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Abstract
Language model pre-training has been shown to
capture a surprising amount of world knowledge,
crucial for NLP tasks such as question answering.
However, this knowledge is stored implicitly in
the parameters of a neural network, requiring ever-
larger networks to cover more facts.

To capture knowledge in a more modular and in-
terpretable way, we augment language model pre-
training with a latent knowledge retriever, which
allows the model to retrieve and attend over docu-
ments from a large corpus such as Wikipedia, used
during pre-training, fine-tuning and inference. For
the first time, we show how to pre-train such a
knowledge retriever in an unsupervised manner,
using masked language modeling as the learning
signal and backpropagating through a retrieval
step that considers millions of documents.

We demonstrate the effectiveness of Retrieval-
Augmented Language Model pre-training
(REALM) by fine-tuning on the challenging task
of Open-domain Question Answering (Open-QA).
We compare against state-of-the-art models for
both explicit and implicit knowledge storage on
three popular Open-QA benchmarks, and find
that we outperform all previous methods by a
significant margin (4-16% absolute accuracy),
while also providing qualitative benefits such as
interpretability and modularity.

1. Introduction
Recent advances in language model pre-training have
shown that models such as BERT (Devlin et al., 2018),
RoBERTa (Liu et al., 2019) and T5 (Raffel et al., 2019)
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Figure 1. REALM augments language model pre-training with
a neural knowledge retriever that retrieves knowledge from a
textual knowledge corpus, Z (e.g., all of Wikipedia). Signal
from the language modeling objective backpropagates all the way
through the retriever, which must consider millions of documents
in Z—a significant computational challenge that we address.

store a surprising amount of world knowledge, acquired
from the massive text corpora they are trained on (Petroni
et al., 2019). For example, BERT is able to cor-
rectly predict the missing word in the following sen-
tence: “The is the currency of the United

Kingdom” (answer: “pound”).

In these language models, the learned world knowledge is
stored implicitly in the parameters of the underlying neural
network. This makes it difficult to determine what knowl-
edge is stored in the network and where. Furthermore, stor-
age space is limited by the size of the network—to capture
more world knowledge, one must train ever-larger networks,
which can be prohibitively slow or expensive.

To capture knowledge in a more interpretable and modular
way, we propose a novel framework, Retrieval-Augmented
Language Model (REALM) pre-training, which augments
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language model pre-training algorithms with a learned tex-
tual knowledge retriever. In contrast to models that store
knowledge in their parameters, this approach explicitly ex-
poses the role of world knowledge by asking the model to
decide what knowledge to retrieve and use during inference.
Before making each prediction, the language model uses the
retriever to retrieve documents1 from a large corpus such as
Wikipedia, and then attends over those documents to help in-
form its prediction. Learning this model end-to-end requires
backpropagating through a retrieval step that considers an
entire corpus of textual knowledge, as shown in Figure 1.

The key intuition of REALM is to train the retriever us-
ing a performance-based signal from unsupervised text:
a retrieval that improves the language model’s perplex-
ity is helpful and should be rewarded, while an un-
informative retrieval should be penalized. For exam-
ple, in Figure 1, if the model needs to fill the blank
in “the at the top of the pyramid”, the re-
triever should be rewarded for selecting a document con-
taining “The pyramidion on top allows for less

material higher up the pyramid”. We achieve this
behavior by modeling our retrieve-then-predict approach
as a latent variable language model and optimizing the
marginal likelihood.

Incorporating a large-scale neural retrieval module during
pre-training constitutes a significant computational chal-
lenge, since the retriever must consider millions of candi-
date documents for each pre-training step, and we must
backpropagate through its decisions. To address this, we
structure the retriever such that the computation performed
for each document can be cached and asynchronously up-
dated, and selection of the best documents can be formulated
as Maximum Inner Product Search (MIPS).

Numerous prior works have demonstrated the benefit of
adding a discrete retrieval step to neural networks (Miller
et al., 2016; Chen et al., 2017), but did not apply the frame-
work to language model pre-training and employed non-
learned retrievers to handle large-scale document collec-
tions. In the language modeling literature, the k-Nearest
Neighbor Language Model (Khandelwal et al., 2019) (kNN-
LM) retrieves similar LM examples to improve memoriza-
tion. However, kNN-LM was not fine-tuned for downstream
tasks, perhaps because it is unclear how to adapt the re-
trieval mechanism: a kNN can only use examples labeled
for the target task—during fine-tuning, this precludes LM
examples, which contain the desired world knowledge. In
contrast, REALM’s retriever is designed to transfer to other
tasks, and the retrieval is just text, not a labeled example.

