
Multidimensional Shape Constraints

Maya R. Gupta * 1 Erez Louidor * 1 Olexander Mangylov * 1 Nobuyuki Morioka * 1 Taman Narayan * 1

Sen Zhao * 1

Abstract
We propose new multi-input shape constraints
across four intuitive categories: complements,
diminishers, dominance, and unimodality con-
straints. We show these shape constraints can
be checked and even enforced when training
machine-learned models for linear models, gener-
alized additive models, and the nonlinear function
class of multi-layer lattice models. Real-world
experiments illustrate how the different shape con-
straints can be used to increase explainability and
improve regularization, especially for non-IID
train-test distribution shift.

1. Introduction
Shape constraints are a classic way to characterize a func-
tion by whether its shape obeys certain properties (see e.g.,
Barlow et al. (1972); Groeneboom & Jongbloed (2014);
Chetverikov et al. (2018)). The most popular shape con-
straint in machine learning is monotonicity (see, e.g., Archer
& Wang (1993); Sill (1998); Howard & Jebara (2007);
Minin et al. (2010); Gupta et al. (2016)). For example,
suppose one is building a model to predict the price of a
house. Then one might expect the price to be a monoton-
ically increasing function with respect to square meters,
holding fixed any value of the other inputs such as location.

Shape constraints are useful in machine learning because
they aid interpretability: they provide ways to describe the
function in terms of everyday relationships between its in-
puts and outputs that hold everywhere. Shape constraints are
also semantically-meaningful regularizers that can improve
generalization, especially when the distribution shifts be-
tween the train and test data (Canini et al., 2016; You et al.,
2017). Shape constraints can also be imposed to ensure
some notions of AI safety, societal norms and deontological
ethics (Wang & Gupta, 2020).

*Equal contribution 1Google Research, Mountain View, Califor-
nia, USA. Correspondence to: Sen Zhao <senzhao@google.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Shape constraints historically have been defined in terms
of how the function responds to changes in a single input,
e.g. how house size affects its price, with modelers often
applying many such constraints simultaneously on different
inputs. Cotter et al. (2019a) extended this idea and pro-
posed two new shape constraints that are defined on pairs
of features that are complements with one another, such as
a measurement and its precision. For example, a model that
predicts whether a user will click on a web link might use as
features a: the past click-through-rate (CTR) for that link,
and b: the number of impressions that a was calculated from.
Intuitively, the model output should be more sensitive to the
past CTR a if the number of past impressions b used to cal-
culate that CTR was higher, since the model can then trust
the CTR to be more accurate. Cotter et al. (2019a) captured
this type of feature interaction with two different mathe-
matical formulations, which they termed Edgeworth and
trapezoid shape constraints, and showed these two-feature
shape constraints are broadly applicable whenever models
include a pair of inputs where input a is a measurement
correlated with the label y, and input b estimates how much
one can trust input a.

Inspired by that work, here we address the broader question,
“What multidimensional shape constraints can be specified
that would be useful to machine-learning practitioners?" We
identified four useful categories of multidimensional shape
constraints: complements, diminishers, dominance, and uni-
modality. We review and propose new shape constraints
spanning these four categories that we think are most valu-
able to practitioners, pictured in Fig. 1. We show that these
shape constraints can be expressed as linear inequality con-
straints for some function classes including flexible lattice
models, and thus can be efficiently checked for trained mod-
els. Moreover, we show that machine-learned models from
these function classes can be trained to respect these shape
constraints by minimizing empirical risk with the appropri-
ate linear inequality constraints on the model parameters.
We give intuitive examples of usage, and present experimen-
tal results on benchmark and real problems illustrating the
use and effectiveness of multi-input shape constraints for
interpretability and regularization of nonlinear models.

Multidimensional Shape Constraints

Figure 1. Illustration of prior and proposed shape constraints that hold for each a-b slice of the feature space, where a is the horizontal
feature and b is the vertical feature. Arrows (in blue) denote the function can only increase in that direction. The * on monotonic
dominance and range dominance is to remind readers there are additionally monotonicity constraints in a and b that are not shown; for
example, f(a, b) = 5a + 3b is monotonically dominant in a over b, but also increasing in a and b. A bigger arrow denotes a steeper
increase than a smaller arrow. The red lines with open-box-ends denote the range of the outputs over the line, with bigger open-boxes
denoting a larger output range. As shown, the trapezoid constraint imposes a twist shape that can equivalently be expressed in terms of
arrows or ranges, where for trapezoid the larger output range must also be a superset of the smaller output ranges.

2. Shape Constraint Properties
We considered many shape constraint definitions during our
investigation, but we propose only the ones we think will be
useful, based on the following criteria.

Intuitive: Can a data scientist easily understand the mean-
ing of the constraint and apply it appropriately to regularize
a model? Can an end user easily understand the meaning of
the constraint making it helpful in explaining a model?

Unit-sensitivity: Is the constraint sensitive or dependent on
how we measure or count inputs a and b? Unit sensitivity
can be a good thing if it enables us to capture more domain
knowledge, but can be a bad thing if it makes the constraint
too fragile or too difficult to specify.

Composability: Deep models are formed by composing
layers. If a shape constraint holds for f(x), what needs
to be true about g : R → R for the constraint to hold for
the composition g(f(x))? For example, for monotonicity
it is sufficient (though not necessary) for each layer to be
monotonic with respect to an input a for the multi-layer
model to be monotonic in a, making it possible to construct
monotonic deep models (You et al., 2017).

Verification and Training: To be useful for aiding in the
explanation of a machine-learned model, it must be com-
putationally tractable to check if a machine-learned model
satisfies the shape constraint. This requires that the shape
constraint can be efficiently expressed in terms of the pa-
rameters of the model. Further, we would like to be able
to train models that satisfy shape constraints. Thus, it is
helpful if the shape constraint can be expressed as a set of
linear inequality constraints on the parameters, as is true for
monotonicity and diminishing returns constraints for lattice
functions (You et al., 2017; Gupta et al., 2018), because
then training can be done using empirical risk minimization
subject to the necessary linear inequalities.

No Distribution Dependence: Shape constraints describe
the shape of a function and thus their definitions do not

depend on data, in contrast to data-dependent constraints
which are defined in terms of expectations on sample dis-
tributions (see e.g., Mann & McCallum (2007); Zafar et al.
(2017); Cotter et al. (2019b)).

Consider the goal of a “dominance" shape constraint that
feature a is more important than feature b. There are al-
ready many feature importance metrics, and most of these
can be readily checked given a trained model to interpret if
feature A is more important than feature B, but they are not
expressible as shape constraints. For example, one could
try to capture prior knowledge that the model f should be
more sensitive to feature A than feature B by requiring that
the variance of f(A, B̄,X) is bigger than the variance of
f(Ā, B,X), where Ā, B̄ denote the expectations of those
inputs, and the variance is taken over the joint distribution
PA,B,X . That might be a useful constraint, but whether it
holds depends on PA,B,X , and thus is not a shape constraint.
Similarly, measuring feature importance by the effect on val-
idation accuracy if you drop that feature is data-dependent.
In addition, for most prior feature importance metrics, it
is difficult to train a model that guarantees that a specified
feature a is more important than a specified feature b. We
restrict our attention to shape constraints in this paper.

3. Notation and Preliminaries
For n ∈ N we denote by [n] the set {1, 2, . . . , n}. For
x ∈ RD let x[d] denote the dth entry of x; if bounded we
denote its bounds by [`d, ud], and let Ld(x) and Ud(x) be
vectors obtained from x by replacing its dth entry by `d or
ud, respectively. Let ed ∈ [0, 1]D denote the one-hot vector
where ed[j] = 1 if j = d and ed[j] = 0 for j 6= d.

We consider functions f : RD → R and consider two
features indexed by a, b ∈ [D] as the features involved
in the shape constraints. For notational simplicity, some
of our shape constraint definitions will assume f is con-
tinuous and differentiable. However, all of the shape con-
straints can be applied to non-differentiable functions by

Multidimensional Shape Constraints

changing derivatives to differences in the standard manner.
For example, if f is increasing in input a, it means that
f(x[a] + ε) ≥ f(x[a]) for all x[a] and ε ≥ 0, and if f is
differentiable we write that the slope of f in the direction
x[a] is nonnegative: ∂f/∂x[a] ≥ 0 for all x.

We will analyze the proposed shape constraints for the fol-
lowing function classes, which have all been previously
shown to be particularly amenable to shape constraints. The
proposed shape constraints might also be verifiable or train-
able for other function classes, such as neural networks and
decision trees, but we leave that as an open question.

Linear: f(x) = α0 +
∑D
d=1 αdx[d].

