms are clearly better than those produced by the
other streaming algorithms. Furthermore, the non-monotone
version of our algorithm always outperforms the monotone
algorithm. We also note that the for this non-monotone
submodular function, the vanilla greedy algorithm performs
very poorly (which is consistent with the lack of a theoretical
guarantee for this algorithm for such functions).

6.2. Graph Planarity with Knapsack

In the experiment of this section, our objective is to maxi-
mize a linear function over the edges of a graphG = (V,E).
For the constraint, we require that an independent set of
edges corresponds to a planar sub-graph of G, and in addi-
tion, it satisfies a given knapsack constraint. We remind the
reader that a graph is planar if it can be embedded in the
plane. Furthermore, a knapsack constraint is defined by a
cost function c : N → R≥0, and we say that a set S ⊆ N
satisfies the knapsack constraint if c(S) =

∑
e∈S c(e) ≤ b

for a given knapsack budget b. In Appendix E.1 we explain
why the above mentioned constraint is k-set system for a
(relatively) modest value of k.7.

For the objective function f , we use the monotone linear
function: f(S) =

∑
e∈S we ∀S ⊆ E, where we is the

weight of edge e ∈ S, and for simplicity, we set all these
weights to 1. The knapsack cost of each edge e = (u, v) ∈

7We would like to thank Chandra Chekuri for pointing out
some parts of this explanation to us.

E is chosen to be proportional to max(1, du− q), where du
is the degree of node u in graph G and q = 6, and the costs
are normalized so that

∑
e∈E ce = |V |, where ce represents

the knapsack cost of edge e.

In the experiment, we use two real-world networks from
(Leskovec & Krevl, 2014) as the graph, and vary the knap-
sack budget between 0 and 1 (note that the normalization
gives this range of budgets an intuitive meaning). In Figs. 3a
and 3b we compare the performance of our streaming algo-
rithm with the performance of Streaming Greedy and Sieve
Streaming. One can observe that our algorithm outperforms
the two other baselines. Due to the prohibitive computa-
tional complexity of the offline algorithms, we do not report
their results for this experiment. Furthermore, as it is not
clear how to execute a preemptive streaming algorithm un-
der a planarity constraint, we did not include a version of
the Preemption algorithm in this experiment. Further exper-
iments in this setting can be found in Appendix E.2.

6.3. Movie Recommendation

In the movie recommendation application, our goal is to
select a diverse set of movies subject to constraints that can
be adjusted by the user. The dataset for this experiment con-
tains 1793 movies from the genres: Adventure, Animation,
and Fantasy (note that a single movie may be identified with
multiple genres). The user may specify an upper limit m on
the number of movies in the set we recommend for them, as
well as an upper limitmi on the number of movies from each
genre. For simplicity, we use a single value for allmi and re-
fer to this value as the genre limit. It is easy to show that this
set of constraints forms a 3-extendible system. In addition,
we enforce two knapsack constraints. For the first knapsack
constraint c1, the cost of each movie is proportional to the
absolute difference between the release year of the movie
and the year 1985 (the implicit goal of this constraint is to
pick movies with a release year which is as close as possible
to the year 1985). For the second knapsack constraint c2, the
cost of each movie is proportional to the difference between
the maximum possible rating (which is 10) and the rating of
the particular movie—here the goal is to pick movies with
higher ratings. More formally, for a movie v ∈ N , we have:
c1(v) ∝ |1985− yearv| and c2(v) ∝ (10− ratingv). Here,
yearv and ratingv , respectively, denote the release year and
IMDb rating of movie v. We normalize the costs in both
knapsacks constraints so that the average cost of each movie
is 1/10, i.e.,

∑
v∈N ci(V)

|N | = 1/10, and we set the knapsack
budgets to 1; which intuitively means that a feasible set can
contain no more than about 10% of the movies.

In our experiments, we try to maximize two kinds of ob-
jective functions (each trying to capture diversity in a dif-
ferent way) subject to these constraints, and we vary the
upper limitm on the number of movies in the recommended

Streaming Submodular Maximization under a k-Set System Constraint

0.0 0.1 0.2 0.3 0.4

Edge probabiltiy p

0

25

50

75

100

125

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Greedy
Preemption
Sieve-Streaming

(a) Erdős Rény (linear)

0.0 0.1 0.2 0.3 0.4

Rewiring probabiltiy β

20

30

40

50

60

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Greedy
Preemption
Sieve-Streaming

(b) Watts–Strogatz (linear)

0.0 0.1 0.2 0.3 0.4

Edge probabiltiy p

0

2000

4000

6000

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy
Greedy
Preemption
Sieve-Streaming

(c) Erdős Rény (cut)

0.0 0.1 0.2 0.3 0.4

Rewiring probabiltiy β

0

1000

2000

3000

4000

5000

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy
Greedy
Preemption
Sieve-Streaming

(d) Watts–Strogatz (cut)

Figure 2. For Erdős Rény graphs p is the probability of having an edge between any two nodes. For Watts–Strogatz graphs β is the
probability of rewiring of each edge.

0.2 0.4 0.6 0.8 1.0

Knapsack budget

20

40

60

80

100

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(a) EU Email

0.2 0.4 0.6 0.8 1.0

Knapsack budget

50

100

150

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(b) Facebook ego network

5 10 15 20 25

Maximum number of allowed elements

10000

20000

30000

40000

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)

Ours (non-monotone)

Streaming-Greedy

Sieve-Streaming

Fast

FANTOM

(c) Non-monotone function

5 10 15 20 25

Maximum number of allowed elements

0

1

2

3

4

O
ra

cl
e

ca
ll

s

×106

Ours (monotone)

Ours (non-monotone)

Streaming-Greedy

Sieve-Streaming

Fast

FANTOM

(d) Non-monotone function

Figure 3. (a) and (b): Planarity with knapsack (linear objective function). (c) and (d): Movie recommendation with two knapsacks.

set of movies. Both objective functions are based a set
of attributes calculated for each movie using the method
described in (Lindgren et al., 2015), and both objective
functions are non-negative and submodular. However, one
of them is monotone, and the other is not (guaranteed to
be) monotone. The experimental result for the monotone
function is given in Appendix E.3.

An intuitive utility function for choosing a diverse set of
movies S is the following not necessarily monotone sub-
modular function

f(S) =
∑

i∈S

∑

j∈N
Mi,j −

∑

i∈S

∑

j∈S
Mi,j , (3)

whereN is the set of all movies andMi,j is the non-negative
similarity score between movies i, j ∈ N as defined in the
previous section. It is beneficial to note that the first term is
a sum-coverage function that captures the representativeness
of the selected set, and the second term is a dispersion func-
tion penalizing similarity within S (Feldman et al., 2017).

In our experiment with this function as the object, we set
the genre limit to 20. In Figs. 3c and 3d, we observe that i)
our streaming algorithm returns solutions with higher utili-
ties compared to the baseline streaming algorithms, ii) the
non-monotone version of our algorithm clearly outperforms
the monotone one for this non-monotone function, and iii)
the quality of the solutions returned by our algorithms is
comparable with the quality obtained by offline algorithms.

7. Conclusion
In this paper, we have proposed a novel framework for
converting streaming algorithms for monotone submodular
maximization into streaming algorithms for non-monotone
submodular maximization, which immediately led us to the
currently tightest deterministic approximation ratio for sub-
modular maximization subject to a k-matchoid constraint.
We also proposed the first streaming algorithm for mono-
tone submodular maximization subject to k-extendible and
k-set system constraints, which (together with our proposed
framework), yields approximation ratios of O(k log k) and
O(k2 log k) for maximization of general non-negative sub-
modular functions subject to the above constraints, respec-
tively. Finally, we extensively evaluated the empirical perfor-
mance of our algorithm against the existing work in a series
of experiments including finding the maximum independent
set in randomly generated graphs, maximizing linear func-
tions over social networks, movie recommendation, Yelp
location summarization, and Twitter data summarization.

Acknowledgements
The research of Moran Feldman and Ran Haba was partially
supported by ISF grant 1357/16. Amin Karbasi is partially
supported by NSF (IIS- 1845032), ONR (N00014-19-1-
2406), and AFOSR (FA9550-18-1-0160).

Streaming Submodular Maximization under a k-Set System Constraint

References
Alaluf, N. and Feldman, M. Making a sieve random:

Improved semi-streaming algorithm for submodular
maximization under a cardinality constraint. CoRR,
abs/1906.11237, 2019.

Badanidiyuru, A. and Vondrák, J. Fast algorithms for maxi-
mizing submodular functions. In ACM-SIAM symposium
on Discrete algorithms (SODA), pp. 1497–1514, 2014.

Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A.,
and Krause, A. Streaming Submodular Maximiza-
tion:Massive Data Summarization on the Fly. In Inter-
national Conference on Knowledge Discovery and Data
Mining, KDD, pp. 671–680, 2014.

Badanidiyuru, A., Karbasi, A., Kazemi, E., and Vondrák,
J. Submodular maximization through barrier functions.
arXiv preprint arXiv:2002.03523, 2020.

Buchbinder, N., Feldman, M., Naor, J., and Schwartz, R.
Submodular Maximization with Cardinality Constraints.
In SODA, pp. 1433–1452, 2014.

Buchbinder, N., Feldman, M., and Schwartz, R. Online
Submodular Maximization with Preemption. ACM Trans.
Algorithms, 15(3):30:1–30:31, 2019.

Călinescu, G., Chekuri, C., Pál, M., and Vondrák, J. Max-
imizing a monotone submodular function subject to a
matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

Chakrabarti, A. and Kale, S. Submodular maximization
meets streaming: matchings, matroids, and more. Math.
Program., 154(1–2):225–247, 2015.

Chekuri, C., Gupta, S., and Quanrud, K. Streaming algo-
rithms for submodular function maximization. In ICALP,
pp. 318–330, 2015.

Crouch, M. and Stubbs, D. M. Improved streaming algo-
rithms for weighted matching, via unweighted matching.
In APPROX, pp. 96–104, 2014.

Das, A. and Kempe, D. Submodular meets spectral: greedy
algorithms for subset selection, sparse approximation
and dictionary selection. In International Conference
on International Conference on Machine Learning, pp.
1057–1064, 2011.