We evaluate our approach by fine-tuning the mod-
els pre-trained with REALM on the task of Open-
domain Question Answering (Open-QA), one of the most
knowledge-intensive tasks in natural language process-

ing. We evaluate on three popular Open-QA benchmarks
(NATURALQUESTIONS-OPEN, WEBQUESTIONS, and CURAT-
EDTREC) and compare to state-of-the-art Open-QA models,
including both extremely large models that store knowledge
implicitly (such as T5) as well as previous approaches that
also use a knowledge retriever to access external knowledge,
but implement retrieval in a more heuristic fashion (Lee
et al., 2019; Min et al., 2019a; Asai et al., 2019). REALM
achieves new state-of-the-art results on all three benchmarks,
significantly outperforming all previous systems by 4-16%
absolute accuracy. We also demonstrate qualitative benefits
of REALM, including interpretability and modularity.

2. Background
Language model pre-training The goal of language
model pre-training is to learn useful representations of lan-
guage, usually from unlabeled text corpora. The resulting
pre-trained model can then be further trained (fine-tuned) for
a downstream task of primary interest (in our case, Open-
QA), often leading to better generalization than training
from scratch (Dai & Le, 2015; Radford et al., 2019).

We focus on the masked language model2 (MLM) variant
of pre-training popularized by BERT (Devlin et al., 2018).
In its basic form, an MLM is trained to predict the miss-
ing tokens in an input text passage. Given an unlabeled
pre-training corpus X (e.g., Wikipedia text), a training ex-
ample (x, y) can be generated by randomly masking to-
kens in a sampled piece of text (e.g., x = “The [MASK]

is the currency [MASK] the UK”; y = (“pound”,
“of”)). The model uses its representation of the masked
input x to predict the token that should go in each mask.
A good MLM must learn to encode syntactic and semantic
information (e.g., to predict “of”) as well as some world
knowledge (e.g., to predict “pound”).

Open-domain question answering (Open-QA) To mea-
sure a model’s ability to incorporate world knowledge, we
need a downstream task where world knowledge is criti-
cal. Perhaps one of the most knowledge-intensive tasks
in natural language processing is open-domain question
answering (Open-QA): given a question x such as “What
is the currency of the UK?”, a model must output
the correct answer string y, “pound”. The “open” part of
Open-QA refers to the fact that the model does not receive
a pre-identified document that is known to contain the an-
swer, unlike traditional reading comprehension (RC) tasks

1We use the term “document” loosely to refer to a passage from
the knowledge corpus, not necessarily a whole article.

2Strictly speaking, MLM is not a standard language model,
since it does not define a distribution over the entire sequence
of tokens. In the paper we sometimes abuse the term “language
model” slightly to make the phrase shorter.
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such as SQuAD (Rajpurkar et al., 2016; 2018). While RC
models comprehend a single document, Open-QA models
must retain knowledge from millions of documents, since a
question could be about any of them.

We focus on Open-QA systems that utilize a textual knowl-
edge corpus Z as the knowledge source. Many of these
systems employ a retrieval-based approach: given a ques-
tion x, retrieve potentially relevant documents z from the
corpus Z , and then extract an answer y from the docu-
ments (Brill et al., 2002; Chen et al., 2017; Lee et al., 2019).
Our approach, REALM, is inspired by this paradigm and
extends it to language model pre-training. Alternatively,
some recent work has proposed generation-based systems
that apply a sequence-to-sequence model on x to directly
generate y token-by-token (Lewis et al., 2019; Raffel et al.,
2019). We will compare against state-of-the-art systems
from both paradigms in our experiments.

3. Approach
We start by formalizing REALM’s pre-training and fine-
tuning tasks as a retrieve-then-predict generative process
in Section 3.1. Then in Section 3.2, we describe the model
architectures for each component of that process. In Sec-
tion 3.3, we show how to implement REALM pre-training
and fine-tuning by maximizing the likelihood of REALM’s
generative process. En route, we address important compu-
tational challenges, explain why training works, and also
discuss strategies for injecting useful inductive biases. The
overall framework is illustrated in Figure 2.