Piecewise Linear Function (PLF): Given a set of K + 1
knot-value pairs {(ξk, βk)}Kk=0 ⊆ R2, where ξ0 < . . . <
ξK , we denote by PLF(x; {(ξk, βk)}) the univariate piece-
wise linear function interpolating the K + 1 knot-value
pairs. For k ∈ [K], let γk denote the slope of the kth linear
segment: (βk − βk−1)/(ξk − ξk−1).

Generalized Additive Model (GAM): f(x) =∑D
d=1 fd(x[d]) , where fd : R → R for d ∈ [D].

A GAM-PLF is a special case where each fd(x) is
PLF(x; {(ξd,k, βd,k)}), with slopes γd,k.

Lattice: A multidimensional interpolated look-up table,
such that the function parameters are the function values
sampled on a regular grid (Garcia & Gupta, 2009; Garcia
et al., 2012). See Fig. 5 in the Appendix for an example.
For x ∈ R1, a lattice is simply a PLF with uniform knots.
With enough look-up table parameters, one can fit arbitrary
bounded continuous functions. The look-up table structure
is helpful for imposing shape constraints (Gupta et al., 2016;
2018; Cotter et al., 2019a).

A D-dimensional lattice of size V∈ND consists of a reg-
ular D-dimensional grid of look-up table verticesMV ={

0, 1, . . . ,V[1]−1
}
× . . . ×

{
0, 1, . . . ,V[D]−1

}
. Thus,

V[d] is the number of vertices in the lattice in the dth dimen-
sion, and the grid has

∏D
d=1 V[d] vertices. We assume the

input vector x∈RD has been bounded (clipped if necessary),
shifted and scaled such that each x[d] lies in [0,V[d]−1].
We define the cell of x to be the set of its 2D neighboring
grid vertices given by N (x)=

{
bx[1]c, bx[1]c+1

}
× . . .×{

bx[D]c, bx[D]c+1
}
.

For each vertex v∈MV, there is a corresponding look-up
table parameter θv∈R. The lattice function is produced by
interpolating the grid’s parameters over each cell. While
there are many possible interpolation operators, here we
consider only the popular multilinear interpolation:

f(x) =
∑

v∈N (x)

θvΦv(x), (1)

where Φv(x) is the linear interpolation weight on vertex v

given by:

Φv(x) =

D∏
d=1

(
1 + (x[d]− v[d])(−1)Iv[d]=bx[d]c

)
, (2)

and I is the standard indicator function.

Calibrated Lattice: A generalization of a GAM-PLF,
where instead of simply summing PLF’s, the D PLF’s enter
a second layer that is a lattice (or ensemble of lattices) that
captures nonlinear feature interactions (Gupta et al., 2016).
The first layer of PLFs are called calibrators and are often
capped such that β0 = 0 and βK = 1 to control the do-
main for the second layer. Ensembles of calibrated lattices
perform similarly to random forests (Canini et al., 2016),
and calibrator and lattice layers can be cascaded into deep
lattice networks (You et al., 2017) that perform similarly to
DNN’s (You et al., 2017; Gupta et al., 2018; Cotter et al.,
2019a).

Ensemble: An ensemble assumes the existence of T base
models {ft(x)}where each ft : RD → R. The base models
may ignore some of the D inputs, essentially acting on only
a subset of the features. The ensemble outputs the sum
f(x) =

∑T
t=1 ft(x).

4. Dominance Shape Constraints
We propose new shape constraints to capture the prior knowl-
edge or a policy that feature a should be more important
than feature b. For example, in time series modeling, we
often believe that recent information should be more impor-
tant than past information at predicting future values. Or
if a model is trained to predict CTR for a web link from
feature a, the past CTR on that web link, and feature b, the
past mean CTR for the whole website, then one might want
to constrain the model to be more sensitive to a than b.

One option would be to require the model to always
respond more strongly to changes in input a than to changes
in input b, that is, for a differentiable model, require∣∣∣∂f(x)∂x[a]

∣∣∣ ≥ ∣∣∣∂f(x)∂x[b]

∣∣∣ for all x. This constraint is easy to verify
or guarantee for linear models, as it holds if the coefficient
on feature a has a larger magnitude than the coefficient on
feature b: |αa| ≥ |αb|. For more flexible functions, we can
say more if we also require the model to be monotonic with
respect to both features a and b:

Monotonic Dominance: ∂f(x)
∂x[a] ≥

∂f(x)
∂x[b] ≥ 0

This constraint can be expressed as a set of linear inequality
constraints for GAM and lattice models too, as detailed in
Table 1 with proofs in the Appendix. See Fig. 1 and Fig. 2
for illustrations.

Dominance and monotonic dominance are sensitive to the

Multidimensional Shape Constraints

Monotonic Dominance Range Dominance Edgeworth Trapezoid

Figure 2. Contour plots illustrating the different functions produced by training a calibrated lattice model with different 2D shape
constraints. All were trained on the same dataset to predict the probability that a person passes the bar given their GPA (horizontal axis)
and LSAT test score (vertical axis) (Wightman, 1998) (see Appendix for details). A lighter contour color indicates a higher probability.
All four plots were constrained to be monotonic in both GPA and LSAT (Wang & Gupta, 2020). Left: Trained with scaled monotonic
dominance of LSAT over GPA, consistent with folklore that LSAT is the single most important factor (US News, 2018). Middle Left:
Trained with range dominance of LSAT over GPA. Middle Right: Trained with Edgeworth complements constraint. Far Right: Trained
with the trapezoid constraint that higher GPA means that the model should be more sensitive to the LSAT score.

units in which a and b are defined. For example, suppose
one wishes to predict the increase in COVID cases after
a large live event given a, the number of people who
show up, and b, the number of bathroom stalls available
per person at the venue. We expect the cases to be a
monotonically increasing function of attendees a, and
a monotonically decreasing function of the bathroom
density b. One might wish to check or impose a dominance
constraint that attendees a is more important than bathroom
density b. However, clearly one-to-one is not the right
trade-off between attendees-and-bathroom-density, so we
also propose a scaled variant:

Scaled Monotonic Dominance: a monotonically domi-
nates b with respect to scale C ≥ 0 if ∂f(x)∂x[a] ≥ C

∂f(x)
∂x[b] ≥ 0.

Given a trained model, we can check if that model satisfies
scaled monotonic dominance for any C. Further, if we wish
to train a model that satisfies scaled monotonic dominance,
we simply need to architect the model with a first-layer
that multiplies input a by 1/C, and then enforce monotonic
dominance on the rest of the layers. See Fig. 2 for an
illustration.

For GAMs and two-layer calibrated lattice models, satisfy-
ing monotonic dominance requires the strong requirement
that the slope of the 1-d transform for feature a must be
steeper everywhere than the slope of the 1-d transform
on feature b anywhere; that is quite restrictive on the 1-d
feature transformations for a and b. For example, the model
could not learn to transform a and b into an approximation
of log a and log b using PLF’s. To allow the model to
learn flexible feature transformations for a and b, but still
capture an intuition that feature a should be more important
than feature b, we propose a mathematically more relaxed
dominance shape constraint:

Range Dominance: For any input x the range of possible
outputs f(x) must be bigger if one varies input a than if one
varies input b.

Returning to the example of predicting COVID cases from
a live event, bound the domain of a to the number of peo-
ple allowed at the venue (the capacity) amax, then range
dominance of a over b would require that for any choice
of a0 ∈ [1, amax] and any bathroom density b0 ∈ [0, 1],
keeping the bathroom density b fixed at b0 but evaluating
the model for a set to the minimum number of attendees
or the maximum number should change the predicted cases
f more than keeping the number of attendees a fixed at a0
and ranging the bathroom density from b = 0 to b = 1.

See Fig. 1 and Fig. 2 for illustrations. In Table 1 we give
the mathematical definition and the sufficient conditions
to achieve range dominance for different function classes
(proofs in the appendix). Range dominance enables more
flexible two-layer modeling than monotonic dominance.
Both range dominance and monotonic dominance are not
symmetric but are transitive.

5. Complements Shape Constraints
We first review and expand on two notions of complements
from Cotter et al. (2019a), and then propose a third shape
constraint that also captures complementarity. Table 6 in
the Appendix summarizes definitions and properties. Proofs
for all statements are in the Appendix.