Dasgupta, A., Kumar, R., and Ravi, S. Summarization
through submodularity and dispersion. In Annual Meet-
ing of the Association for Computational Linguistics, pp.
1014–1022, 2013.

De, A., Koley, P., Ganguly, N., and Gomez-Rodriguez,
M. Regression Under Human Assistance. CoRR,
abs/1909.02963, 2019.

Elenberg, E. R., Dimakis, A. G., Feldman, M., and Karbasi,
A. Streaming Weak Submodularity: Interpreting Neural
Networks on the Fly. In Advances in Neural Information
Processing Systems, pp. 4047–4057, 2017.

Elhamifar, E. and Clara De Paolis Kaluza, M. Online sum-
marization via submodular and convex optimization. In
Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pp. 1783–1791, 2017.

Ene, A., Nguyen, H. L., and Suh, A. An optimal streaming
algorithm for non-monotone submodular maximization.
CoRR, abs/1911.12959, 2019.

Erdős, P. and Rény, A. On the Evolution of Random Graphs.
Publ. Math. Inst. Hungary. Acad. Sci., 5:17–61, 1960.

Feldman, M. and Haba, R. Almost Optimal Semi-streaming
Maximization for k-Extendible Systems. arXiv preprint
arXiv:1906.04449, 2019.

Feldman, M., Harshaw, C., and Karbasi, A. Greed is good:
Near-optimal submodular maximization via greedy opti-
mization. In COLT, pp. 758–784, 2017.

Feldman, M., Karbasi, A., and Kazemi, E. Do less, get more:
Streaming submodular maximization with subsampling.
In NeurIPS, pp. 730–740, 2018.

Feldman, M., Norouzi-Fard, A., Svensson, O., and Zen-
klusen, R. The one-way communication complexity of
submodular maximization with applications to streaming
and robustness. In Symposium on Theory of Computing
(STOC), pp. 1363–1374, 2020.

Fisher, M., Nemhauser, G., and Wolsey, L. An analysis of
approximations for maximizing submodular set functions–
II. Mathematical Programming, 8:73–87, 1978.

Frieze, A. M. A cost function property for plant location
problems. Mathematical Programming, 7(1):245–248,
1974.

Gupta, A., Roth, A., Schoenebeck, G., and Talwar, K. Con-
strained Non-monotone Submodular Maximization: Of-
fline and Secretary Algorithms. In WINE, pp. 246–257,
2010.

Herbrich, R., Lawrence, N. D., and Seeger, M. Fast sparse
Gaussian process methods: The informative vector ma-
chine. In Advances in Neural Information Processing
Systems, pp. 625–632, 2003.

Kazemi, E., Zadimoghaddam, M., and Karbasi, A. Scal-
able Deletion-Robust Submodular Maximization: Data
Summarization with Privacy and Fairness Constraints. In
International Conference on Machine Learning (ICML),
pp. 2549–2558, 2018.

Streaming Submodular Maximization under a k-Set System Constraint

Kazemi, E., Mitrovic, M., Zadimoghaddam, M., Lattanzi,
S., and Karbasi, A. Submodular Streaming in All Its
Glory: Tight Approximation, Minimum Memory and
Low Adaptive Complexity. In International Conference
on Machine Learning (ICML), pp. 3311–3320, 2019.

Kazemi, E., Minaee, S., Feldman, M., and Karbasi, A. Regu-
larized submodular maximization at scale. arXiv preprint
arXiv:2002.03503, 2020.

Kirchhoff, K. and Bilmes, J. Submodularity for data selec-
tion in statistical machine translation. In Proceedings of
EMNLP, 2014.

Krause, A. and Golovin, D. Submodular Function Maxi-
mization. In Tractability: Practical Approaches to Hard
Problems. Cambridge University Press, 2012.

Lei, Q., Wu, L., Chen, P.-Y., Dimakis, A., Dhillon, I., and
Witbrock, M. Discrete Adversarial Attacks and Submodu-
lar Optimization with Applications to Text Classification.
Systems and Machine Learning (SysML), 2019.

Leskovec, J. and Krevl, A. SNAP Datasets: Stanford
Large Network Dataset Collection. http://snap.
stanford.edu/data, June 2014.

Libbrecht, M. W., Bilmes, J. A., and Noble, W. S. Choosing
non-redundant representative subsets of protein sequence
data sets using submodular optimization. Proteins: Struc-
ture, Function, and Bioinformatics, 2018. ISSN 1097-
0134.

Lindgren, E. M., Wu, S., and Dimakis, A. G. Sparse and
greedy: Sparsifying submodular facility location prob-
lems. In NIPS Workshop on Optimization for Machine
Learning, 2015.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed Submodular Maximization: Identifying
Representative Elements in Massive Data. In Advances in
Neural Information Processing Systems, pp. 2049–2057,
2013.

Mirzasoleiman, B., Badanidiyuru, A., and Karbasi, A. Fast
Constrained Submodular Maximization: Personalized
Data Summarization. In ICML, pp. 1358–1367, 2016a.

Mirzasoleiman, B., Karbasi, A., Sarkar, R., and Krause,
A. Distributed Submodular Maximization. Journal of
Machine Learning Research, 17:238:1–238:44, 2016b.

Mirzasoleiman, B., Jegelka, S., and Krause, A. Streaming
Non-Monotone Submodular Maximization: Personalized
Video Summarization on the Fly. In AAAI Conference on
Artificial Intelligence,, pp. 1379–1386, 2018.

Mitrovic, M., Kazemi, E., Zadimoghaddam, M., and Kar-
basi, A. Data Summarization at Scale: A Two-Stage
Submodular Approach. In International Conference on
Machine Learning (ICML), pp. 3593–3602, 2018.

Mitrovic, M., Kazemi, E., Feldman, M., Krause, A., and
Karbasi, A. Adaptive sequence submodularity. In Ad-
vances in Neural Information Processing Systems, pp.
5352–5363, 2019.

Nemhauser, G. L. and Wolsey, L. A. Best algorithms for
approximating the maximum of a submodular set func-
tion. Mathematics of Operations Research, 3(3):177–188,
1978.

Nemhauser, G. L., Wolsey, L. A., and Fisher, M. L. An
analysis of approximations for maximizing submodular
set functions–I. Mathematical Programming, 14(1):265–
294, 1978.

Norouzi-Fard, A., Tarnawski, J., Mitrovic, S., Zandieh,
A., Mousavifar, A., and Svensson, O. Beyond 1/2-
approximation for submodular maximization on massive
data streams. In International Conference on Machine
Learning (ICML), pp. 3826–3835, 2018.

Salehi, M., Karbasi, A., Scheinost, D., and Constable, R. T.
A Submodular Approach to Create Individualized Parcel-
lations of the Human Brain. In MICCAI, pp. 478–485,
2017.

Singla, A., Bogunovic, I., Bartók, G., Karbasi, A., and
Krause, A. Near-Optimally Teaching the Crowd to Clas-
sify. In International Conference on Machine Learning
(ICML), 2014.

Tschiatschek, S., Iyer, R. K., Wei, H., and Bilmes, J. A.
Learning mixtures of submodular functions for image
collection summarization. In Advances in neural infor-
mation processing systems, pp. 1413–1421, 2014.

Tschiatschek, S., Singla, A., and Krause, A. Selecting
sequences of items via submodular maximization. In
AAAI Conference on Artificial Intelligence, 2017.

Watts, D. J. and Strogatz, S. H. Collective dynamics of
‘small-world’networks. nature, 393(6684):440, 1998.

Yelp. Yelp Academic Dataset. https://www.kaggle.
com/yelp-dataset/yelp-dataset, 2019a.

Yelp. Yelp Dataset. https://www.yelp.com/
dataset, 2019b.

http://snap.stanford.edu/data
http://snap.stanford.edu/data
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.kaggle.com/yelp-dataset/yelp-dataset
https://www.yelp.com/dataset
https://www.yelp.com/dataset

Streaming Submodular Maximization under a k-Set System Constraint

A. Proofs
A.1. Proof of Lemma 4

In this section, we restate Lemma 4 and then prove it.

Lemma 4. Given a k-extendible set system (N , I), the unweighted greedy algorithm is guaranteed to produce an indepen-
dent set B such that k · |B \A| ≥ |A \B| for any independent set A ∈ I.

Proof. Let us denote the elements of B \A by x1, x2, . . . , xm in an arbitrary order. Using these elements, we recursively
define a series of independent sets A0, A1, . . . , Am. The set A0 is simply the set A. For 1 ≤ i ≤ m, we define Ai using
Ai−1 as follows. Since (N , I) is a k-extendible system and the subsets Ai−1 and Ai−1 ∩B+xi ⊆ B are both independent,
there must exist a subset Yi ⊆ Ai−1 \ (Ai−1 ∩ B) = Ai−1 \ B such that |Yi| ≤ k and Ai−1 \ Yi + xi ∈ I. Using the
subset Yi, we now define Ai = Ai−1 \ Yi + xi. Note that by the definition of Yi, Ai ∈ I as promised. Furthermore, since
Yi ∩ B = ∅ for each 0 ≤ i ≤ m, we know that (A ∪ {x1, x2, . . . , xm}) ∩ B ⊆ Am, which implies B ⊆ Am because
{x1, x2, . . . , xm} = B \ A. However, B, as the output of the unweighted greedy algorithm, must be an inclusion-wise
maximal independent set (i.e., a base), and thus, it must be in fact equal to the independent set Am containing it.

Let us now denote Y =
⋃m
i=1 Yi, and consider two different ways to bound the number of elements in Y . On the one hand,

since every set Yi includes up to k elements, we get |Y | ≤ km = k · |B \ A|. On the other hand, the fact that B = Am
implies that every element of A \B belongs to Yi for some value of i, and therefore, |Y | ≥ |A \B|. The lemma now follows
by combining these two bounds.

A.2. Proof of Theorem 6

In this section we prove Theorem 6. For convenience, we begin by restating the theorem itself.