3.1. REALM’s generative process

For both pre-training and fine-tuning, REALM takes some
input x and learns a distribution p(y |x) over possible out-
puts y. For pre-training, the task is masked language mod-
eling: x is a sentence from a pre-training corpus X with
some tokens masked out, and the model must predict the
value of those missing tokens, y. For fine-tuning, the task is
Open-QA: x is a question, and y is the answer.

REALM decomposes p(y |x) into two steps: retrieve, then
predict. Given an input x, we first retrieve possibly helpful
documents z from a knowledge corpus Z . We model this as
a sample from the distribution p(z |x). Then, we condition
on both the retrieved z and the original input x to generate
the output y—modeled as p(y | z, x). To obtain the overall
likelihood of generating y, we treat z as a latent variable
and marginalize over all possible documents z, yielding

p(y |x) =
∑
z∈Z

p(y | z, x) p(z |x). (1)

3.2. Model architecture

We now describe the two key components: the neu-
ral knowledge retriever, which models p(z |x), and the
knowledge-augmented encoder, which models p(y | z, x).

Knowledge Retriever The retriever is defined using a
dense inner product model:

p(z |x) = exp f(x, z)∑
z′ exp f(x, z′)

,

f(x, z) = Embedinput(x)
>Embeddoc(z),

where Embedinput and Embeddoc are embedding functions
that map x and z respectively to d-dimensional vectors.
The relevance score f(x, z) between x and z is defined as
the inner product of the vector embeddings. The retrieval
distribution is the softmax over all relevance scores.

We implement the embedding functions using BERT-style
Transformers (Devlin et al., 2018). Following standard
practices, we join spans of text by applying wordpiece tok-
enization, separating them with [SEP] tokens, prefixing a
[CLS] token, and appending a final [SEP] token.

joinBERT(x) = [CLS]x[SEP]

joinBERT(x1, x2) = [CLS]x1[SEP]x2[SEP]

As in Devlin et al. (2018), we pass this into a Transformer,
which produces one vector for each token, including the
vector corresponding to [CLS] which is used as a “pooled”
representation of the sequence (denoted BERTCLS). Finally,
we perform a linear projection to reduce the dimensionality
of the vector, denoted as a projection matrix W:

Embedinput(x) = WinputBERTCLS(joinBERT(x))

Embeddoc(z) = WdocBERTCLS(joinBERT(ztitle, zbody))

where ztitle is the document’s title and zbody is its body. We
let θ denote all parameters associated with the retriever,
which include the Transformer and projection matrices.

Knowledge-Augmented Encoder Given an input x and
a retrieved document z, the knowledge-augmented encoder
defines p(y | z, x). We join x and z into a single sequence
that we feed into a Transformer (distinct from the one used
in the retriever). This allows us to perform rich cross-
attention between x and z before predicting y. See Figure 1
for a concrete example.

At this stage, the architectures for pre-training and fine-
tuning differ slightly. For the masked language model pre-
training task, we must predict the original value of each
[MASK] token in x. To do so, we use the same masked
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Figure 2. The overall framework of REALM. Left: Unsupervised pre-training. The knowledge retriever and knowledge-augmented
encoder are jointly pre-trained on the unsupervised language modeling task. Right: Supervised fine-tuning. After the parameters of the
retriever (θ) and encoder (φ) have been pre-trained, they are then fine-tuned on a task of primary interest, using supervised examples.

language modeling (MLM) loss as in Devlin et al. (2018):

p(y | z, x) =
Jx∏
j=1

p(yj | z, x)

p(yj | z, x) ∝ exp
(
w>

j BERTMASK(j)(joinBERT(x, zbody))
)

where BERTMASK(j) denotes the Transformer output vector
corresponding to the jth masked token, Jx is the total num-
ber of [MASK] tokens in x, and wj is a learned word em-
bedding for token yj .

For Open-QA fine-tuning, we wish to produce the answer
string y. Following previous reading comprehension work
(Rajpurkar et al., 2016; Seo et al., 2016; Lee et al., 2016;
Clark & Gardner, 2017), we will assume that the answer y
can be found as a contiguous sequence of tokens in some
document z. Let S(z, y) be the set of spans matching y in
z. Then we can define p(y | z, x) as:

p(y | z, x) ∝
∑

s∈S(z,y)

exp
(
MLP

([
hSTART(s);hEND(s)

]))
hSTART(s) = BERTSTART(s)(joinBERT(x, zbody)),

hEND(s) = BERTEND(s)(joinBERT(x, zbody)),

where BERTSTART(s) and BERTEND(s) denote the Transformer
output vectors corresponding to the start and end tokens of
span s, respectively, while MLP denotes a feed-forward neu-
ral network. We will let φ denote all parameters associated
with the knowledge-augmented encoder.