In economics, Edgeworth complementarity says that a
feature a and feature b are complements if the marginal
value of feature a increases for larger values of feature
b (Amir, 2005). For example, having more books a in a
community’s library is more valuable if the community
literacy rate b is higher. Cotter et al. (2019a) proposed
codifying this as the Edgeworth shape constraint. For a

Multidimensional Shape Constraints

Name Monotonic Dominance Range Dominance

Definition ∂f(x)
∂x[a] ≥

∂f(x)
∂x[b] ≥ 0 for all x ∂f(x)

∂x[a] ≥ 0, ∂f(x)∂x[b] ≥ 0, and
f(Ua(x))− f(La(x)) ≥ f(Ub(x))− f(Lb(x))

Linear αa ≥ αb ≥ 0 αa, αb ≥ 0 & αa(ua − `a) ≥ αb(ub − `b)

GAM-PLF γa,i ≥ γb,j ≥ 0,∀i ∈ [Ka], j ∈ [Kb] γa,i ≥ 0, γb,j ≥ 0,∀i ∈ [Ka], j ∈ [Kb] and
βa,Ka

− βa,0 ≥ βb,Kb
− βb,0

Lattice θv+ea+eb
≥ θv+ea

, θv+ea+eb
≥ θv+eb

,
θv+ea

≥ θv, θv+eb
≥ θv,

θv+eb
≤ θv+θv+ea+eb

2 ≤ θv+ea

∀v ∈MV, v[a] ≤ V[a]− 2, v[b] ≤ V[b]− 2

θv+ea+eb
≥ θv+ea

, θv+ea+eb
≥ θv+eb

,
θv+ea

≥ θv, θv+eb
≥ θv,

θUa(v) − θLa(v) ≥ θUb(v) − θLb(v), ∀v ∈MV

Cal. Lattice Lattice constraints & GAM-PLF constraints Lattice constraints & capped increasing calibrators

Composition
∑
t ft(x) holds, and g(f(A,B)) holds if g is

increasing

∑
t ft(x) holds, and g(f(A,B)) holds if g is

increasing and affine

Table 1. Dominance definitions, sufficient conditions, and properties for a dominates b. Proofs in the Appendix.

continuous twice-differentiable function:

Edgeworth: ∂
∂x[b]

(
∂f(x)
∂x[a]

)
≥ 0.

Note that one can satisfy the Edgeworth shape constraint
without f being monotonic in either feature a or b. For
example, suppose a model predicts how fun a vacation will
be, and that feature a represents the prevalence of mosquitos,
and feature b represents packing bug spray. The more bugs
there are, the more value there is in packing more bug spray.
However, neither bugs nor carrying bug spray is a positive
feature for a vacation.

Economists might say that Edgeworth is equivalent to su-
permodularity if it holds for the entire input space (Amir,
2005; Topkis, 1978), though the machine learning literature
tends to use the term supermodular only for Boolean in-
puts. There is prior work in learning functions guaranteed
to be supermodular (or submodular) on Boolean inputs by
learning good weights on submodular component functions
(Tschiatschek et al., 2014; Dolhansky & Bilmes, 2016). By
Schwarz’s Theorem, the Edgeworth shape constraint is sym-
metric, but it is not transitive.

The major downside to Edgeworth constraints is that they
are difficult to guarantee for deep models because monotone
transformations of Edgeworth functions are not necessarily
still Edgeworth (Amir, 2005; Cotter et al., 2019a). So Cotter
et al. (2019a) proposed a second more robust formalization
of the notion of complements that they called a trapezoid
shape constraint. The trapezoid constraint differs from Edge-

worth in that its definition is asymmetric on a and b, and
assumes that f is monotonic with respect to a. Trapezoid
requires that for larger values of b, the range of possible
outputs if you vary a must get bigger, forming a trapezoid
of possible outputs (see Fig. 1). Trapezoid is useful when
feature a is a measurement correlated with the training la-
bel, and b captures the precision or trustworthiness of the
measurement a, and thus the higher the precision b the more
the model output should vary as a varies. For continuous
differentiable functions, trapezoid is equivalent to:

Trapezoid: ∂f(x)/∂x[a] ≥ 0 and ∂f(La(x))/∂x[b] ≤ 0
and ∂f(Ua(x))/∂x[b] ≥ 0.

Trapezoid is nicer than Edgeworth for deep models because
if f is trapezoid on a − b, then g(f) is also trapezoid on
a− b if g is monotonically increasing (Cotter et al., 2019a).

We propose a third shape constraint that captures a different
sense of complementarity: let joint monotonicity require the
model to be monotonically increasing along the diagonal of
every a− b slice of the feature space, as illustrated in Fig.
1. For differentiable functions:

Joint Monotonicity: ∂f(x)
∂x[a] + ∂f(x)

∂x[b] ≥ 0.

Joint monotonicity is weaker than requiring the function
to be monotonic with respect to each of the constrained
features individually. For example, suppose f = 5ab−2a+
9b models the profit of a hotel given a hotel beds and b hotel
guests. Then the profit is monotonically increasing w.r.t. to
guests b, but not w.r.t. beds a, but it is jointly monotonic
along the diagonal of +1 bed for every +1 guest.

Multidimensional Shape Constraints

The following conditions are sufficient to make a model
jointly monotonic on a and b (proofs in the Appendix; see
Table 6 in the Appendix to compare and contrast these
conditions with Edgeworth and trapezoid conditions):

Linear: αa + αb ≥ 0.

GAM-PLF: γa,i + γb,j ≥ 0 ∀i ∈ [Ka], j ∈ [Kb].

Lattice: θv ≤
θv+ea+θv+eb

2 ≤ θv+ea+eb
, ∀v ∈MV,

v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2.

Calibrated Lattice: The lattice layer must satisfy the
lattice conditions, and the calibrators for a and b must be
increasing and affine with the same slope.

Composition: If f is jointly monotonic and g is increasing,
then g(f) is jointly monotonic. If each ft is jointly
monotonic, then so is an ensemble

∑
t ft.

Mathematically, joint monotonicity is analogous to the
monotonic dominance constraint we propose in Section 4,
in that both constraints require the function to be monotonic
along a diagonal direction of every a− b subspace.

Joint monotonicity is unit-sensitive. For example, consider
a model that predicts sale price of a house based on the size
of the house (a) and the number of bedrooms (b), as well
as other features. For a fixed house size a, having more
bedrooms is not necessarily good for the sale price as the
bedrooms become too small. But if we increase a by some
size for each bedroom we add, we may be confident that a
larger house with more bedrooms will sell for more. That
is, we believe there exists some ray in the a− b space along
which the model should be monotonic. In such cases, we
propose that a relaxed version of the joint monotonicity
constraint may be more appropriate:

Scaled Joint Monotonicity: a is jointly monotonic with b
with respect to scale C if C ∂f(x)

∂x[b] + ∂f(x)
∂x[a] ≥ 0.

This constraint can be achieved, e.g., with a two-layer model
by imposing the joint monotonicity constraints on the sec-
ond layer, and by allowing the first layer to only calibrate
a and b, where their calibrators are affine transformations.
The slopes of these transformations can additionally be con-
strained to be sensible.

Two or more of these complements shape constraints may
be useful at once. For example, a firm may believe that its
profit satisfies scaled joint monotonicity in how many new
machines it buys (a) and how much training it pays for (b);
and Edgeworth in that the more training they buy, the more

value they will get out of their machines.

These complements shape constraints can be extended to
address larger sets of complements features, as occurs in
such diverse settings as multi-item auctions (Roth, 2002)
and manufacturing (Milgrom et al., 1991).

6. Diminisher Shape Constraints
We say that a feature b diminishes feature a if the model
cares less about feature a if the value for feature b is bigger.
Classic examples are substitutable features, like predicting
the amount of time a person spends watching videos given
the Boolean features a indicating if the person has a sub-
scription to Netflix, and b indicating if the person has a
subscription to HBO.

Diminishers also occur in utility models where there is a
finite budget. For example, suppose a model predicts the
happiness of customers if two products A and B are put on
sale for a and b off respectively. Some customers cannot
afford to buy both A and B. So the value of either being on
sale is of less value given that the other is also on sale.

Diminishers do not need to be substitutes. For example,
economists believe many humans value an absolute discount
of a less if the sales price b is higher (Husemann-Kopetzky,
2018; Tversky & Kahneman, 1981). Or, in ranking coffee
shops, the farther a coffee shop is from you, the less you
tend to care about its star rating.

Mathematically, diminishers are simply complements in re-
verse, so we propose modeling them with analogous shape
constraints. For example, reverse Edgeworth, which is
equivalent to submodularity for Boolean inputs, and which
for continuous differentiable functions can be expressed:

Reverse Edgeworth: ∂
∂x[b]

(
∂f(x)
∂x[a]

)
≤ 0.

7. Unimodality Shape Constraints
The last category of shape constraints we consider are func-
tions where, for any fixed value of the other features, the
function is unimodal over some subset of features such that
there exists a global minimizer and the function is increasing
along any ray starting at the global minimizer:

Unimodal: Let X ⊂ RD be a convex set. If there exists
some x∗ ∈ X such that f(x∗ + εv) ≥ f(x∗ + δv) for
any ε ≥ δ ≥ 0 and v ∈ RD such that x∗ + εv ∈ X and
x∗ + δv ∈ X , then f is unimodal on X .

Examples of unimodal functions are the optimal location on
the soccer field for a free kick, and progesterone levels over
the menstrual cycle (Dunson, 2005).