Theorem 6. Given an (α, γ)-approximation data stream algorithm STREAMINGALG for maximizing a non-negative
submodular function subject to some constraint and an offline β-approximation algorithm CONSTRAINEDALG for the same
problem. There exists a data stream algorithm returning a feasible set S that obeys

E[f(S)] ≥ (1− 1/r) · OPT− γ
α+ β

.

Furthermore,

• this algorithm is deterministic if STREAMINGALG and CONSTRAINEDALG are both deterministic.

• the space complexity of this algorithm is upper bounded by O(r · MSTREAMINGALG + MCONSTRAINEDALG), where
MSTREAMINGALG and MCONSTRAINEDALG represent the space complexities of their matching algorithms under the as-
sumption that the input for STREAMINGALG is a subset of the full input and the input for CONSTRAINEDALG is the
set A produced by STREAMINGALG on some such subset.

Recall that our goal is to show that Algorithm 1 has the properties guaranteed by the theorem. The following observation
shows that this is the case for the space complexity.

Observation 11. The space complexity of Algorithm 1 is upper bounded byO(r ·MSTREAMINGALG +MCONSTRAINEDALG), where
MSTREAMINGALG and MCONSTRAINEDALG represent the space complexities of their matching algorithms under the assumption
that the input for STREAMINGALG is a subset of the full input and the input for CONSTRAINEDALG is the A set produced
by STREAMINGALG on some such subset.

Proof. Note that every set assigned to a variable Di by Algorithm 1 is either an input set for some copy of STREAMINGALG
or an output set of such a copy. Furthermore, any such set is either ignored or fed immediately after construction to some copy
of STREAMINGALG. Thus, the space complexity required for these sets is upper bounded by the space complexity required
for the r copies of STREAMINGALG used by Algorithm 1, which isO(r ·MSTREAMINGALG). Additionally, since the sets Si and
Ai are the final outputs of these copies of STREAMINGALG, we get they can also be stored usingO(r ·MSTREAMINGALG) space.
Finally, the set S′ is a subset of

⋃r
i=1Ai, and therefore, does not require more space than the sets Ai. Combining all the

above, we get that the space complexity of Algorithm 1—excluding the space required for running CONSTRAINEDALG—is
at most O(r ·MSTREAMINGALG).

Streaming Submodular Maximization under a k-Set System Constraint

To complete the proof of Theorem 6, it remains to analyze the approximation guarantee of Algorithm 1. Towards this goal,
we need the following known lemma.

Lemma 12 (Lemma 2.2 of (Buchbinder et al., 2014)). Let g : 2N → R≥0 be a non-negative submodular function, and let
B be a random subset of N containing every element of N with probability at most q (not necessarily independently). Then,
E[g(B)] ≥ (1− q) · g(∅).

Lemma 13. Assume STREAMINGALG is an (α, γ)-approximation algorithm and CONSTRAINEDALG is an offline β-
approximation algorithm. Then, Algorithm 1 returns a solutions S such that

E[f(S)] ≥ (1− 1/r) · OPT− γ
α+ β

.

Proof. Let S∗ be an arbitrary optimal solution, i.e., a set obeying S∗ ∈ I and f(S∗) = OPT. For every integer 1 ≤
i ≤ r, we denote by Ni the set of elements that STREAMINGALG(i) has received. Note that we have N1 = N and
Ni = N \ (∪1≤j≤i−1Aj) for 2 ≤ i ≤ r since STREAMINGALG(i) outputs every element that it gets and does not end up in
Ai as an element of Di at some point. Since Ai is a subset of Ni, this implies that the sets A1, A2, . . . , Ar are disjoint.

Let us define now Ā to be a uniformly random set from {A1, A2, . . . , Ar}, and g(S) = f(S ∪ S∗). Then,

1

r

r∑

i=1

f(Ai ∪ S∗) = EĀ[f(Ā ∪ S∗)] = EĀ[g(Ā)] ≥
(

1− 1

r

)
· g(∅) =

(
1− 1

r

)
· f(S∗) ,

where the notation EĀ stands for expectation over the random choice of Ā out of {A1, A2, . . . , Ar} (but not over any
randomness that might be introduced by STREAMINGALG), and the inequality results from Lemma 12 because (i) every
element of N belongs to Ā with probability at most 1

r since the sets Ai are disjoint, and (ii) g is a non-negative submodular
function on its own right.

Let us now define A′ =
⋃r
i=1Ai. Using this notation, we get from the last inequality

(r − 1) · OPT = (r − 1) · f(S∗) ≤
r∑

i=1

f(Ai ∪ S∗) ≤
r∑

i=1

[f(Ai ∪ (S∗ \A′)) + f(S∗ ∩A′)] ,

where the second inequality follow from the submodularity and non-negativity of f . Observe now that S∗ \ A′ is a
feasible solution that STREAMINGALG(i) can output since it is a subset of N \A′ ⊆ Ni and S∗ ∩A′ is a feasible solution
that CONSTRAINEDALG can output. Taking now expectation over any randomness introduced by STREAMINGALG and
CONSTRAINEDALG, we get from the last inequality using the guarantees of these two algorithms that

(r − 1) · OPT ≤
r∑

i=1

{E[f(Ai ∪ (S∗ \A′))] + E[f(S∗ ∩A′)]}

≤
r∑

i=1

{α · E[f(Si)] + γ + β · E[f(S′)]} ≤ [rα+ rβ] · E[f(S)] + rγ ,

where the last inequality holds since S is selected as the set maximizing f among all the sets S′ and {Si}ri=1.

A.3. Proofs of Theorems 9 and 10

We begin the analysis of Algorithm 2 with the following lemma showing that it is a semi-streaming algorithm.

Lemma 14. Algorithm 2 stores O(ρ(log ρ+ log k)) = Õ(ρ) elements at every given time point.

Proof. Algorithm 2 stores elements only in the sets E0, E1, . . . , E` and the sets T0, T1, . . . , Th−1. Since these sets are
kept independent by the algorithm, each one them contains at most ρ elements. Thus, the number of elements stored by
Algorithm 2 is upper bounded by

(`+ h)ρ = [O(log ρ+ log k)]ρ = O(ρ(log ρ+ log k)) .

Streaming Submodular Maximization under a k-Set System Constraint

Our next objective to analyze the approximation ratio of Algorithm 2. Recall that we defined for that purpose E = ∪`i=0Ei.
The following lemma shows that f(E) is large.

Lemma 15. For every set S ∈ I, f(E | ∅) =
∑`
i=0

∑
u∈Ei

m(u) ≥ f(S∪E|∅)−τ/4
2k+1 .

Proof. First, note that we have f(E | ∅) =
∑`
i=0

∑
u∈Ei

m(u) becausem(u) is the marginal contribution of u with respect
to the elements that were added to ∪`i=0Ei before u. Let us also define, for every integer 0 ≤ i ≤ `, Si = {u ∈ S | i(u) = i}.
Then,

f(E | ∅) =
∑̀

i=0

∑

u∈Ei

m(u) ≥
∑̀

i=0

|Ei| ·
τ

2i+1
≥ 1

k
·
∑̀

i=0

|Si| ·
τ

2i+1

≥ 1

2k
·
∑̀

i=0

∑

u∈Si

m(u) =
1

2k
·



∑

u∈S
m(u)−

∑

u∈S
i(u)<0 or i(u)>`

m(u)


 ,

where the first and third inequalities hold since an element u is added to a set Ei only when i = i(u), and the second
inequality holds since one can view Ei as the output of running the unweighted greedy algorithm on a ground set which
includes the independent set Si as a subset.

By the submodularity of f , we can immediately get
∑

u∈S
m(u) ≥

∑

u∈S
f(u | E) ≥ f(S | E) = f(S ∪ E | ∅)− f(E | ∅) .

We also note that {u} ∈ I for every element u ∈ S because S itself is independent, and thus, τ ≥M ≥ f({u}) ≥ m(u)
(recall that M was defined as maxu∈N ,{u}∈I f({u})). Hence, i(u) = blog2(τ/m(u))c ≥ 0, which implies

∑

u∈S
i(u)<0 or i(u)>`

m(u) =
∑

u∈S
i(u)>`

m(u) ≤
∑

u∈S
i(u)>`

τ

2`+1
≤ ρ · τ

2log2(4ρ)
=
τ

4
.

Combining all the above inequalities gives us

f(E | ∅) ≥ 1

2k
·
[
f(S ∪ E | ∅)− f(E | ∅)− τ

4

]
,

and the lemma follows by rearranging this inequality.

As discussed in Section 5, our next objective is to relate the value of the output set of Algorithm 2 to f(E). As an
intermediate step, we relate f(Tj) to the sum of the m(u) values of the elements u that belong to the sets Ei that are
combined to create Tj (recall that these are exactly the sets Ei for which i ≡ j (mod h)). In the next lemma we assume
that the constraint (N , I) is a k-set system. Naturally, the lemma holds also for constraints that are k-extendible systems,
but for such constraints it is possible to get a better bound on f(Tj) using a more careful analysis, and this bound appears
below as Lemma 16.

Intuitively, the next lemma holds because when Algorithm 2 adds elements of a set Ei to a set Tj , this increases the size of
the set Tj to at least Ei/k (since the constraint is k-set system). Thus, either about 1/k of the elements of Ei are added to
Tj , or the size of Tj before the addition of the elements of Ei is already significant compared to the size of Ei. Moreover, in
the later case, the elements of Tj can pay for the elements of Ei that they have blocked because they all have a relatively
high value (as they originate in a set Ei′ for some i′ ≤ i− h). Next, we restate Lemma 8 and then prove it.

Lemma 8. If (N , I) is a k-set system, then for every integer 0 ≤ j < h we have

f(Tj | ∅) ≥ 1

4k
·
∑

0≤i≤`
i≡j(mod h)

∑

u∈Ei

m(u) .

Streaming Submodular Maximization under a k-Set System Constraint

Proof. Since Tj is a subset of E, if we denote by v1, v2, · · · , vm the element of Tj in the order their arrival, then the
submodularity of f guarantees that

f(Tj | ∅) =

m∑

r=1

f(vr | v1, v2, · · · , vr−1) ≥
m∑

r=1

m(vr) =
∑

u∈Tj

m(u) .