3.3. Training

For both pre-training and fine-tuning, we train by maxi-
mizing the log-likelihood log p(y |x) of the correct out-
put y. Since both the knowledge retriever and knowledge-
augmented encoder are differentiable neural networks, we
can compute the gradient of log p(y |x) (defined in Equa-
tion 1) with respect to the model parameters θ and φ, and
optimize using stochastic gradient descent.

The key computational challenge is that the marginal prob-
ability p(y |x) =

∑
z∈Z p(y |x, z) p(z |x) involves a sum-

mation over all documents z in the knowledge corpus Z .
We approximate this by instead summing over the top k
documents with highest probability under p(z |x)—this is
reasonable if most documents have near zero probability.

Even with this approximation, we still need an efficient way
to find the top k documents. Note that the ordering of doc-
uments under p(z |x) is the same as under the relevance
score f(x, z) = Embedinput(x)

>Embeddoc(z), which is an
inner product. Thus, we can employ Maximum Inner Prod-
uct Search (MIPS) algorithms to find the approximate top k
documents, using running time and storage space that scale
sub-linearly with the number of documents (Ram & Gray,
2012; Shrivastava & Li, 2014; Shen et al., 2015).

To employ MIPS, we must pre-compute Embeddoc(z) for
every z ∈ Z and construct an efficient search index over
these embeddings. However, this data structure will no
longer be consistent with p(z |x) if the parameters θ of
Embeddoc are later updated. Hence, the search index goes
“stale” after every gradient update on θ.

Our solution is to “refresh” the index by asynchronously
re-embedding and re-indexing all documents every several
hundred training steps. The MIPS index is slightly stale
between refreshes, but note that it is only used to select the
top k documents. We recompute p(z |x) and its gradient,
using the fresh θ, for these top k documents after retriev-
ing them. In Section 4.5, we empirically demonstrate that
this procedure results in stable optimization, provided that
refreshes happen at a sufficiently frequent rate.

Implementing asynchronous MIPS refreshes We asyn-
chronously refresh the MIPS index by running two jobs in
parallel: a primary trainer job, which performs gradient
updates on the parameters, and a secondary index builder
job, which embeds and indexes the documents. As shown
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Figure 3. REALM pre-training with asynchronous MIPS refreshes.

in Figure 3, the trainer sends the index builder a snapshot of
its parameters, θ′. The trainer then continues to train while
the index builder uses θ′ to construct a new index in the
background. As soon as the index builder is done, it sends
the new index back to the trainer, and the process repeats.

While asynchronous refreshes can be used for both pre-
training and fine-tuning, in our experiments we only use it
for pre-training. For fine-tuning, we just build the MIPS
index once (using the pre-trained θ) for simplicity and do not
update Embeddoc.3 Note that we still fine-tune Embedinput,
so the retrieval function is still updated from the query side.

What does the retriever learn? Since the knowledge re-
trieval of REALM is latent, it is not obvious how the training
objective encourages meaningful retrievals. Here, we show
how it rewards retrievals that improve prediction accuracy.

For a given query x and document z, recall that f(x, z) is
the “relevance score” that the knowledge retriever assigns
to document z. We can see how a single step of gradient
descent during REALM pre-training alters this score by
analyzing the gradient with respect to the parameters of the
knowledge retriever, θ:

∇ log p(y |x) =
∑
z∈Z

r(z)∇f(x, z)

r(z) =

[
p(y | z, x)
p(y |x)

− 1

]
p(z |x).

For each document z, the gradient encourages the retriever
to change the score f(x, z) by r(z) — increasing if r(z)
is positive, and decreasing if negative. The multiplier r(z)
is positive if and only if p(y | z, x) > p(y |x). The term
p(y | z, x) is the probability of predicting the correct output
y when using document z. The term p(y |x) is the expected
value of p(y |x, z) when randomly sampling a document
from p(z |x). Hence, document z receives a positive update
whenever it performs better than expected.