Stout (2008) fits 1-dimensional unimodal functions using

Multidimensional Shape Constraints

0 2 4 6 8 10

0.
0

0.
5

1.
0

1.
5

2.
0

c(
x)

0.0 0.5 1.0 1.5 2.0

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

f(
x)

0 2 4 6 8 10

−
0.

4
−

0.
2

0.
0

0.
2

0.
4

h(
x)

 =
 f(

c(
x)

)

Figure 3. Example two-layer unimodal function. Left: The first
layer is a 1D monontonically increasing PLF c(x). Middle: The
second layer is a 1D unimodal PLF f(x) with its minimizer fixed
at 1.0. Right: The composition h(x) = f(c(x)) is unimodal with
an arbitrary minimizer (here, roughly 7.8)

two separate isotonic regressions. Similarly, Köllmann
et al. (2014) models 1-dimensional unimodal functions us-
ing Bernstein–Schoenberg splines, which can also be trained
with linear inequality constraints. Dunson (2005) consid-
ered this problem under the name umbrella-order restriction
for the means of Bayesian models. All of these strategies
require either already knowing the minimizer, or require
consideration of all possible candidates for the minimizer.

A special case of unimodality is jointly convex functions,
which can be achieved by summing jointly convex ba-
sis functions (Kim et al., 2004; Magnani & Boyd, 2009).
DNN’s with ReLU activations can be constrained to be
jointly convex over a subset of features (Dugas et al., 2009;
Amos et al., 2017). GAMs have also been constrained for
convexity (Pya & Wood, 2015; Chen & Samworth, 2016),
as have calibrated lattice models (Gupta et al., 2018).

Here we show that one can verify or train multi-dimensional
unimodal functions, without requiring convexity, by using
two-layer models.

First, consider the simple 1D case. We propose a two-layer
model, where each layer is a PLF. For the second layer PLF,
we impose unimodality with a pre-fixed minimizer x∗ at the
center knot k = K/2 + 1 for odd K, then constrain the PLF
to be increasing to the right of x∗ and decreasing to the left
of x∗. Then let the first layer PLF be an arbitrary monotonic
1D function, which nonlinearly stretches the input domain
of the second layer, so that the x∗ of the second layer can be
achieved by any raw input value to the first layer PLF. See
Fig. 3 for an example.

For a multidimensional lattice function, one can check if it
is unimodal by finding its minimal look-up table parameter
value x∗ and checking if for every look-up table vertex v,
the directional derivative in direction v−x∗ is non-negative.
The training strategy is similar to the 1D case: make the
first layer monotonically increasing calibrators to give the
model flexibility to place the global minimizer, and make

the second layer a lattice layer whose look-up table must
have an odd number of knots in each dimension, and con-
strain the center knot to be the global minimizer x∗. Then,
sufficient (but not necessary) constraints on the second layer
are that every edge in the lattice needs to be increasing in
the direction away from the center. Full details, proofs and
illustrations can be found in the Appendix.

8. Training With Multi-d Shape Constraints
Let {xi, yi} be a train set with i = 1, . . . , n training ex-
ample pairs where xi ∈ RD and yi ∈ R for regression
problems or yi ∈ [−1, 1] for classification problems. Let
` be a loss of interest, e.g. squared error or logistic loss.
Let θ denote the parameters of any f ∈ F , where F is a
function class where the desired shape constraints can be
expressed as linear inequalities on the parameters θ (as we
have shown is the case for the proposed shape constraints for
linear, GAM-PLF, lattice, calibrated lattice, ensembles, and
g(f()) multi-layer models). Collect the linear inequalities
corresponding to the set of desired shape constraints into
the matrix equation ST θ ≥ 0. Then train by minimizing the
empirical risk subject to the linear inequality constraints:

arg min
θ

n∑
i=1

l((f(xi; θ), yi)

such that ST θ ≥ 0. (3)

To solve (3), we use projected stochastic gradient descent in
TensorFlow, and the TensorFlow Lattice 2.0 library’s PLF
layers and lattice layers. After each minibatch, we project
the model parameters toward the constraint set using ten
steps of Dykstra’s algorithm, with a longer final projection to
ensure constraint satisfaction to within numerical precision.

Open-source code has been pushed to the Tensor-
Flow Lattice 2.0 library and can be downloaded at
github.com/tensorflow/lattice. Train time with 2D shape
constraints was 10-20% longer than train time without 2D
shape constraints (data in the Appendix).

9. Experiments
We present experiments on public and proprietary real-world
problems illustrating training with the proposed shape con-
straints, including the first public experimental evidence
with Edgeworth constraints (Cotter et al. (2019a) only pre-
sented experiments with trapezoid constraints).

For all experiments, we used the default ADAM stepsize of
.001, ran the optimization of (3) until train loss converged,
and used squared error as the training loss l in (3). All mod-
els that use PLFs use 10 keys Kd = 10 for each PLF, fixed
before training to the train data quantiles. For each metric,
we report a 95% margin of error, computed under a Gaus-

Multidimensional Shape Constraints

sian assumption as plus-or-minus 1.96 times the estimated
standard error.

9.1. Weekly Sales Transactions (Regression)

We compare models that forecast next week’s sales based
on sales in the past weeks (Kaggle, 2020c). The dataset
contains purchases of 811 products with a feature for the
normalized transactions for each of the last 52 weeks. We
train lattice models using the last K ∈ {2, . . . , 10} weeks
of transactions as features to predict the transactions of the
most recent week.

Results in Fig. 4 are averaged over 100 random 80-20
train/test splits. The figure shows that the unconstrained
calibrated lattice model overfits to the data as we use a
longer transaction history as features, reflected by the fact
that the Train MSE improves yet the Test MSE deterio-
rates. Imposing monotonicity constraints on past history
(i.e. any increase in prior sales should only ever increase
our prediction) helps alleviate the issue, and imposing domi-
nance constraints that encode our intuition that recent weeks
should matter more than distant weeks helps even more.

2 4 6 8 10

0.
06

0.
10

0.
14

Past Weeks

Te
st

 M
S

E

Unconstrained
Mono
Range Dom
Mono Dom

2 4 6 8 10

0.
06

0.
10

0.
14

Past Weeks

Tr
ai

n
M

S
E

Figure 4. The Test and Train MSE of lattice models with different
constraints on the Weekly Sales Transactions data. The x-axis
shows what happens if you include more past weeks as features in
the model. The shaded area shows the 95% confidence region of
the performance.

9.2. Mount Rainier Climbing (Regression)

In this experiment, we compare the performance of different
models in predicting the daily success probability of climb-
ing Mount Rainier (Kaggle, 2020a) for 464 days based on
five features: temperature, battery voltage, relative humid-
ity, solar radiation and the month of the climbing day. On
days people didn’t climb (mostly during winter seasons),
we labeled as having success probability zero.

The results, shown in Table 2, are averaged over 100 ran-
dom 80-20 train/test splits. The calibrated lattice model
does better than the GAM-PLF, suggesting that feature inter-
actions are important. Preliminary analysis of the marginals
of the data suggested to us that climbing success might be
unimodal in humidity and month, consistent with a story

that average-humidity summer days are the best time to
climb Mt. Rainier. In fact, imposing 2D unimodality on
humidity-month slices lowered Test MSE.

Table 2. Results of different models on the Mount Rainer Climbing
dataset from Kaggle.

Model Train MSE Test MSE

GAM-PLF 0.029 ± 0.0004 0.032 ± 0.0018
Calib. Lattice 0.022 ± 0.0004 0.030 ± 0.0019
Above + Unimodal 0.023 ± 0.0004 0.027 ± 0.0018

9.3. Play Store App Installs Dataset (Regression)

The Google Play Store Apps dataset (Kaggle, 2020b) con-
tains various pieces of information about individual apps.
We trained a calibrated lattice model on D = 5 features:
log real-valued number of reviews, average rating, price,
download size, and categorical content rating. The label
was bucketed number of times the app has been installed:
we used the log of the lower bound of each interval as our
label, and filtered for apps that have been installed at least
once, leaving N = 10, 285 examples.

We ran two sets of experiments. The first set used a non-
IID train/test split based on a 6th piece of information, the
app category: we trained on the most common category
"Family"(18 percent of samples), and tested on the other
app categories (82 percent of samples). The second set of
experiments used 80/20 train/test IID random splits, and
used the app category as a 6th feature.

We imposed three common sense monotonicity constraints
that installs are increasing number of reviews, increasing
in average rating, and decreasing in price. We tested an
Edgeworth constraint that number of reviews and average
rating are complements, with the motivation that lots of re-
views are a better predictor of installs if the ratings are good,
and high ratings are a more useful and reliable predictor
of installs if there are sufficiently many reviews. We also
tested range dominance on different feature interactions to
better understand the underlying data, and found that the
best dominance constraints were that number of reviews
dominates price, and price dominates average rating, which
are the ones reported in Tables 3 and 4. We also report
imposing all the shape constraints of the above rows.