Thus, to prove the lemma it suffice to prove
∑

u∈Tj

m(u) ≥ 1

4k
·
∑

0≤i≤`
i≡j(mod h)

∑

u∈Ei

m(u) . (4)

We prove Inequality (4) by proving a stronger claim via induction. However, before we can present this stronger claim, we
need to define some additional notation. Recall that Tj is constructed by starting with the empty set, greedily adding to it
elements of Ej , then greedily adding to it elements of Ej+h, then greedily adding to it elements of Ej+2h and so on. Thus,
let us define, for every integer 0 ≤ i ≤ ` obeying i ≡ j (mod h), the set T ij to be the set Tj immediately after Algorithm 2
is done greedily adding elements of Ei to Tj . Additionally, it is useful to define T j−hj to be the empty set. Using these
definitions, we can now define the stronger claim that we prove below by induction.

For every integer −h ≤ i ≤ ` and j = i mod h,

∑

u∈T i
j

m(u) ≥ 1

4k
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|T ij |τ
2i+2k

. (5)

Before we prove this claim, let us observe that it indeed implies Inequality (4) by setting i to be the largest integer that obeys
i ≡ j (mod h) and is not larger than `.

It now remains to prove Inequality (5) by induction on i. For i < 0, this inequality holds since j ≥ 0 > i and T ij = ∅, which
implies that the value of both sides of the inequality is 0. Next, we need to prove Inequality (5) for an integer 0 ≤ i ≤ `
under the assumption that it holds for every −h ≤ i′ < i. Recall that the set T ij is obtained by greedily adding elements of
Ei to T i−hj . Since the constraint is a k-set system, the size of the set obtained in this way must be at least |Ei|/k (otherwise,
T ij is a base of Ei ∪ T i−hj whose size is smaller than the size the independent set Ei by more than a factor of k). Thus, we
know that the number of elements of Ei that are added to T i−hj to form T ij is at least |Ei|/k − |T i−hj |, which implies

∑

u∈T i
j \T

i−h
j

m(u) ≥
[|Ei|
k
−
∣∣T i−hj

∣∣
]
· τ

2i+1

=

∑
u∈Ei

τ/2i+2

k
+
|Ei| τ
2i+2k

−
∣∣T i−hj

∣∣ τ
2i+1

≥
∑
u∈Ei

m(u)

4k
+
|Ei| τ
2i+2k

−
∣∣T i−hj

∣∣ τ
2i+1

,

where the two inequality hold since τ/2i ≥ m(u) ≥ τ/2i+1 for every element u ∈ Ei.
Adding the induction hypothesis for i− h to the above inequality, we get

∑

u∈T i
j

m(u) ≥
∑
u∈Ei

m(u)

4k
+
|Ei| τ
2i+2k

−
∣∣T i−hj

∣∣ τ
2i+1

+
1

4k
·
∑

j≤r≤i−h
r≡j(mod h)

∑

u∈Er

m(u) +
|T i−hj |τ
2i−h+2k

=
1

4k
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|Ei| τ
2i+2k

+

∣∣T i−hj

∣∣ τ
2i+2k

(
2h − 2k

)

≥ 1

4k
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|Ei| τ
2i+2k

+

∣∣T i−hj

∣∣ τ
2i+2k

≥ 1

4k
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +

∣∣T ij
∣∣ τ

2i+2k
,

where the second inequality holds by the definition of h, and the last inequality holds since every element of T ij must belong
either to Ei or to T i−hj .

Streaming Submodular Maximization under a k-Set System Constraint

Next, we restate Lemma 7 and then provide its proof.

Lemma 7. If (N , I) is a k-set system, then Algorithm 2 returns a set T such that

f(T) ≥ f(E ∪ U)− τ/4
4kh(2k + 1)

=
f(E ∪ U)− τ/4
O(k2 log k)

for every set U ∈ I.

Proof. Since the output set of Algorithm 2 is the best set among T0, T1, . . . , Th−1, we get

f(T) = max
0≤j<h

f(Tj) ≥
∑h−1
j=0 f(Tj)

h
≥
f(∅) +

∑h−1
j=0

∑
i∈{0≤i≤`|i≡j(mod h)}

∑
u∈Ei

m(u)

4kh

=
f(∅) +

∑`
i=0

∑
u∈Ei

m(u)

4kh
=
f(∅) + f(E | ∅)

4kh
≥ f(E ∪ U)− τ/4

4kh(2k + 1)
,

where the second inequality follows from Lemma 8, and the last inequality follows from Lemma 15 and the non-negativity
of f .

Using the last lemma and the framework described in Section 4, we can now prove our result for k-set system constraints.

Theorem 9. There is a streaming O(k2 log k) = Õ(k2)-approximation algorithm for the problem of maximizing a non-
negative submodular function subject to a k-set system constraint.

Proof. If the objective function is monotone, then the theorem follows immediately from Lemma 7 by setting U to be the
optimal solution, since this choice implies that the output set of Algorithm 2 has a value of at least

f(E ∪ U)− τ/4
O(k2 log k)

≥ OPT− OPT/2

O(k2 log k)
=

OPT

O(k2 log k)
,

where the inequality holds since τ ≤ 2M = 2 maxu∈N ,{u}∈I f({u}) ≤ 2OPT because {u} is a candidate set to be OPT
whenever it is feasible.

Otherwise, if the objective function is non-monotone, then we observe that Lemma 7 implies that Algorithm 2 is an
(O(k2 log k), τ/4)-approximation algorithm when we take A = E. Thus, by setting r = 4, using Algorithm 2 as
STREAMINGALG and using the (k +O(

√
k))-approximation algorithm REPEATEDGREEDY due to (Feldman et al., 2017)

(mentioned in Appendix C) as CONSTRAINEDALG, we get via our framework a streaming algorithm whose output set is
guaranteed to have a value of at least

(1− 1/r) · OPT− γ
α+ β

=
(3/4) · OPT− τ/4

O(k2 log k) + k +O(
√
k)

=
3 · OPT− τ
O(k2 log k)

≥ OPT

O(k2 log k)
.

We now prove a stronger version of Lemma 8 for k-extendible constraints. This version takes advantage of the stronger
guarantee of the unweighted greedy algorithm for such constraints, which is given by Lemma 4.

Lemma 16. If (N , I) is a k-extendible system, then for every integer 0 ≤ j < h we have

f(Tj | ∅) ≥ 1

k
·
∑

0≤i≤`
i≡j(mod h)

∑

u∈Ei

m(u) .

Proof. We use in this lemma the notation defined in the proof of Lemma 8. Furthermore, the same arguments used in the
proof of Lemma 8 to show that Lemma 8 follows from Inequality (5) can also be used to show that the current lemma
follows from the following claim. For every integer −h ≤ i ≤ ` and j = i mod h,

∑

u∈T i
j

m(u) ≥ 1

4
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|T ij |τ
2i+2

. (6)

Streaming Submodular Maximization under a k-Set System Constraint

Thus, the rest of this proof is devoted to proving this claim by induction on i.

For i < 0, Inequality (6) holds since j ≥ 0 > i and T ij = ∅, which implies that the value of both sides of the inequality is 0.
Next, we need to prove Inequality (6) for an integer 0 ≤ i ≤ ` under the assumption that it holds for every −h ≤ i′ < i.
Recall that the set T ij is obtained by starting with T i−hj , and then greedily adding elements of Ei to it. Thus, T ij can be
viewed as the output of the greedy algorithm when this algorithm is given the elements of T i−hj first, and then the elements
of Ei. Given this point of view, since Ei is independent, Lemma 4 guarantees

|Ei \ T ij | ≤ k · |T ij \ Ei| = k · |T i−hj | .

Hence,
∑

u∈T i
j \T

i−h
j

m(u) =
∑

u∈Ei∩T i
j

m(u) ≥
∣∣Ei ∩ T ij

∣∣ · τ

2i+1
=
[
|Ei| −

∣∣Ei \ T ij
∣∣] · τ

2i+1

≥
∑

u∈Ei

τ

2i+2
+
|Ei| · τ
2i+2

−
kτ
∣∣T i−hj

∣∣
2i+1

≥
∑
u∈Ei

m(u)

4
+
|Ei| · τ
2i+2

−
kτ ·

∣∣T i−hj

∣∣
2i+1

,

where the first and third inequalities hold since τ/2i ≥ m(u) ≥ τ/2i+1 for every element u ∈ Ei.
Adding the induction hypothesis for i− h to the above inequality, we get

∑

u∈T i
j

m(u) ≥
∑
u∈Ei

m(u)

4
+
|Ei| · τ
2i+2

−
kτ ·

∣∣T i−hj

∣∣
2i+1

+
1

4
·
∑

j≤r≤i−h
r≡j(mod h)

∑

u∈Er

m(u) +

∣∣T i−hj

∣∣ τ
2i−h+2

=
1

4
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|Ei| · τ
2i+2

+

∣∣T i−hj

∣∣ · τ
2i+2

(
2h − 2k

)

≥ 1

4
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|Ei| · τ
2i+2

+
|Ti−h| · τ

2i+2
≥ 1

4
·
∑

j≤r≤i
r≡j(mod h)

∑

u∈Er

m(u) +
|Ti| · τ
2i+2

,

where the second inequality holds by the definition of h, and the last inequality holds since every element of T ij belongs
either to Ei or to T i−hj .

Using Lemma 16 we can prove the Theorem 10. The proof is identical to the proof of Theorem 9, except for the use
Lemma 16 instead of Lemma 8.

B. Counter Examples for Inequality (2)
In Section 4, we discussed the framework proposed by Mirzasoleiman et al. (2018) for maximizing a non-monotone
submodular function using an algorithm for monotone functions. This framework requires the input streaming algorithm to
satisfy the inequality

f(S) ≥ α · f(S ∪ T) ,

where S as the output of the algorithm, T is an arbitrary feasible solution and α is a positive value. In the rest of this section,
we provide two instances of the streaming maximization problem under a simple cardinality constraint k. These instances
show that the algorithms of (Chekuri et al., 2015), (Chakrabarti & Kale, 2015) and (Buchbinder et al., 2019) fail to satisfy
Eq. (2) for any constant α.