3.4. Injecting inductive biases into pre-training

In the process of developing REALM, we discovered several
additional strategies that further guide the model towards

3This works because pre-training already yields a good
Embeddoc function. However, it is possible that refreshing the
index would further improve performance.

meaningful retrievals, described below.

Salient span masking During REALM pre-training, we
want to focus on examples x that require world knowledge to
predict the masked tokens. As explained in Section 2, some
MLM spans only require local context. To focus on prob-
lems that require world knowledge, we mask salient spans
such as “United Kingdom” or “July 1969”. We use a
BERT-based tagger trained on CoNLL-2003 data (Sang &
De Meulder, 2003) to identify named entities, and a regu-
lar expression to identify dates. We select and mask one
of these salient spans within a sentence for the masked
language modeling task. We show that this significantly
outperforms other masking strategies in Section 4.5.

Null document Even with salient span masking, not all
masked tokens require world knowledge to predict. We
model this by adding an empty null document ∅ to the top
k retrieved documents, allowing appropriate credit to be
assigned to a consistent sink when no retrieval is necessary.

Prohibiting trivial retrievals If the pre-training corpus
X and the knowledge corpus Z are the same, there exists
a trivial retrieval candidate z that is too informative: if the
masked sentence x comes from document z, the knowledge
augmented encoder can trivially predict y by looking at the
unmasked version of x in z. This results in a large positive
gradient for p(z |x). If this occurs too often, the knowledge
retriever ends up learning to look for exact string matches
between x and z, which does not capture other forms of
relevance. For this reason, we exclude this trivial candidate
during pre-training.

Initialization At the beginning of training, if the retriever
does not have good embeddings for Embedinput(x) and
Embeddoc(z), the retrieved documents z will likely be unre-
lated to x. This causes the knowledge augmented encoder
to learn to ignore the retrieved documents. Once this oc-
curs, the knowledge retriever does not receive a meaningful
gradient and cannot improve, creating a vicious cycle. To
avoid this cold-start problem, we warm-start Embedinput and
Embeddoc using a simple training objective known as the In-
verse Cloze Task (ICT) where, given a sentence, the model
is trained to retrieve the document where that sentence came
from. We defer to Lee et al. (2019) for details. For the
knowledge-augmented encoder, we warm-start it with BERT
pre-training—specifically, the uncased BERT-base model
(12 layers, 768 hidden units, 12 attention heads).

4. Experiments
We now evaluate our approach on the Open-QA task. In this
section, we describe in detail the benchmarks used and the
different approaches to which we compare empirically.
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4.1. Open-QA Benchmarks

A number of benchmarks have been proposed for Open-QA.
In this work, we focus on datasets where the question writers
did not already know the answer. This yields questions that
reflect more realistic information-seeking needs, and also
avoids artifacts that can arise if the question is formulated
with a particular answer in mind. A deeper justification is
given in Lee et al. (2019). In all cases, the predicted answer
is evaluated via exact match with any reference answer,
following previous Open-QA work (Chen et al., 2017).

NaturalQuestions-Open The NaturalQuestions dataset
(Kwiatkowski et al., 2019) consists of naturally occurring
Google queries and their answers. Each answer also comes
with an “answer type”: following Lee et al. (2019), we
only keep questions that are categorized as “short answer
type” with at most five tokens. The dataset also provides a
suggested Wikipedia document to retrieve; like all models
we compare against, we do not provide this to our model.

WebQuestions The WebQuestions dataset (Berant et al.,
2013) was collected from the Google Suggest API, using
one seed question and expanding the set to related questions.
We follow the setting defined by Chen et al. (2017).

CuratedTrec The CuratedTrec dataset is a collection of
question-answer pairs drawn from real user queries issued
on sites such as MSNSearch and AskJeeves. To account for
multiple correct answers or different spelling variations, the
answers in this dataset are defined as regular expressions
that match all correct answers. It is unclear how to train
generation-based models with this type of supervision, so
we do not evaluate them on this dataset.

4.2. Approaches compared

Retrieval-based Open-QA Most existing Open-QA sys-
tems answer the input question by first retrieving potentially
relevant documents from a knowledge corpus, and then us-
ing a reading comprehension system to extract an answer
from the documents. In this paradigm, the knowledge is
stored explicitly in the corpus. We wish to compare different
methods for implementing retrieval.