For the non-IID experiments, Table 3 shows that the con-
strained models never hurt Test MSE, and the dominance
constraints improved the Test MSE. Further, one can ex-
plain what the constrained models are doing in terms of
their shape constraints, which makes them easier to under-
stand and debug. As expected, train MSE’s are a little higher
for the constrained models.

Table 4 shows the results averaged over 100 random IID

Multidimensional Shape Constraints

Table 3. Results on the Play Store dataset from Kaggle for 100
retrains of a fixed non-IID train/test split and D = 5 features
(randomness due to initialization and optimization).

Model Train MSE Test MSE

Unconstrained 1.161 ± 0.0003 1.279 ± 0.0028
Mono. 1.198 ± 0.0009 1.276 ± 0.0028
Mono. + Edge. 1.199 ± 0.0009 1.279 ± 0.0032
Mono. + Dom. 1.189 ± 0.0003 1.250 ± 0.0020
All Constraints 1.189 ± 0.0003 1.252 ± 0.0020

80/20 train/test splits with D = 6 features. Because the
train/test is IID, and because there is more train data, there
is less need to regularize, and the Test MSE’s are all statisti-
cally indistinguishable from the unconstrained model. Still,
the constrained models can be explained in terms of their
shape constraint properties, which also make these models
more predictable and thus easier to debug.

Table 4. Results on the Play Store dataset from Kaggle for 100
different IID 80/20 train/test splits and D = 6 features.

Model Train MSE Test MSE

Unconstrained 1.232 ± 0.0028 1.234 ± 0.0112
Mono. 1.230 ± 0.0031 1.236 ± 0.0119
Mono. + Edge. 1.233 ± 0.0025 1.229 ± 0.0091
Mono. + Dom. 1.236 ± 0.0029 1.237 ± 0.0097
All Constraints 1.236 ± 0.0028 1.246 ± 0.0093

9.4. User Intent Prediction (Classification)

We predict the user’s intent given a query between two
classes; the data is Google proprietary. We use a non-IID
split: we train on 300K labeled samples from the U.S.,
and test on 350K from other countries. Of the D = 19
features, based on domain expertise, a priori 11 features
were constrained to be monotonic, 4 feature pairs were
chosen for range dominance, 11 feature pairs were chosen as
complements and 3 feature pairs were chosen as diminishers,
for which we applied either Edgeworth/reverse Edgeworth
or trapezoid/reverse trapezoid constraints. The model was
an ensemble of 50 calibrated lattices with each base model
seeing 6-10 of the D = 19 possible features (Canini et al.,
2016). We did not try joint monotonicity or monotonic
dominance for this problem as they force the calibrators to
be linear, which we knew would reduce the model flexibility
too much given the large train set. All models were trained
for 100 epochs; longer training and smaller lattices show
similar trends but with worse Test MSE - see the Appendix.

While this is a classification problem, we trained with
squared-error loss to produce stable prediction scores; Table
5 shows the Train and Test MSE averaged over 5 runs. As

expected, Train MSE increases slightly as more constraints
are added, but the monotonic models with dominance, Edge-
worth, and both dominance and Edgeworth constraints have
slightly better Test MSE compared to the monotonic only
baseline. In contrast, trapezoid appears to hurt performance
by Test MSE a little. The main advantage is that applying
these constraints guarantees the model is behaving in rea-
sonable and explainable ways, and its greater predictability
makes debuggging model errors easier.

Table 5. Results on User Intent Prediction for 5 retrains of a fixed
non-IID train/test split (randonmess due to initialization and opti-
mization).

Model Train MSE Test MSE

Mono. 0.666 ± 0.0001 0.752 ± 0.0002
Mono. + Dom. 0.669 ± 0.0001 0.751 ± 0.0002
Mono. + Edge. 0.670 ± 0.0001 0.751 ± 0.0001
Mono. + Edge. + Dom. 0.673 ± 0.0001 0.750 ± 0.0002
Mono. + Trap. 0.686 ± 0.0001 0.764 ± 0.0002
Mono. + Trap. + Dom. 0.695 ± 0.0002 0.766 ± 0.0001

10. Conclusions
We compared and contrasted new and recent definitions for
multidimensional shape constraints. Shape constraints play
two key roles for interpretability: if applied, we can explain
the feature interactions, and we can test different 2D shape
constraints and see the effect to understand whether certain
interactions fit or fight the data. Experimentally, we showed
applying relevant shape constraints can regularize models
and improve test metrics, particularly in non-IID settings.

We found that a key differentiator between the definitions is
how easy the different constraints are to apply to two-layer
models for flexible modeling. The proposed joint mono-
tonicity and monotonic dominance satisfy intellectually for
their simplicity: constrain the model to be increasing along
a direction in the 2D a-b subspace (see Fig. 1). However,
we found these two constraints difficult to use in practice
because they overconstrained the calibrator layer. We found
Edgeworth to be the most broadly applicable and useful
2D shape constraint for use with ensembles of two-layer
calibrated lattices (which have similar flexibility as random
forests (Canini et al., 2016)), and easy to explain to non-
experts. We saw trapezoid performed worse than Edgeworth,
probably due to its greater restrictions on the calibrator layer.
We found range dominance to also be useful and easy to ap-
ply. The unimodality shape constraints were helpful, and are
promising for training functions that one wants to minimize
(as in Amos et al. (2017)), but more research is needed.

Multidimensional Shape Constraints

References
Amir, R. Supermodularity and complementarity in eco-

nomics: An elementary survey. Southern Economic Jour-
nal, 71(3):636–660, 2005.

Amos, B., Xu, L., and Kolter, J. Z. Input convex neural
networks. ICML, 2017.

Archer, N. P. and Wang, S. Application of the back propa-
gation neural network algorithm with monotonicity con-
straints for two-group classification problems. Decision
Sciences, 24(1):60–75, 1993.

Barlow, R. E., Bartholomew, D. J., and Bremner, J. M.
Statistical inference under order restrictions; the theory
and application of isotonic regression. Wiley, 1972.

Canini, K., Cotter, A., Fard, M. M., Gupta, M. R., and
Pfeifer, J. Fast and flexible monotonic functions with
ensembles of lattices. Advances in Neural Information
Processing Systems (NeurIPS), 2016.

Chen, Y. and Samworth, R. J. Generalized additive and
index models with shape constraints. Journal Royal Sta-
tistical Society B, 2016.

Chetverikov, D., Santos, A., and Shaikh, A. M. The econo-
metrics of shape restrictions. Annual Review of Eco-
nomics, 2018.

Cotter, A., Gupta, M. R., Jiang, H., Louidor, E., Muller, J.,
Narayan, T., Wang, S., and Zhu, T. Shape constraints for
set functions. ICML, 2019a.

Cotter, A., Jiang, H., Wang, S., Narayan, T., Gupta, M. R.,
You, S., and Sridharan, K. Optimization with non-
differentiable constraints with applications to fairness,
recall, churn, and other goals. JMLR, 2019b.

Dolhansky, B. and Bilmes, J. Deep submodular functions:
Definitions and learning. NeurIPS, 2016.

Dugas, C., Bengio, Y., Bélisle, F., Nadeau, C., and Garcia, R.
Incorporating functional knowledge in neural networks.
JMLR, 2009.

Dunson, D. A transformation approach for incorporating
monotone or unimodal constraints. Biostatistics, 2005.

Garcia, E. K. and Gupta, M. R. Lattice regression. NeurIPS,
2009.

Garcia, E. K., Arora, R., and Gupta, M. R. Optimized
regression for efficient function evaluation. IEEE Trans.
Image Processing, 21(9):4128–4140, September 2012.

Groeneboom, P. and Jongbloed, G. Nonparametric esti-
mation under shape constraints. Cambridge Press, New
York, USA, 2014.

Gupta, M. R., Cotter, A., Pfeifer, J., Voevodski, K., Canini,
K., Mangylov, A., Moczydlowski, W., and Esbroeck, A. V.
Monotonic calibrated interpolated look-up tables. Jour-
nal of Machine Learning Research, 17(109):1–47, 2016.
URL http://jmlr.org/papers/v17/15-243.
html.

Gupta, M. R., Bahri, D., Cotter, A., and Canini, K. Dimin-
ishing returns shape constraints for interpretability and
regularization. Advances in Neural Information Process-
ing Systems (NeurIPS), 2018.

Howard, A. and Jebara, T. Learning monotonic transforma-
tions for classification. Advances in Neural Information
Processing Systems (NeurIPS), 2007.

Husemann-Kopetzky, M. Handbook on the Psychology of
Pricing. Pricing School Press, New York, USA, 2018.