Both our instances are based on a graph-cut function f : 2V → R≥0 over vertices of a directed and weighted graph G(V,E).
This function is defined as follows:

f(S) =
∑

u∈S

∑

v∈V \S
wu,v , (7)

Streaming Submodular Maximization under a k-Set System Constraint

where wu,v is the weight of the edge e = (u, v). It is easy to see that f is a (usually non-monotone) submodular function.
Furthermore, in our examples we assume the graph contains 3ρ+ 1 vertices named u0, u1, u2, . . . , u3ρ. The vertex u0 does
not appear in the input stream at all (it is there only for the purpose of allowing the description of the objective function as a
cut function), and the other vertices appear in the stream in the order of their subscripts.

B.1. Example for the Algorithms of Chekuri et al. and Chakrabarti and Kale

The streaming algorithm of Chekuri et al. (2015), in the context of a cardinality constraint, is given as Algorithm 3. The
algorithm of Chakrabarti & Kale (2015) is very similar, and exhibits exactly the same behavior given the example we
describe in this section, and therefore, we do not restate it here.

Algorithm 3: Streaming Algorithm of Chekuri et al. (2015)

1 S ← ∅.
2 while there are more elements in the stream do
3 u← next element in the stream.
4 if |S| < ρ then
5 if f(u | S) ≥ 0 then
6 S ← S ∪ {u}.

7 else
8 u′ ← arg minx∈S f(x : S), where f(x : S) is the marginal contribution of x to the part of S that arrived

before x itself.
9 if f(u | S) ≥ 2 · f(u′ : S) then

10 S ← (S \ {u′}) ∪ {u}.

11 return S.

The counter example we suggest for Algorithm 3 is given by the weighted graph G1(V,E) shown in Fig. 5. The weight of
the black edges is 1, and the weight of the blue edges is 2 + ε for some small and positive value ε.

u1 u2 · · · uρ

u0

uρ+1 uρ+2 · · · u2ρ

u2ρ+1 u2ρ+2 · · · u3ρ

w = 1

w = 2 + ε

Figure 4. Weighted graph G1(V,E) used to define the counter example for the algorithm of Chekuri et al. (2015).

Lemma 17. Assume S is the output of Algorithm 3 for maximizing the graph-cut function f (of the graph G1(V,E) and as
defined in Eq. (7)) under a cardinality constraint ρ. Then,

f(S) ≤ 2 + ε

ρ
· f(S ∪ S∗) ,

where S∗ is the optimal solution.

Streaming Submodular Maximization under a k-Set System Constraint

Proof. First, it is clear that the optimal solution is the set S∗ = {uρ+1, uρ+2, . . . , u2ρ}, for which f(S∗) = ρ2. When the
first ρ elements V1 = {u1, . . . , uρ} arrive, all of them are added to the solution S as the marginal gain of each one of them
is 1. Furthermore, when the elements u ∈ S∗ arrive, it is obvious that f(u | S) = 0, and therefore,

f(u | S) < f(e′ : S) = 1 ∀u′ ∈ S .

Hence, none of the elements of S∗ would be added to the solution. Finally, it is straightforward to see that all elements
in V2 = {u2ρ+1, . . . , u3ρ} would replace an element in V1 and be in the final solution S. This is true because for u ∈ V2

we have f(u | S) = 2 + ε, which is larger than 2 · f(u′ : S) for u′ ∈ V1. The lemma now follows by observing that
f(S) = f(V2) = (2 + ε)ρ and ρ2 = f(S∗) ≤ f(S ∪ S∗).

B.2. Example for the Algorithm of Buchbinder et al.

The streaming algorithm of Buchbinder et al. (2019) is given as Algorithm 4.

Algorithm 4: Streaming Algorithm of Buchbinder et al. (2019)

1 S ← ∅.
2 while there are more elements in the stream do
3 u← next element in the stream.
4 if |S| < ρ then
5 if f(u | S) ≥ 0 then
6 S ← S ∪ {u}.

7 else
8 u′ ← arg maxx∈S f(S \ {x} ∪ {u}).
9 if f((S \ {u′}) ∪ {u})− f(S) ≥ f(S)/ρ then

10 S ← (S \ {u′}) ∪ {u}.

11 return S.

In this section, the objective function of the counter example is given by the graph-cut function f of the weighted graph
G2(V,E) shown in Fig. 5. This graph has the same structure as the graph G1 from Appendix B.1, but its weight selection is
more involved. Specifically, in the graph G2, the weight of the black edges is 1 and there exist ρ blue edges with weights
w1, w2, . . . , wρ given by w1 = 2 and

wi =
2ρ+ 1− i+

∑i−1
j=1 wj

ρ
∀ i ≥ 2 .

Lemma 18. Assume S is the output of Algorithm 4 for maximizing the graph-cut unction f (of the graph G2(V,E) and as
defined in Eq. (7)) under a cardinality constraint ρ. Then, for ρ ≥ 1 + e,

f(S) ≤ e

ρ
· f(S ∪ S∗) ,

where S∗ is optimal solution.

Proof. We begin the proof by showing, through an induction argument, that wi = 2 +
∑i−1
j=1

(
i−1
j

)
ρ−j . The base of

induction is trivial as w1 = 2. Assuming the induction argument is correct for h ≤ i− 1, we prove that it is also correct for
i.

wi =
2k + 1− i+

∑i−1
j=1 wj

ρ
= 2 +

1− i+
∑i−1
j=1

(
2 +

∑j−1
`=1

(
j−1
`

)
ρ−`
)

ρ

= 2 +
i− 1 +

∑i−2
`=1

∑i−1
j=`+1

(
j−1
`

)
ρ−`

ρ

(a)
= 2 +

i− 1 +
∑i−2
`=1

(
i−1
`+1

)
ρ−`

ρ

= 2 +

(
i− 1

1

)
ρ−1 +

i−2∑

`=1

(
i− 1

`+ 1

)
ρ−(`+1) = 2 +

i−1∑

j=1

(
i− 1

j

)
ρ−j ,

Streaming Submodular Maximization under a k-Set System Constraint

u1 u2 · · · uρ

u0

uρ+1 uρ+2 · · · u2ρ

u2ρ+1 u2ρ+2 · · · u3ρ

w1 w2 wρ

weight = 1

wi =
2ρ+1−i+

∑i−1

j=1
wj

ρ

Figure 5. Weighted graph G2(V,E) used to define the counter example for the algorithm of Buchbinder et al. (2019).

where in (a) we use the following well-known equality
∑i
`=j

(
`
j

)
=
(
i+1
j+1

)
, which implies

∑i+1
`=j+1

(
`−1
j

)
=
(
i+1
j+1

)
. As a

corollary of this proof, we get wi ≤ 2 + [(1 + ρ−1)i−1 − 1] ≤ 1 + (1 + ρ−1)ρ ≤ 1 + e, which implies that the optimal
solution is S∗ = {eρ+1, eρ+2, . . . , e2ρ} whose value is f(S∗) = ρ2.

When the first ρ elements V1 = {u1, . . . , uρ} arrive, all of them are added to the solution S as the marginal gain of each one
of them is 1. Thus, when an element u ∈ S∗ arrive, we have f(S \ {u′} ∪ {u})− f(S) = 0 for every u′ ∈ S. Therefore,
none of the elements of S∗ would be added to the solution. Next, we prove that all elements in V2 = {u2ρ+1, . . . , u3ρ}
would replace an element in V1 and be in the final solution S of Algorithm 4. Again, we prove this claim by induction.
When u2ρ+1 arrives, for all u′ ∈ S we have:

f(S \ {u′} ∪ {u2ρ+1})− f(S) = 1 ≥ 1 =
f(S)

ρ
,

and u2ρ+1 replaces one of the elements from V1. Assume now that elements {u2ρ+1, . . . , u2ρ+i−1} for some integer i < ρ
have each replaced one of the element of V1, and let us show that this implies that u2ρ+i would also replace one element u′

from V1. This is true because for every such element u′ ∈ S we have

f(S \ {u′} ∪ {u2ρ+i})− f(S) = wi − 1 =
ρ+ 1− i+

∑i−1
j=1 wj

ρ
=
ρ− (i− 1) +

∑i−1
j=1 wj

ρ
=
f(S)

ρ
.

As a corollary, we get that for the final solution S = V2, we have

f(S) =

ρ∑

i=1

wi = 2ρ+

ρ∑

i=1

i−1∑

j=1

(
i− 1

j

)
ρ−j = 2ρ+

ρ−1∑

i=1

ρ−1∑

j=i

(
j

i

)
ρ−i

= 2ρ+

ρ−1∑

i=1

(
ρ

i+ 1

)
ρ−i = 2ρ+ ρ

(
(1 + ρ−1)ρ − 2

)
≤ eρ .

This proves the lemma since f(S∗ ∪ V2) ≥ f(S∗) ≥ ρ2.

C. A Deterministic Streaming Algorithm for Submodular Maximization Subject to a
k-Matchoid Constraint

As discussed in Section 4, Chekuri et al. (2015) already described a method to convert their algorithm for the problem of
maximizing a non-negative monotone submodular function subject to a k-matchoid constraint into a deterministic algorithm
that works also for non-monotone functions. The algorithm they obtained in this way has an approximation guarantee of
8k + γ, where γ is the approximation ratio of the offline algorithm used in the conversion. In this section we show that via

Streaming Submodular Maximization under a k-Set System Constraint

our framework it is possible to get a better guarantee for the same problem.8

The algorithm that we use as STREAMINGALG is the deterministic algorithm for monotone functions designed by (Chekuri
et al., 2015). Following we state some properties of this algorithm. We begin with a bound on its approximation guarantee.
For this bound, let us denote by S the final solution of the algorithm and by A the set of elements that ever appeared in the
solution maintained by the algorithm.

Lemma 19 (Lemma 11 of (Chekuri et al., 2015)). Let T ∈ I be an independent set. Then,

f(T ∪A) ≤ ρα′ + (1 + β′)2

β′
· k · f(S) ,

where ρ is an upper bound on the cardinality of the optimal set and the two non-negative parameters α′ and β′ are inputs to
the algorithm.