Many approaches use non-learned heuristic retrieval such
as sparse bag-of-words matching (Robertson et al., 2009) or
entity linking on the question to select a small set of relevant
documents (e.g., 20). These documents are typically then re-
ranked using a learned model, but coverage may be limited
by the initial heuristic retrieval step. Approaches such as
DrQA (Chen et al., 2017), HardEM (Min et al., 2019a),
GraphRetriever (Min et al., 2019b), and PathRetriever (Asai
et al., 2019) in Table 1 are in this category.

Some recent approaches have proposed to implement learn-

able retrieval using a MIPS index. ORQA (Lee et al., 2019)
formulates Open-QA using a similar latent variable model
as REALM, and also trains by maximizing the marginal
likelihood. However, REALM adds a novel language model
pre-training step, and backpropagates into the MIPS index,
rather than using a fixed index. In Table 1, we directly
compare the two. It is also important to note that the retriev-
ers for both REALM pretraining and ORQA are initialized
using the Inverse Cloze Task, described in Section 3.4.

Generation-based Open-QA An emerging alternative
approach to Open-QA is to model it as a sequence predic-
tion task: simply encode the question, and then decode the
answer token-by-token based on the encoding. While it was
initially unclear how large amounts of knowledge could be
injected into the model, GPT-2 (Radford et al., 2019) hinted
at the possibility of directly generating answers without us-
ing any given context via sequence-to-sequence. However,
their performance was not competitive possibly due to the
lack of fine-tuning. Orthogonally, T5 (Raffel et al., 2019)
showed that directly generating answers without explicit
extraction from the given context is viable approach, but
they only experimented on the reading comprehension task,
where a context document is provided.

For the most competitive and comparable generation-based
baseline, we compare to concurrent work which fine-tunes
T5 for Open-QA (Roberts et al., 2020).4 We compare
against the Base, Large, and even larger 11-billion parameter
model to measure the effect of model size.

4.3. Implementation Details

Pre-training We pre-train for 200k steps on 64 Google
Cloud TPUs, with a batch size of 512 and a learning rate
of 3e-5, using BERT’s default optimizer. The document
embedding step for the MIPS index is parallelized over 16
TPUs. For each example, we retrieve and marginalize over
8 candidate documents, including the null document ∅.

We experiment with two choices of the pre-training corpus
X : (1) Wikipedia, which is identical to the knowledge cor-
pus Z , and (2) CC-News, our reproduction of the corpus of
English news proposed by Liu et al. (2019).

Fine-tuning We follow the ORQA (Lee et al., 2019) fine-
tuning approach but initialized with the pre-trained REALM
components. The knowledge corpus is derived from the
December 20, 2018 snapshot of English Wikipedia. Doc-
uments are greedily split into chunks of up to 288 BERT
wordpieces, resulting in just over 13 million retrieval candi-

4We initially conducted our own T5 experiments using the
code from https://tinyurl.com/t5-openqa-colab (Raffel et al., 2019).
We now report results from the concurrent work of Roberts et al.
(2020), which has an improved fine-tuning procedure.

https://tinyurl.com/t5-openqa-colab
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Table 1. Test results on Open-QA benchmarks. The number of train/test examples are shown in paretheses below each benchmark.
Predictions are evaluated with exact match against any reference answer. Sparse retrieval denotes methods that use sparse features such as
TF-IDF and BM25. Our model, REALM, outperforms all existing systems.

Name Architectures Pre-training NQ
(79k/4k)

WQ
(3k/2k)

CT
(1k /1k) # params

BERT-Baseline (Lee et al., 2019) Sparse Retr.+Transformer BERT 26.5 17.7 21.3 110m

T5 (base) (Roberts et al., 2020) Transformer Seq2Seq T5 (Multitask) 27.0 29.1 - 223m
T5 (large) (Roberts et al., 2020) Transformer Seq2Seq T5 (Multitask) 29.8 32.2 - 738m
T5 (11b) (Roberts et al., 2020) Transformer Seq2Seq T5 (Multitask) 34.5 37.4 - 11318m