Kaggle. Kaggle Mount Rainier Weather
and Climbing Data, 2020a. URL https:
//www.kaggle.com/codersree/
mount-rainier-weather-and-climbing-data.

Kaggle. Kaggle Google Play Store Apps Data, 2020b.
URL https://www.kaggle.com/lava18/
google-play-store-apps.

Kaggle. Kaggle Weekly Sales Transactions, 2020c.
URL https://www.kaggle.com/crawford/
weekly-sales-transactions.

Kim, J., Lee, J., Vandenberghe, L., and Yang, C. Techniques
for improving the accuracy of geometric-programming
based analog circuit design optimization. Proc. IEEE In-
ternational Conference on Computer-aided Design, 2004.

Köllmann, C., Bornkamp, B., and Ickstadt, K. Unimodal
regression using Bernstein–Schoenberg splines and penal-
ties. Biometrics, 70(4), 2014.

Magnani, A. and Boyd, S. P. Convex piecewise-linear fitting.
Optimization and Engineering, 2009.

Mann, G. S. and McCallum, A. Simple, robust, scalable
semi-supervised learning with expectation regularization.
ICML, 2007.

Milgrom, P., Qian, Y., and Roberts, J. Complementarities,
momentum, and the evolution of modern manufacturing.
The American Economic Review, 1991.

Minin, A., Velikova, M., Lang, B., and Daniels, H. Com-
parison of universal approximators incorporating partial
monotonicity by structure. Neural Networks, 23(4):471–
475, 2010.

Pya, N. and Wood, S. N. Shape constrained additive models.
Statistics and Computing, 2015.

http://jmlr.org/papers/v17/15-243.html
http://jmlr.org/papers/v17/15-243.html
https://www.kaggle.com/codersree/mount-rainier-weather-and-climbing-data
https://www.kaggle.com/codersree/mount-rainier-weather-and-climbing-data
https://www.kaggle.com/codersree/mount-rainier-weather-and-climbing-data
https://www.kaggle.com/lava18/google-play-store-apps
https://www.kaggle.com/lava18/google-play-store-apps
https://www.kaggle.com/crawford/weekly-sales-transactions
https://www.kaggle.com/crawford/weekly-sales-transactions

Multidimensional Shape Constraints

Roth, A. E. The economist as engineer: Game theory,
experimentation, and computation as tools for design
economics. Econometrica, 70(4):1341–1378, 2002.

Sill, J. Monotonic networks. Advances in Neural Informa-
tion Processing Systems (NeurIPS), 1998.

Stout, Q. Unimodal regression via prefix isotonic regression.
Computational Statistics and Data Analysis, 2008.

Topkis, D. Minimizing a submodular function on a lattice.
Operations Research, 78(2):302–321, 1978.

Tschiatschek, S., Iyer, R., Wei, H., and Bilmes, J. Learning
mixtures of submodular functions for image collection
summarization. NeurIPS, 2014.

Tversky, A. and Kahneman, D. The framing of decisions
and psychology of choice. Science, 1981.

US News. 5 traits that help people get into top law schools,
2018. URL https://www.usnews.com.

Wang, S. and Gupta, M. R. Deontological ethics by mono-
tonicity shape constraints. In AIStats, 2020.

Wightman, L. LSAC national longitudinal bar passage study.
Law School Admission Council, 1998.

You, S., Canini, K., Ding, D., Pfeifer, J., and Gupta,
M. R. Deep lattice networks and partial monotonic func-
tions. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2017.

Zafar, M. B., Valera, I., Rodriguez, M. G., and Gummadi,
K. P. Fairness constraints: Mechanisms for fair classifica-
tion. In AIStats, 2017.

https://www.usnews.com

Multidimensional Shape Constraints

11. Appendix: Comparison of Complements
Shape Constraints

In Table 6, we compare and contrast the Edgeworth and
trapezoid constraints proposed in Cotter et al. (2019a) with
the proposed joint monotonicity constraint that captures
a different notion of complementarity. Proofs for all the
results in the Table are given in the next section.

12. Appendix: Proofs
12.1. Notation

Throughout this section, for a function f : RD → R we
denote its partial derivative with respect to the ith input
variable by ∂if . For a univariate function f we denote its
derivative by f ′. For a D-dimensional lattice of size V we
denote the domain of its function byMV = [0,V[1]−1]×
. . .× [0,V[D]−1].

12.2. Tools

To prove our results on lattices we’ll need the following
lemma, which gives a formula for the partial derivative of a
lattice function.

Lemma 1. Let f : RD → R be the function of a lattice with
dimension D, size vector V and vertex values {θv}v∈MV

.
Then for all d ∈ [D], and x ∈ Mv with x[d] 6∈ Z (i.e. x
does not lie on the boundary of two adjacent lattice cells in
the dth direction)

∂df(x) =
∑

v∈N (x)

Φv(x)(θdved,x − θbvcd,x),

where dved,x is v+ed, if v[d]=bx[d]c, or v, otherwise, and
bvcd,x=dved,x−ed.

Proof. Let x satisfy the requirements of the lemma.
By (1), ∂df(x)=

∑
v∈N (x) θv∂dΦv(x). Denoting by

λ(v, x)=1+(x−v)(−1)Iv=bxc , for x∈R and v∈N, we get

∂df(x) =
∑

v∈N (x)

θv∂d

D∏
i=1

λ(v[i],x[i])

=
∑

v∈N (x)

θv(−1)Iv[d]=bx[d]c
∏
i 6=d

λ(v[i],x[i]),

, where we used the fact that for x ∈ R \ Z, ∂λ/∂x =
(−1)Iv=bxc . Partitioning the set N (x) of size 2D into the
2D−1 pairs {(v, dved,x) : v ∈ N (x),v = bvcd,x}, we
may regroup the summands to obtain

∂df(x) =
∑

v∈N (x)
v=bvcd,x

(
θdved,x − θbvcd,x

)∏
i6=d

λ(v[i],x[i]) (4)

Now, observe that 1 = λ(bx[d]c,x[d])+λ(bx[d]c+1,x[d]).
Thus, for v ∈ N (x) with v = bvcd,x, it holds that∏
i 6=d

λ(v[i],x[i]) =
(
λ(bx[d]c,x[d]) + λ(bx[d]c+1,x[d])

)
·

∏
i 6=d

λ(v[i],x[i])

= Φv(x) + Φdved,x(x). (5)

Substituting (5) into (4), we get

∂df(x) =
∑

v∈N (x)
v=bvcd,x

(
θdved,x − θbvcd,x

)
(Φv(x) + Φdved,x(x))

=
∑

v∈N (x)

Φv(x)
(
θdved,x − θbvcd,x

)
.

12.3. Monotonic Dominance Results

Here are formal statements and proofs for our results on
monotonic dominance.

12.3.1. MONOTONIC DOMINANCE CRITERIA FOR
GAMS

Proposition 1. Let f(x) =
∑D
d=1 fd(x[d]) be a GAM.

Then feature a monotonically dominates feature b in f iff
f ′a ≥ f ′b ≥ 0

Proof. Directly follows from the definition and that ∂df =
f ′d.

Corollary 1. Let f : RD → R be a D-dimensional linear
model with parameters {αd}Dd=0. Then feature a monotoni-
cally dominates feature b iff αa ≥ αb ≥ 0.

Proof. Follows from Proposition 1 because f can be re-
garded as a GAM with fd(x) = αdx+ α0/D.

Corollary 2. Consider the GAM-PLF
f(x)=

∑D
d=1 PLF(x[d]; {(ξd,k, βd,jk)}Kd

k=1). Then
feature a monotonically dominates feature b iff γa,j ≥ γb,k
for all j ∈ [Ka − 1],k ∈ [Kb − 1].