In our notation, the last lemma implies that the deterministic algorithm of (Chekuri et al., 2015) is an (k(1 + β′)2/β′, ρα′)-
approximation algorithm. Chekuri et al. (2015) also proved that this algorithm has the space complexity of a semi-streaming
algorithm as long as α′ is at least a constant fraction of OPT/ρ. In particular, they showed the following lemma, which
shows that in this regime the size of A is linear in ρ.

Lemma 20 (Lemma 5 of (Chekuri et al., 2015)). |A| ≤ OPT/α′.

For CONSTRAINEDALG we use the REPEATEDGREEDY algorithm of (Feldman et al., 2017), which works for general k-set
systems constraints (k-matchoid constraints are a special case of k-set systems constraints). The approximation ratio of
this algorithm is k + O(

√
k), and it can be implemented to run in linear space. Plugging these two algorithms into our

framework, we get the following corollary.

Corollary 21. For every ε ∈ (0, 1/6], by setting β′ = 1, α′ = ε · OPT/ρ and r = d1/εe, our framework produces a
deterministic streaming algorithm for the problem of maximizing a non-negative (not necessary monotone) submodular
function subject to a k-matchoid constraint. The approximation ratio of this algorithm is at most (5 + 15ε)k +O(

√
k).

Proof. By Theorem 6, the algorithm obtained in this way produces a set whose value is at least

(1− 1/r) · OPT− γ
α+ β

≥ (1− ε) · OPT− ε · OPT
4k + k +O(

√
k)

=
(1− 2ε) · OPT
5k +O(

√
k)

,

and this implies that the approximation ratio of the algorithm is at most

5k +O(
√
k)

1− 2ε
≤ (5 + 15ε) · k +O(

√
k) .

Before concluding this section, we note that the algorithm suggested by Corollary 21 assumes pre-knowledge of OPT and
ρ since these values are necessary for calculating α′. It is possible to guess the value of OPT up to a small error using
a technique originally due to (Badanidiyuru et al., 2014), and this has no effect on the approximation guarantee of the
algorithm (but slightly increases its space complexity). As the details of this are discussed by (Chekuri et al., 2015), we avoid
repeating them here. Regarding ρ, Chekuri et al. (2015) assumed pre-knowledge of ρ, and we take the same approach in this
section. However, it is possible to modify the algorithm to avoid the need to have this pre-knowledge, and we demonstrate
the technique leading to this possibility when discussing our algorithm for general k-set systems.

D. Extended Version of Our Algorithm
In this section we present and analyze an extended version of our algorithm from Section 5 which need not assume
pre-knowledge of ρ and τ . We do that in two steps. In Section D.1 we present a version of our algorithm that still assumes
pre-access to τ , but not to ρ; and in Section D.2 we show how to remove the need to known τ as well.

8Technically, the algorithm of (Chekuri et al., 2015) is very similar to the algorithm obtained via our framework for r = 2, and the
approximation guarantee they obtained can be reproduced using our framework by setting r to this value. However, as our framework can
handle other values of r as well, we manage to get a better guarantee by assigning a larger value to r.

Streaming Submodular Maximization under a k-Set System Constraint

D.1. Algorithm without Access to ρ

As an alternative to ρ, the algorithm we present in this section (which is given as Algorithm 5) uses the size of a set G
produced by running the unweighted greedy algorithm on the entire input. Since the value of this alternative can increase
over time, the algorithm has to create additional sets Ei on the fly. We also note that the formula for ` used by Algorithm 5
is slightly different than the corresponding formula in Algorithm 2.

Algorithm 5: Streaming Algorithm for k-set Systems (with no pre-access to ρ)

1 Input: a value τ ∈ [M, 2M] and the parameter k of the constraint.
2 Output: a solution T ∈ I
3 Let G← ∅, `← −1 and h← dlog2(2k + 1)e.
4 for every element u arriving do
5 if G+ u ∈ I then Add u to G.
6 Let `′ ← b2 log2(k|G|) + 3c.
7 for i = `+ 1 to `′ do Initialize Ei ← ∅.
8 Update `← `′.

9 Let m(u)← f
(
u | ∪`i=0Ei

)
.

10 if m(u) > 0 then Let i(u)← blog2(τ/m(u))c else Let i(u)←∞.
11 if 0 ≤ i(u) ≤ ` and Ei(u) + u ∈ I then Update Ei(u) ← Ei(u) + u.

12 for j = 0 to h− 1 do
13 Let i← j and Tj ← ∅.
14 while i ≤ ` do
15 while there is an element u ∈ Ei such that Tj + u ∈ I do Update Tj ← Tj + u.
16 i← i+ h.

17 return the set T maximizing f among T0, T1, · · · , Th−1.

We begin the analysis of Algorithm 5 by showing that it has the space complexity of a semi-streaming algorithm.

Lemma 22. Algorithm 5 stores O(ρ(log ρ+ log k)) = Õ(ρ) elements at every given time point.

Proof. Observe that the set G is kept as an independent set by the algorithm, and thus, its size is at most ρ, and we get
that at all times ` = O(log(kρ)) = O(log k + log ρ). We now also note that Algorithm 5 stores elements only in the
sets E0, E1, . . . , E` and the sets T0, T1, . . . , Th−1. Since these sets are kept independent by the algorithm, each one them
contains at most ρ elements. Thus, the number of elements stored by Algorithm 5 is upper bounded by

(`+ h)ρ = [O(log ρ+ log k)]ρ = O(ρ(log ρ+ log k)) .

We now get to analyzing the approximation ratio of Algorithm 5. One can verify that all the proofs in the analysis of the
approximation ratio of Algorithm 2 from Section 5 apply (as is) also to Algorithm 5, except for the proof of Lemma 15.
Thus, in the rest of this section our objective is to show that Lemma 15 applies to Algorithm 5, despite the fact that its
original proof from Section 5 does not apply to it.

Let us define R to be a set including every element u ∈ N for which either i(u) < 0 or i(u) > ` at the moment of u’s
arrival. The following lemma allows us to bound the value of the elements in R.

Lemma 23. For every independent set S,
∑
u∈S∩Rm(u) ≤ τ/4.

Proof. Let us denote the elements of S ∩R by u1, u2, . . . , ur in the order of their arrival. For every 1 ≤ j ≤ |S ∩R|, since
uj ∈ R, at the moment in which either uj arrived i(u) was either negative or larger than `. However, since S is independent,
τ ≥M ≥ f({uj}) ≥ m(uj), and thus, the first option cannot happen, which leaves us only with the case

⌊
log2

(
τ

m(uj)

)⌋
≥ `+ 1⇒ τ

m(uj)
≥ 2`+1 ⇒ m(uj) ≤

τ

2`+1
≤ τ

22 log2(k|G|)+3
=

τ

8k2|G|2 .

Streaming Submodular Maximization under a k-Set System Constraint

We now observe that at the moment referred to by the previous paragraph the algorithm already received at least j elements
of S, and thus, the size of G was at least j/k (recall that the unweighted greedy algorithm is a k-approximation algorithm).
Hence,

m(uj) ≤
τ

8j2
.

Summing up this inequality over all 1 ≤ j ≤ |S ∩R|, we get

∑

u∈S∩R
m(u) ≤

|S∩R|∑

j=1

τ

8j2
≤ τ

8
·
[
1 +

∫ ∞

1

dx

x2

]
=
τ

8
·
[
1−

[
1

x

]∞

1

]
=
τ

4
.

Using the last lemma, we can now prove that Lemma 15 applies also to Algorithm 5. Recall that E = ∪`i=0Ei.

Lemma 15. For every set S ∈ I, f(E | ∅) =
∑`
i=0

∑
u∈Ei

m(u) ≥ f(S∪E|∅)−τ/4
2k+1 .

Proof. First, note that we have f(E | ∅) =
∑`
i=0

∑
u∈Ei

m(u) because m(u) is the marginal contribution of u with
respect to the elements that were added to ∪`i=0Ei before u. Let us also define, for every integer 0 ≤ i ≤ `, Si = {u ∈
S \R | i(u) = i}. Then,

f(E | ∅) =
∑̀

i=0

∑

u∈Ei

m(u) ≥
∑̀

i=0

|Ei| ·
τ

2i+1
≥ 1

k
·
∑̀

i=0

|Si| ·
τ

2i+1

≥ 1

2k
·
∑̀

i=0

∑

u∈Si

m(u) =
1

2k
·
[∑

u∈S
m(u)−

∑

u∈S∩R
m(u)

]
,

where the first and third inequalities hold since an element u is added to a set Ei only when i = i(u), the second inequality
holds since one can view Ei as the output of running the unweighted greedy algorithm on a ground set which includes the
independent set Si as a subset, and the last equality holds since 0 ≤ i(u) ≤ ` for every element u 6∈ R because ` can only
increase during the execution of Algorithm 5.

By the submodularity of f , we can immediately get
∑

u∈S
m(u) ≥

∑

u∈S
f(u | E) ≥ f(S | E) = f(S ∪ E | ∅)− f(E | ∅) .

Combining the two above inequalities and the guarantee of Lemma 23 gives us

f(E | ∅) ≥ 1

2k
·
[
f(S ∪ E | ∅)− f(E | ∅)− τ

4

]
,

and the lemma follows by rearranging this inequality.

D.2. Algorithm without Access to τ

In this section we explain how to modify our algorithm so that it does not need to access to τ . This modification is based on
a technique due to (Badanidiyuru et al., 2014), but it is made slightly more involved since we assume here no pre-knowledge
of ρ, which is not the case in (Badanidiyuru et al., 2014). Following is the crucial observation that we use in this section.
Observation 24. Except for the sake of maintaining G, Algorithm 5 ignores an element u if {u} 6∈ I or f({u}) ≤
τ/22 log2(k|Gu|)+4, where |Gu| is the size of G immediately after the processing of u.

Proof. The case of {u} 6∈ I is simple, so let us consider only the case f({u}) ≤ τ/22 log2(k|Gu|)+4. Let `u be the value of
` immediately after the processing of u by Algorithm 5. The value i(u) calculated by Algorithm 5 when processing u obeys

i(u) = blog2(τ/m(u))c ≥ blog2(τ/f({u}))c
≥ blog2(22 log2(k|Gu|)+4c = 2 log2(k|Gu|) + 4 ≥ `u + 1 ,

where the first inequality follows from the submodularity of f , and the second inequality follows from the condition of the
lemma.