DrQA (Chen et al., 2017) Sparse Retr.+DocReader N/A - 20.7 25.7 34m
HardEM (Min et al., 2019a) Sparse Retr.+Transformer BERT 28.1 - - 110m
GraphRetriever (Min et al., 2019b) GraphRetriever+Transformer BERT 31.8 31.6 - 110m
PathRetriever (Asai et al., 2019) PathRetriever+Transformer MLM 32.6 - - 110m
ORQA (Lee et al., 2019) Dense Retr.+Transformer ICT+BERT 33.3 36.4 30.1 330m
ORQA (more fine-tune epochs) Dense Retr.+Transformer ICT+BERT 34.8 35.4 28.7 330m

Ours (X = Wikipedia, Z = Wikipedia) Dense Retr.+Transformer REALM 39.2 40.2 46.8 330m
Ours (X = CC-News, Z = Wikipedia) Dense Retr.+Transformer REALM 40.4 40.7 42.9 330m

Table 2. Ablation experiments on NQ’s development set. Unless
otherwise stated, the pre-training corpus X is Wikipedia.

Ablation Exact
Match

Zero-shot
Retrieval
Recall@5

REALM (X = CC-News) 38.5 52.0
REALM 38.2 38.5

REALM retriever+Baseline encoder 37.4 38.5
Baseline retriever+REALM encoder 35.3 13.9
Baseline (ORQA) 31.3 13.9

REALM with random uniform masks 32.3 24.2
REALM with random span masks 35.3 26.1

30× stale MIPS 28.7 15.1

dates. During fine-tuning inference, we consider the top-5
candidates, and the entire model can be run on a single ma-
chine with a 12GB GPU. We reuse all hyperparameters from
ORQA except we increase the number of training epochs to
4, 60, and 80 for NaturalQuestion-Open, WebQuestion, and
CuratedTrec respectively. We also report the comparable
ORQA baselines with the increased training steps.

4.4. Main results

Table 1 shows the accuracy of different approaches on the
three Open-QA datasets. REALM outperform all previous
approaches by a significant margin. Table 1 also shows the
number of parameters for each model.

As reported in the concurrent work of Roberts et al. (2020),
the generative Open-QA systems based on T5 are surpris-
ingly powerful, with the largest T5-11B model outperform-

ing the previous best Open-QA system. Increasing the size
of T5 yields consistent improvement, but comes at signif-
icant computational cost (from Base to 11B, the model is
50 times larger, and gains roughly 7 points in accuracy). In
contrast, REALM outperforms the largest T5-11B model
while being 30 times smaller. It is also important to note that
T5 accesses additional reading comprehension data from
SQuAD during its pre-training (100,000+ examples). Ac-
cess to such data could also benefit REALM, but was not
used in our experiments.

Among all systems, the most direct comparison with
REALM is ORQA (Lee et al., 2019) where the fine-tuning
setup and training data are identical. We also include a
version of ORQA with extended fine-tuning steps to match
that of REALM fine-tuning, making all hyperparameters
identical except for how the parameters were pre-trained.

The improvement of REALM over ORQA is purely due
to better pre-training. The results also indicate that our
method of pre-training can be applied both on (1) the single-
corpus setting (X = Wikipedia, Z = Wikipedia), or (2) the
separate-corpus setting (X = CC-News, Z = Wikipedia).

Compared to other retrieval-based systems (Asai et al., 2019;
Min et al., 2019a;b) which often retrieve from 20 to 80
documents, our system gets the overall best performance
while only retrieving 5 documents.

4.5. Analysis

In Table 2 we present results for NaturalQuestions-Open
after ablating critical components of REALM. In addition
to the end-to-end results, we also report how often the gold
answer appears in the top-5 retrievals before applying any
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Table 3. An example where REALM utilizes retrieved documents to better predict masked tokens. It assigns much higher probability
(0.129) to the correct term, “Fermat”, compared to BERT. (Note that the blank corresponds to 3 BERT wordpieces.)

x: An equilateral triangle is easily constructed using a straightedge and compass, because 3 is a prime.

(a) BERT p(y = “Fermat” |x) = 1.1× 10−14 (No retrieval.)

(b) REALM p(y = “Fermat” |x, z) = 1.0 (Conditional probability with document z =“257 is . . . a Fermat prime.
Thus a regular polygon with 257 sides is constructible with compass . . . ”)

(c) REALM p(y = “Fermat” |x) = 0.129 (Marginal probability, marginalizing over top 8 retrieved documents.)

fine-tuning. The latter metric more significantly isolates the
contribution of improving the retriever during pre-training.