12.3.2. MONOTONIC DOMINANCE CRITERIA FOR
LATTICE MODELS

Proposition 2. Let f be a function for a lattice with size
V, dimension D, and vertex values {θv}. Assume f is
monotonically increasing in features a and b. Then feature
a monotonically dominates feature b iff for all v ∈ MV

with v[a] ≤ V[a]− 2 and v[b] ≤ V[b]− 2,

θv+eb
≤ θv + θv+ea+eb

2
≤ θv+ea

. (6)

Multidimensional Shape Constraints

Name Edgeworth Trapezoid Jointly Monotonic
Cotter et al. (2019a) Cotter et al. (2019a)

Definition ∂
∂x[b]

(
∂f(x)
∂x[a]

)
≥ 0 ∂f(x)

∂a ≥ 0 & ∂f(La(x))
∂x[b] ≤ 0 &

∂f(Ua(x))
∂x[b] ≥ 0

∂f(x)
∂x[a] + ∂f(x)

∂x[b] ≥ 0

Example bugs & bug spray star rating & # reviews hotel guests & hotel beds

Symmetric yes no yes

Transitive no no no

Linear holds degenerately doesn’t hold (if αb 6= 0) αa + αb ≥ 0

GAM-
PLF

holds degenerately doesn’t hold (if fb is not constant) γa,i + γb,j ≥ 0 ∀i ∈ [Ka], j ∈ [Kb]

Latticea θv+ea − θv ≥ θv+ea+eb
− θv+eb

,
∀v ∈MV,
v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2

f is increasing in feature a &
θLa(v) ≥ θLa(v)+eb

&
θUa(v) ≤ θUa(v)+eb

,
∀v ∈MV,v[b] ≤ V[b]− 2

θv ≤
θv+ea+θv+eb

2 ≤ θv+ea+eb
,

∀v ∈MV,
v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2

Calibrated
Lattice

lattice conditions & increasing ca
and cb

lattice conditions & increasing ca
and cb, capped ca

lattice conditions & ca, cb are
increasing and affine with the same
slope

g(f(A,B)) f increasing in features a, b & g
increasing & convex

g increasing g increasing

Ensemble holds holdsb holdsc∑
t ft(x)

Table 6. Two-dimensional Complements Shape Constraints, where inputA complements inputB, andA,B ∈ [0, 1]. Sufficient conditions
(but not always necessary) conditions for the shape constraint to hold are given for different function classes, with the marking degenerate
if the sufficient conditions always lead to a degenerate feasible solution. The last two rows of the table tell whether the constraint holds
under composition if one either takes a one-dimensional transform g : R→ R of a function f for which the constraint holds, or if one
builds an ensemble out of many base models {ft} where the constraint holds for each base model.

aCotter et al. (2019a) only gave conditions for a 2× 2× 2 . . .× 2 lattice, here we give conditions for multi-cell lattices.
bNote that for the Trapezoid constraint this requires that a base model that has B as an input must also have A as an input.
cNote for the joint monotonicity constraint, this requires that every base model that has only one of the features as an input is

monotonically increasing in that feature.

Proof. By definition, feature a monotonically dominates
feature b if ∂af − ∂bf ≥ 0 for x ∈MV.

By Lemma 1 we have

∂af(x)− ∂bf(x)

=
∑

v∈N (x)

Φv(x)(θdvea,x
− θbvca,x

− θdveb,x + θbvcb,x).

Thus in each cell N (x), ∂af(x) − ∂bf(x) is a multilin-
ear interpolation of particular differences of the lattice

parameters. Thus ∂af − ∂b ≥ 0 holds iff those differ-
ences are nonnegative, specifically, for each v ∈MV with
v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2:

θv+ea − θv − θv+eb
+ θv ≥ 0

θv+ea − θv − θv+ea+eb
+ θv+ea ≥ 0

θv+eb+ea − θv+eb
− θv+eb

+ θv ≥ 0

θv+eb+ea − θv+eb
− θv+ea+eb

+ θv+ea ≥ 0

Multidimensional Shape Constraints

This set of inequalities is equivalent to the two given in
(6).

12.3.3. SUFFICIENT CONDITIONS FOR MONOTONIC
DOMINANCE FOR CALIBRATED LATTICE
MODELS

Proposition 3. Let f : RD → R be differentiable, a, b ∈
[D], and for each d ∈ [D] let cd : R → R be differ-
entiable. Denote by g : RD → R the composed func-
tion given by g(x) = f(c1(x[1]), . . . , cD(x[D])). Then
if feature a monotonically dominates feature b in f and
c′a(xa) ≥ c′b(xb) ≥ 0 for any choice of xa ∈ R and any
choice of xb ∈ R, then feature a monotonically dominates
feature b in g.

Proof. Readily follows from the chain rule and our assump-
tions on f , c′a, c

′
b.

Corollary 3. Let f be a calibrated lattice with a lattice
function g and piecewise linear calibrators {cd} with each
calibrator cd having Kd knots and Kd − 1 slopes γd,k. Let
a, b ∈ [D] and assume that for all d∈a, b and k ∈ [Kd − 1],
γd,k ≥ 0. If feature a monotonically dominates feature b
in g and for any choice of k ∈ [Ka − 1] and j ∈ [Kb − 1]
it holds that γa,k ≥ γb,j , then feature a monotonically
dominates feature b in f .

Proof. Follows directly from Proposition 3.

12.3.4. SUFFICIENT CONDITIONS FOR MONOTONIC
DOMINANCE UNDER MONOTONE
TRANSFORMATIONS

Proposition 4. Let f : RD → R be a D dimensional func-
tion. Assume that for a, b ∈ [D] feature a monotonically
dominates feature b in f . Let g : R → R be an increas-
ing differentiable function. Then feature a monotonically
dominates feature b in g(f(x)).

Proof. By the chain rule ∂d(g(f(x))) = g′(f(x))∂df(x),
and since g′(f(x)) ≥ 0 by assumption, the result holds.

12.3.5. SUFFICIENT CONDITIONS FOR MONOTONIC
DOMINANCE FOR ENSEMBLES

Proposition 5. Let f =
∑T
t=1 ft be a D-dimensional en-

semble of T D-dimensional models. Let a, b ∈ [D]. If
feature a monotonically dominates feature b in every base
model ft, for t = 1, . . . , T , then feature a monotonically
dominates feature b in f .

Proof. By our assumption for each t ∈ [T], ∂aft ≥ ∂bft ≥
0. The result follows from the fact that for d ∈ {a, b},
∂df =

∑T
t=1 ∂dft.

Note that in practice when building ensembles with random
subsets of features that in order to ensure each of the base
models actually does satisfy monotonic dominance of a over
b, one must ensure that every base model ft that depends on
input b also depends on input a, formally:

Proposition 6. If a function f depends on b and is mono-
tonically increasing in b, but does not depend on a, then a
cannot be monotonically dominant over b in ft.

Proof. Monotonic dominance requires ∂aft ≥ ∂bft, but if
ft does not depend on a, then ∂aft = 0, and monotonic
dominance cannot hold unless ft also has no dependence
on b.

12.3.6. MONOTONIC DOMINANCE IS TRANSITIVE

Proposition 7. If f is monotonically increasing in a, b, and
c, and if a dominates b, and b dominates c, then a dominates
c.

Proof. By assumption, ∂f(x)∂x[a] ≥
∂f(x)
∂x[b] and ∂f(x)

∂x[b] ≥
∂f(x)
∂x[c] ,

thus it must be that ∂f(x)∂x[a] ≥
∂f(x)
∂x[c] .

12.3.7. MONOTONIC DOMINANCE IN ANGLES

In Fig. 1, we illustrate that monotonic dominance is in-
creasing in the diagonal direction in each a− b slice. Since
monotonic dominance requires the function to also be in-
creasing in a and b, it’s also increasing in other directions,
in fact, as shown below, it’s increasing in any direction in
the [−π/4, π/2] cone.

Proposition 8. Let f : RD → R be a D-dimensional dif-
ferentiable function, and let a, b ∈ [D]. Then the following
statements are equivalent.

1. Feature a monotonically dominates feature b.

2. Every slice g : R2 → R formed from f by fixing all
the input features except features a and b, is increas-
ing along directions whose angle with the x[a]-axis
is in [−π/4, π/2]. That is, for every x ∈ RD, and
∆a,∆b ∈ R with ∆a ≥ max{0,−∆b}, it holds that
f(x) ≤ f(x + ∆aea + ∆beb).

Proof. 1⇒ 2. Let h : [0, 1] → R be the function given
by: h(t) = f(x + t∆aea + t∆beb). By the chain rule
we have dh/dt = ∆a∂f/∂x[a] + ∆b∂f/∂x[b]. Since a
monotonically dominates b, ∆a ≥ 0 and ∆b ≥ −∆a, it
follows that dh/dt ≥ ∆a∂f/∂x[b] − ∆a∂f/∂x[b] = 0.
Thus h is increasing, and in particular h(0) ≤ h(1), which
implies statement 2.

Multidimensional Shape Constraints

2⇒ 1. Fix a positive ∆ ∈ R. Since we assume statement 2
holds, we have f(x + 0 · ea + ∆eb) ≥ f(x). Thus

f(x + ∆eb)− f(x)

∆
≥ 0. (7)

Statement 2 also implies that f(x + ∆eb) ≤ f(x + ∆eb +
∆ea −∆eb). Thus

f(x + ∆ea)− f(x)

∆
≥ f(x + ∆eb)− f(x)

∆
(8)

Taking the limit of both sides of (7) and (8) as ∆ → 0, it
follows that ∂f/∂x[a] ≥ ∂f/∂x[b] ≥ 0.

12.3.8. RANGE DOMINANCE RESULTS

We prove the following properties for range dominance.

12.3.9. RANGE DOMINANCE CRITERIA FOR GAMS

Proposition 9. Let f(x) =
∑D
d=1 fd(x[d]) be a GAM in-

creasing in features a,b. Then feature a range dominates
feature b in f iff fa(ua)− fa(`a) ≥ fb(ub)− fb(`b).