Streaming Submodular Maximization under a k-Set System Constraint

Using Observation 24 in mind, we now give the algorithm of this section as Algorithm 6. This algorithm runs multiple
copies of Algorithm 5, each having a different τ values. The intuitive objective of the algorithm is to have a copy with τ = x
for every x which is a power of 2, might belong to the range [M, 2M] given the input so far, and might have accepted some
element so far even given Observation 24. Since the set G is maintained by Algorithm 5 in a way which is independent of
τ , Algorithm 6 maintains G itself, and we assume that the copies of Algorithm 5 that it creates use this set G rather than
maintaining their own set G.

Algorithm 6: Streaming Algorithm for k-set Systems (with no pre-access to ρ and τ)

1 Input: the parameter k of the constraint.
2 Output: a solution T ∈ I
3 Let G← ∅, M ′ ← −∞.
4 for every element u arriving do
5 if G+ u ∈ I then Add u to G.
6 if {u} ∈ I then Update M ′ ← max{M ′, f({u})}.
7 Let L = {2i | i is integer and M ′ ≤ 2i ≤M ′ · 22 log2(k|G|)+5}.
8 Delete any existing copy of Algorithm 5 whose τ value does not belong to L.
9 for every x ∈ L do

10 Create a copy of Algorithm 5 with τ = x, unless such a copy already exists.

11 Pass u to all the copies of Algorithm 5 that currently exist.

12 return the set maximizing f among the output sets of all the currently existing copies of Algorithm 5.

We begin the analysis of Algorithm 6 by analyzing its space complexity.

Observation 25. The number of elements stored by Algorithm 6 is larger than the number of elements stored by Algorithm 5
by a factor of O(log k + log ρ).

Proof. It suffices to show that Algorithm 6 maintains at most O(log k + log ρ) copies of Algorithm 5 at any given time,
and to do that it suffices to show that the size of the set L created by Algorithm 6 in every iteration is upper bounded by
O(log k + log ρ). Note that the size of this set is at most

⌈
log2

(
M ′ · 22 log2(k|G|)+5

M ′

)⌉
=
⌈
log2

(
22 log2(k|G|)+5

)⌉

= d2 log2(k|G|) + 5e ≤ 2 log2(kρ) + 6 = O(log2 k + log2 ρ) .

Next, let us show that the approximation guarantee of Algorithm 6 is at least as good as the guarantee of Algorithm 5.

Lemma 26. Let S be the output set of Algorithm 6. Then, f(S) is at least as large as the value of the output set of
Algorithm 5 when executed with some value τ ∈ [M, 2M].

Proof. Let u be the first element to arrive which obeys both {u} ∈ I and f({u}) ≥ M/22 log2(k|Gu|)+4. The set L
generated while processing this element necessarily includes a value τ̄ within the range [M, 2M] because while processing
u we have

M ′ · 22 log2(k|Gu|)+5 = f({u}) · 22 log2(k|Gu|)+5 ≥ 2M ,

and
M ′ = f({u}) ≤M .

Moreover, we can observe that τ̄ belongs to any list L generated after this point by Algorithm 6 because the value of M ′ can
only increase and the inequality M ′ ≤M remains valid until the end of the algorithm. Thus, a copy of Algorithm 5 with
τ = τ̄ exists from the arrival of u until Algorithm 6 terminates. Let us denote this copy by C.

Observation 24 and the definition of u guarantee that the copy C ignores the elements that arrived before u if they are passed
to it (except for the purpose of maintaining G, but we assume in this section that this work is done by Algorithm 6 itself
rather than by the copies of Algorithm 5). Thus, the output of C is identical to the output it would have produced if all the
elements had been passed to it, including elements that arrived before the creation of C. In other words, the output set of C

Streaming Submodular Maximization under a k-Set System Constraint

is the output set of Algorithm 5 when executed with some value τ = τ̄ ∈ [M, 2M] on the entire input. Since C survives
until the end of the execution of Algorithm 6, this implies that the output set of Algorithm 6 is at least as good as that.

E. Supplementary Experiments
In this section, we provide additional experiments as well as a theoretical guarantee referred to in Section 6.2.

E.1. Theoretical Guarantee for Section 6.2

As promised in Section 6.2, we explain in this section why the constraint studied in Section 6.2 is k-set system for a
(relatively) modest value of k. It is straightforward to show that a single knapsack constraint is a dcmax/cmine-extendible
system, and consequently a dcmax/cmine-set system, where cmax = maxe∈N c(e) and cmin = mine∈N c(e). We complement
this with Lemmata 27 and 28, which prove that the planarity constraint is a 3-set system and that the intersection of a k1-set
system and a k2-set system is a (k1 + k2)-set system, respectively. We would like to thank Chandra Chekuri for pointing
Lemma 27 to us. We also would like to state that Lemma 28 is similar to well-known properties of more restricted classes of
set systems, but we are not aware of a previously published explicit proof of it for general k-set systems.
Lemma 27. For every graph G = (V,E), the systemM = (E, I), where I = {S ⊆ E | (V, S) is a planar graph}, is a
3-set system.

Proof. Note thatM is downward closed, because a subgraph of a planar graph is also planar. Furthermore, the empty set
is always a member of I because a graph with no edges is planar. Thus, we concentrate on proving thatM obeys the
remaining property of k-set systems. Formally, for an arbitrary set E′ ⊆ E, and two arbitrary bases B1 and B2 of E′ (i.e.,
subsets of E′ which are independent, and no other edge of E′ can be added to them without violating independence), we
need to show |B1|/|B2| ≤ 3.

Assume first, for simplicity, that (V,E′) is connected. This implies that (V,B2) is also connected (otherwise, we can add to
it any edge connecting two different connected components without violating planarity, which contradicts the fact that it is a
base of E′), and thus, the size of B2 must be at least |V | − 1. Additionally, it is well-known that, using Euler’s formula, it is
possible to show that the number of edges in a planar graph is at most 3|V | − 6 as long as |V | ≥ 3. Thus, |B1| ≤ 3|V | − 6
as long as |V | ≥ 3. For |V | < 3, we still get |B1| ≤ 3|V | − 3 because a graph with a single vertex can include no edges and
a graph with two vertices can include at most a single edge. Combining all these observations, we now get

|B1|
|B2|

≤ 3|V | − 3

|V | − 1
= 3 .

Consider now the case in which (V,E′) has more than one connected component. In this case we can use the above argument
for each component of (V,E′). Thus, if we denote by m the number of connected components of this graph, where Vi is the
set of vertices of the i-th component, then we get

|B1|
|B2|

≤
∑m
i=1 3|Vi| − 3∑m
i=1 |Vi| − 1

= 3 .

Lemma 28. LetM1 = (N , I1) andM2 = (N , I2) be a k1-set system and a k2-set system, respectively, over the same
ground set N . Then, the set systemM = (N , I1 ∩ I2) is a (k1 + k2)-set system.

Proof. For every subset F ⊆ N , let BM(F) be the set of bases of F with respect to M. It is clear that I1 ∩ I2 is
down-monotone and contains the empty set. Thus, to prove the lemma we only need to prove that for every subset F ⊆ N

maxB∈BM(F) |B|
minB∈BM(F) |B|

≤ k1 + k2 . (8)

Towards this goal, let us define B` = arg maxB∈BM(F) |B| and Bs = arg minB∈BM(F) |B|. For every i ∈ {1, 2}, let Di

be the set of elements of B` that do not belong to Bs and cannot be added to Bs without violating independence with respect
toMi. Formally, Di = {u ∈ B` \ Bs | Bs + u 6∈ Ii}. Since Bs is a base ofM, every element of B` \ Bs must belong
either to D1 or to D2. Hence, we get

|D1|+ |D2| ≥ |B` \Bs| .

Streaming Submodular Maximization under a k-Set System Constraint

Observe now that for every i ∈ {1, 2} the set Ui = Di ∪ (B` ∩Bs) is a subset of B`, and thus, independent with respect to
Mi. Moreover, the definition of Di implies that Bs is a base of Ui ∪Bs with respect toMi. SinceMi is a pi-set system,
this implies that the size of the independent set Ui is upper bounded by pi · |Bs|. Thus, we get

|Di|+ |B` ∩Bs| = |Ui| ≤ pi · |Bs| ∀ i ∈ {1, 2} .

Combining the above inequalities, we get

|B`| ≤ |D1|+ |D2|+ |B` ∩Bs| ≤ p1 · |Bs|+ p2 · |Bs| − |B` ∩Bs| ≤ (p1 + p2) · |Bs| ,
which proves Inequality (8) due to the definitions of Bs and B`.

E.2. Planarity with Knapsack

We begin this section with an experiment studying two other real-world networks from (Leskovec & Krevl, 2014) with
exactly the same setting of Section 6.2. One can observe in Fig. 6 that our algorithm outperforms the two other baselines.

0.2 0.4 0.6 0.8 1.0

Knapsack budget

10

20

30

40

50

60

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(a) Social graph

0.2 0.4 0.6 0.8 1.0

Knapsack budget

50

100

150

200

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(b) Wiki vote network

Figure 6. Planarity with knapsack (linear objective function). The weight of each edge is set to one. Knapsack cost of each edge e = (u, v)
is proportional to max(1, du − 6), where du is the degree of node u in graph G. The costs are normalized so that

∑
e∈E ce = |V |, where

ce represents the knapsack cost of edge e.

In Fig. 7, we compare the performance of our streaming algorithm with the performance of Streaming Greedy and Sieve
Streaming under a different knapsack constraint. Here, the cost of each edge e = (u, v) is proportional to an integer picked
uniformly at random from set the {1, 2, 3, 4, 5}. The costs are normalized so that

∑
e∈E ce = |V |, where ce represents the

knapsack cost of edge e. Like in the case of the previous knapsack constraint, we observe that our streaming algorithm
returns solutions with higher objective values for various knapsack budgets.