Encoder or Retriever We first aim to determine whether
REALM pre-training improves the retriever or the encoder,
or both. To do so, we can reset the parameters of either
the retriever or the encoder to their baseline state before
REALM pre-training, and feed that into fine-tuning. Reset-
ting both the retriever and encoder reduces the system to
our main baseline, ORQA. We find that both the encoder
and retriever benefit from REALM training separately, but
the best result requires both components acting in unison.

Masking scheme We compare our salient span masking
scheme (Section 3.4) with (1) random token masking intro-
duced in BERT (Devlin et al., 2018) and (2) random span
masking proposed by SpanBERT (Joshi et al., 2019). While
such salient span masking has not been shown to be impact-
ful in previous work with standard BERT training (Joshi
et al., 2019), it is crucial for REALM. Intuitively, the latent
variable learning relies heavily on the utility of retrieval and
is therefore more sensitive to a consistent learning signal.

MIPS index refresh rate During pre-training, we run a
parallel process to re-embed corpus documents and rebuild
the MIPS index. This results in one index refresh per approx-
imately 500 training steps. To demonstrate the importance
of frequent index refreshes, we compare against using a
slower refresh rate. The results in Table 2 suggests that a
stale index can hurt model training, and further reducing
this staleness could offer better optimization.

Examples of retrieved documents Table 3 shows an ex-
ample of the REALM masked language model prediction.
In this example, “Fermat” is the correct word, and REALM
(row (c)) gives the word a much high probability compared
to the BERT model (row (a)). Since REALM manages to
retrieve some documents with a related fact (row (b)), the
marginalized probability of the correct answer dramatically
increases. This shows that REALM is able to retrieve doc-
ument to fill in the masked word even though it is trained
with unsupervised text only.

5. Discussion and Related Work
We previously discussed related methods for Open-QA.
Here we present several alternate ways of viewing REALM
that connect it to a broader set of ideas beyond Open-QA:

Language modeling with corpus as context Language
representation models have been incorporating contexts of
increasingly large scope when making predictions. Exam-
ples of this progression include models that condition on sur-
rounding words (Mikolov et al., 2013a;b), sentences (Kiros
et al., 2015; Peters et al., 2018), and paragraphs (Radford
et al., 2018; Devlin et al., 2018). We can view REALM as a
generalization of the above work to the next level of scope:
the entire text corpus.

Retrieve-and-edit with learned retrieval In order to bet-
ter explain the variance in the input text and enable control-
lable generation, Guu et al. (2018) proposed a language
model with the retrieve-and-edit framework (Hashimoto
et al., 2018) that conditions on text with high lexical over-
lap. REALM has a similar approach, except that the model
learns for itself which texts are most useful for reducing per-
plexity. By jointly learning the retriever, REALM has the
capacity to depend on information beyond lexical overlap.

Scalable grounded neural memory The document in-
dex can be viewed as a memory where the keys are the
document embeddings. From this view, our work share mo-
tivations with works such as product key memory (Lample
et al., 2019), which enables sub-linear memory access in a
memory network (Weston et al., 2014; Graves et al., 2014;
Sukhbaatar et al., 2015), allowing these scalable memory
layers to be integrated into large language models. One main
difference is that our memories are grounded—each mem-
ory is associated with a document rather than unnamed value
vectors. This level of interpretability is crucial for applica-
tions like Open-QA, where users would require provenance
for a predicted answer to be trustworthy.

Unsupervised Corpus Alignment In sequence-to-
sequence models with attention (Bahdanau et al., 2014),
text is generated with latent selection of relevant tokens.
This results in a set of model-centric unsupervised
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alignments between target and source tokens. Analogously,
REALM also generates text with latent selection of relevant
documents. A by-product of our method is that we offer a
set of model-centric unsupervised alignments between text
in the pre-training corpus X and knowledge corpus Z .

6. Future Work
The work presented here is the minimal instantiation of a
family of REALM-like approaches where a representation
is pre-trained to perform reasoning over a large corpus of
knowledge on-the-fly during inference. We are particularly
optimistic about generalizations of this work to (1) struc-
tured knowledge, which would result in a generalization of
Peters et al. (2019) where we would also learn the decision
of which entities are informative, (2) the multi-lingual set-
ting, e.g., retrieving knowledge in a high-resource language
to better represent text in a low-resource language, and (3)
the multi-modal setting, e.g., retrieving images or videos
that can provide knowledge rarely observed in text.
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