0.2 0.4 0.6 0.8 1.0

Knapsack budget

5

10

15

20

25

30

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(a) Social graph

0.2 0.4 0.6 0.8 1.0

Knapsack budget

20

40

60

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(b) EU Email

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

25

50

75

100

125

150

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(c) Facebook ego network

0.2 0.4 0.6 0.8 1.0

Knapsack budget

0

10

20

30

40

50

60

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming

(d) Wiki vote network

Figure 7. Planarity with knapsack (linear objective function). The weight of each edge is set to one. Knapsack cost of each edge e = (u, v)
is proportional to an integer picked uniformly at random from set the {1, 2, 3, 4, 5}. The costs are normalized such that

∑
e∈E ce = |V |,

where ce represents the knapsack cost of edge e. We note that it is difficult to view the orange line in the above figures since it is mostly
hidden behind the green line.

E.3. Movie Recommendation with a Monotone Submodular Function

In this section we describe the part of the experiment using a non-negative, monotone and submodular objective function.
Let us begin the section by describing this function. Assume vi represents the feature vector of the i-th movie, then we define

Streaming Submodular Maximization under a k-Set System Constraint

a matrix M such that Mij = e−λ·dist(vi,vj), where dist(vi, vj) is the euclidean distance between vectors vi, vj—informally
Mij encodes the similarity between the frames represented by vi and vj . The diversity of a set S of movies is measured by
the non-negative monotone submodular objective f(S) = log det(I + αMS), where I is the identity matrix, α is a positive
scalar and MS is the principal sub-matrix of M indexed by S (Herbrich et al., 2003).

In the experiment we did with the above objective function, we set the genre limit to 10, λ to 0.1, and α to 20. The results of
the experiment appear in Figs. 8a and 8b. In Fig. 8a, we can observe that our streaming algorithm outperforms streaming
greedy and sieve streaming. Furthermore, while our algorithm requires only a single pass over the data and enjoys a very
low computational complexity (see Fig. 8b), the solutions it returns are competitive with respect to the solutions produced
by the offline algorithms we compare with.

5 10 15 20 25

Maximum number of allowed elements

10

15

20

25

30

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)

Streaming-Greedy

Sieve-Streaming

Fast

FANTOM

(a) Monotone function

5 10 15 20 25

Maximum number of allowed elements

0

1

2

3

O
ra

cl
e

ca
ll
s

×106

Ours (monotone)

Streaming-Greedy

Sieve-Streaming

Fast

FANTOM

(b) Monotone function

Figure 8. Movie recommendation with a monotone submodular function subject to two knapsacks constraints.

E.4. Yelp Location Data Summarization

In this application, given thousands of business locations with several related attributes, our objective is to find a good
summary of the locations from the following six cities: Charlotte, Edinburgh, Las Vegas, Madison, Phoenix and Pittsburgh.
We use the Yelp Academic dataset (Yelp, a), which is a subset of Yelp’s businesses, reviews, and user data (Yelp, b). The
dataset contains information about local businesses across 11 metropolitan areas, and we consider only locations in six out
of these metropolitan areas. We used the description of each business location and reviews for feature extraction. These
features contain information regarding many attributes such as having vegan menus, delivery options, the possibility of
outdoor seating, being good for groups, etc.9

Suppose we want to select, out of a ground set N = {1, . . . , n}, a subset of locations which provides a good representation
of all the existing business locations. Towards this goal, we calculate a matrix M representing the similarity between every
two locations i, j ∈ N using the same method described in Appendix E.3. Then, intuitively, given a set S, each location
i ∈ N is represented by the location from the set S with the highest similarity to i. Thus, it is natural to define the total
utility provided by a set S using the following non-negative, monotone and submodular set function (Krause & Golovin,
2012; Frieze, 1974):

f(S) =
1

n

n∑

i=1

max
j∈S

Mi,j . (9)

Note that the utility function (9) depends on the entire dataset N . In the streaming setting we do not have access to the full
data stream, but fortunately, our objective function is additively decomposable (Mirzasoleiman et al., 2013) over the ground
setN . Thus, as long as we can sample uniformly at random from a data stream, it is possible to estimate (9) arbitrarily close
to its exact value (Badanidiyuru et al., 2014, Proposition 6.1). To sample randomly from the data stream and estimate the
function, we use the reservoir sampling technique explained in (Badanidiyuru et al., 2014, Algortithm 4).

For the constraint, we use a combination of matroid and knapsack constraints (which yields a k-extendible constraint). The
matroid constraint is as follows: i) there is a limit m on the total number of selected locations and ii) the maximum number
of allowed locations from each of the six cities is 10. For the knapsack constraints we consider two different scenarios: i) in
the first scenario, there is a single knapsack c1 in which the cost assigned to each location is proportional to the distance
of that location from a pre-specified location in the down-town of its metropolitan area. ii) in the second scenario, we
add another knapsack c2 which is based on the distance between each location and the international airport serving its

9For the feature extraction, we used the script provided at https://github.com/vc1492a/Yelp-Challenge-Dataset.

https://github.com/vc1492a/Yelp-Challenge-Dataset

Streaming Submodular Maximization under a k-Set System Constraint

metropolitan area. In this set of experiments, we set the knapsack budgets to 1, where one unit of budget is equivalent to
100km. This means that we allow the sum of the distances of every feasible set of locations to the points of interest (i.e.,
down-towns or airports) to be at most 100km.

In our experiments, we compare the utility and computational cost of algorithms for different values of m (the upper limit
on the number of locations in the produced summary). From the experiments (see Fig. 9), we observe that i) our proposed
algorithm, consistently, demonstrates a better performance compared to other streaming algorithms in terms of the utility of
the final solution, and ii) the utilities of the solutions produced by our algorithm are comparable to the utility of solutions
produced by state-of-the-art offline algorithms, despite the ability of our algorithm to make only a single pass over the
data and its several orders of magnitude better computational complexity. We also observe that, as expected, adding more
constraints (compare Figs. 9a and 9c) reduces the utility of the selected summary.

5 10 15 20 25

Maximum number of allowed elements

65

70

75

80

85

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy

Sieve-Streaming
Fast

FANTOM

(a) One knapsack

5 10 15 20 25

Maximum number of allowed elements

0.0

0.5

1.0

1.5

O
ra

cl
e

ca
ll

s

×106

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy
Sieve-Streaming
Fast
FANTOM

(b) One Knapsack

5 10 15 20 25

Maximum number of allowed elements

65

70

75

80

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy
Sieve-Streaming
Fast

FANTOM

(c) Two Knapsacks

5 10 15 20 25

Maximum number of allowed elements

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
ra

cl
e

ca
ll

s

×106

Ours (monotone)
Ours (non-monotone)
Streaming-Greedy

Sieve-Streaming
Fast

FANTOM

(d) Two Knapsacks

Figure 9. Yelp Location Data Summarization

E.5. Twitter Summarization

There are several news reporting Twitter accounts with millions of followers. One interesting data summarization task is to
provide a periodic synopsis of major events from the news feeds of these accounts. While finding an objective function to
quantify the utility of a summary is a delicate task, the need to provide the summary in real-time for streams of data which
are arriving at a fast pace makes the data summarization task even harder. In this application, our goal is to generate real-time
summaries for Twitter feeds of several news agencies with the following Twitter accounts (also known as “handles”):
@CNNBrk, @BBCSport, @WSJ, @BuzzfeedNews, @nytimes, @espn.

For this application, we use the twitter dataset provided in (Kazemi et al., 2019). In order to cover the important events of
the day without redundancy, we use a monotone and submodular function f that encourages diversity in the selected set of
tweets (Kazemi et al., 2019). Let us explain this function. The function f is defined over a ground set N of tweets. Assume
that each tweet u ∈ N consists of a non-negative value valu representing the number of retweets it has received and a set of
`u keywords Wu = {wu,1, · · · , wu,`u} from the set of all possible keywordsW . The score of a word w ∈ W for a given
tweet u is defined by

score(w, u) =

{
valu if w ∈Wu ,

0 otherwise ,

and the function f is defined by

f(S) =
∑

w∈W

√∑

u∈S
score(w, u) .

Like in Appendix E.4, each one of our experiments involves a matroid constraint plus one or two knapsack constraints,
which yields a k-extendible system constraint. The matroid constraint allows at most five tweets from each one of the six
twitter accounts and at most m tweets from all the accounts together. In the first knapsack constraint c1, which is a constraint
that is used in all the experiments of this section, the cost of each tweet is proportional to the absolute time difference (in
months) between the tweet and the first of January 2019. In other words, we are more interested in tweets that are closer to
the first day of the year 2019. We also have a second knapsack constraint c2, which is used only in our second experiment.
In this constraint, the cost of each element is proportional to the length (number of keywords) of the corresponding tweet,
which enables us to provide shorter summaries. We normalize the knapsack costs such that each unit of knapsack budget is

Streaming Submodular Maximization under a k-Set System Constraint

equivalent to roughly 10 months for c1 and 26 keywords for c2, respectively. Then, we set the budgets of both knapsacks to
1.

In Figs. 10a and 10b, we observe the outcomes of different algorithms for the scenario with a single knapsack. It is evident
that the utility of solutions returned by our proposed streaming algorithm exceeds the other baseline streaming algorithm. It
is also interesting to point out that, for the case with two knapsack constraint, our streaming algorithms outperform even the
Fast algorithm, which is one of the offline algorithms (see Fig. 10c).

5 10 15 20 25

Maximum number of allowed elements

1000

2000

3000

4000

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming
Fast
FANTOM

(a) One knapsack

5 10 15 20 25

Maximum number of allowed elements

0

1

2

3
O

ra
cl

e
ca

ll
s

×106

Ours (monotone)
Streaming-Greedy
Sieve-Streaming
Fast
FANTOM

(b) One Knapsack

5 10 15 20 25

Maximum number of allowed elements

500

1000

1500

2000

2500

3000

3500

O
b

je
ct

iv
e

va
lu

e

Ours (monotone)
Streaming-Greedy
Sieve-Streaming
Fast
FANTOM

(c) Two Knapsacks

5 10 15 20 25

Maximum number of allowed elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

O
ra

cl
e

ca
ll

s

×106

Ours (monotone)
Streaming-Greedy
Sieve-Streaming
Fast
FANTOM

(d) Two Knapsacks

Figure 10. Twitter Data Summarization: The maximum number of allowed tweets from each news agency in the summary is five.