Proof. For x ∈ RD, recall that a GAM satisfies f(x) =∑D
d=1 fd(x), so for d ∈ [D], f(Ud(x)) − f(Ld(x)) =

fd(ud)− fd(`d). The result follows.

Corollary 4. Let f : RD → R be a D-dimensional linear
model with parameters {αd}Dd=0. Assume that f is increas-
ing in features a,b for a, b ∈ [D]. Then feature a range
dominates feature b iff αa(ua − `a) ≥ αb(ub − `b).

Proof. Linear models are a special case of a GAM with
fd(x) = αdx+ α0/D, thus the result follows from Propo-
sition 9.

Corollary 5. Consider the GAM-PLF specified by
f(x)=

∑D
d=1 PLF(x[d]; {(ξd,k, βd,jk)}Kd

k=0). Assume that
f is increasing in features a and b. Then feature a range
dominates feature b iff βa,Ka

− βa,0 ≥ βb,Kb
− βb,0.

Proof. The GAM-PLF is a special case of the GAM, and
the result follows directly from Proposition 9.

12.3.10. RANGE DOMINANCE CRITERIA FOR LATTICE
MODELS

Proposition 10. Let f be a function for a lattice with size
V, dimension D, and vertex values {θv} Let f : RD → R
be a function for a lattice of size V, dimension d and vertex
values {θv}. Suppose f is monotonically increasing in
features a and b. Then feature a range dominates feature b
in f iff for all v ∈MV,

θUa(v)−θLa(v) ≥ θUb(v)−θLb(v). (9)

Proof. Clearly, the proposition’s condition is necessary be-
cause it is the definition of range dominance given in Table 1
applied to each vertex v in the gridMV. It remains to show
that satisfying range dominance for each vertex in the grid
is sufficient for it to be satisfied for every input x ∈MV.

From (1), the range of possible outputs as you vary x[d] is:

f(Ud(x))− f(Ld(x)) =∑
v∈N (Ud(x))

Φv(Ud(x))θv −
∑

v∈N (Ld(x))

Φv(Ld(x))θv.

Note that for v ∈ N (Ld(x)), v[d] is either 0 or 1. Moreover,
since Ld(x)[d] = 0, it follows from (2) that if v[d] = 1,
then Φv(Ld(x)) = 0. A similar argument shows that for
v ∈ N (Ud(x)), if v[d] = V[d] then Φv(Ud(x)) = 0. Thus
we have

f(Ud(x))− f(Ld(x)) =∑
v∈N (Ud(x))
v[d]=V[d]−1

Φv(Ud(x))θv −
∑

v∈N (Ld(x))
v[d]=0

Φv(Ld(x))θv.

Also, observe that the mapping v 7→ Ld(v) is a bijection
from {v ∈ N (x) : v[d] = bx[d]c} to {v ∈ N (Ld(x)) :
v[d] = 0}, and similarly the mapping v 7→ Ud(v) is a
bijection from {v ∈ N (x) : v[d] = bx[d]c} to {v ∈
N (Ud(x)) : v[d] = V[d] − 1}. Thus, we can change the
sets we sum over in the two sums to a common set and
obtain

f(Ud(x))− f(Ld(x)) =
∑

v∈N (x)
v[d]=bx[d]c

(
ΦUd(v)(Ud(x))θUd(v)−

ΦLd(v)(Ld(x))θLd(v)

)
. (10)

Now, for v∈N, x∈R, let λ(v, x) = 1 + (x −
v) · (−1)Iv=x. Thus, for v ∈ N (x) with v[d] =
bx[d]c, it follows from (2) that φLd(v)(Ld(x)) =∏D
i=1 λ

(
Ld(v)[i], Ld(x)[i]

)
. Clearly for i6=d, we have

Ld(x)[i] = x[i], Ld(v)[i] = v[i]. Also, note
that λ

(
Ld(v)[d], Ld(x)[d]

)
= 1 = λ(v[d],x[d]) +

λ(v[d]+1,x[d]). Thus,

φLd(v)(Ld(x)) =
(
λ(v[d],x[d]) + λ(v[d]+1,x[d])

)
·∏

i 6=d

λ(v[i],x[i])

= Φv(x) + Φv+ed
(x). (11)

A similar argument also shows that

ΦUd(v)(Ud(x)) = Φv(x) + Φv+ed
(x). (12)

Multidimensional Shape Constraints

Plugging (11) and (12) into (10), we get

f(Ud(x))− f(Ld(x)) =
∑

v∈N (x)
v[d]=bx[d]c

(Φv(x) + Φv+ed
(x))·

(θUd(v) − θLd(v))

=
∑

v∈N (x)

Φv(x)(θUd(v) − θLd(v)),

(13)

which gives the range for direction d. To prove range domi-
nance we need to show that the range for direction a is at
least the range for direction b, or equivalently that the dif-
ference

(
f(Ua(x))−f(La(x))

)
−
(
f(Ub(x))−f(Lb(x))

)
is nonnegative. Substituting a and b for d in (13), we have
that that difference is∑

v∈N (x)

Φv(x)
(
(θUa(v)−θLa(v))− (θUb(v)−θLb(v))

)
.

By (2) and (9) every term in this sum is nonnegative and
thus the result follows.

12.3.11. SUFFICIENT CONDITIONS FOR RANGE
DOMINANCE FOR CALIBRATED LATTICE
MODELS

Proposition 11. Let f be a D-dimensional function given
by f(x) = g(c1(x), . . . , cD(x)), where g : RD → R is
a D-dimensional function and each ci : R → R is a 1-
dimensional function. Fix a, b ∈ [D]. For i ∈ {a, b}, denote
by [`

(g)
i , u

(g)
i] and [`(ci), u(ci)] the domains of feature i of

g and f , respectively and assume that ci is increasing and
satisfies ci(`(ci)) = `

(g)
i and ci(u(ci)) = u

(g)
i . If feature a

range dominates feature b in g, then feature a range domi-
nates feature b in f .

Proof. Assume that feature a range dominates feature
b in g. Since ca and cb are increasing and g is in-
creasing in features a and b then f is also increasing
in features a and b. For a vector x ∈ RD, denote by
c(x) the vector (c1(x[1]), . . . , cD(x[D])) and, for i ∈
[D], by L

(g)
i (x), U (g)

i (x), the vectors obtained from x

by replacing its ith entry with `
(g)
i and u(g)i , respec-

tively. Now, let x ∈ R. By our assumptions on
ca and cb, f(Li(x)) = g(c(Li(x))) = g(L

(g)
i (c(x)))

and f(Ui(x)) = g(c(Ui(x))) = g(U
(g)
i (c(x))). Thus

f(Ui(x)) − f(Li(x)) = g(U
(g)
i (c(x))) − g(L

(g)
i (c(x))).

Since feature a range dominates feature b in g it follows that
f(Ua(x))− f(La(x)) ≥ f(Ub(x))− f(Lb(x))

Corollary 6. Let f be a calibrated lattice given by f(x) =
g(c1(x[1]), . . . , cD[x[D]]). If feature a range dominates

feature b in g for a, b ∈ [D] and ca and cb are increasing
and capped, then feature a range dominates feature b in f .

Proof. Follows directly from the Prop 11.

12.3.12. SUFFICIENT CONDITIONS FOR RANGE
DOMINANCE UNDER COMPOSITION

Proposition 12. Let f : RD → R be aD-dimensional func-
tion, and assume that for a, b ∈ [D] feature a range domi-
nates feature b in f . Let g(x) = sx+ t be a 1-dimensional
affine function for s, t ∈ R with s ≥ 0. Then feature a range
dominates feature b in g(f(·)).

Proof. Since g is increasing and f is monotonic in fea-
tures a and b, g(f(·)) is also increasing in features a and
b. Let x ∈ RD and i ∈ [D]. Clearly, g(f(Ui(x))) −
g(f(Li(x))) = s(f(Ui(x)) − f(Li(x))). The result fol-
lows.

12.3.13. SUFFICIENT CONDITIONS FOR RANGE
DOMINANCE FOR ENSEMBLES

Proposition 13. Let {ft}Tt=1, with fi : RD → R for i ∈
[T] be a set of T D-dimensional functions, and let a, b ∈
[D]. If feature a range dominates feature b in each fi, then
feature a range dominates feature b in the ensemble f =∑T
i=1 fi.

Proof. Since each fi is monotonic in features a and b, f
is also monotonic in features a and b. Let x ∈ RD and
i ∈ [D]. The result follows since f(Ui(x))− f(Li(x)) =∑
i(fi(Ui(x))− fi(Li(x))).

12.4. Edgeworth Results

Proofs for most of the Edgeworth properties given in this pa-
per can be found in Cotter et al. (2019a), with the exception
of the following new results.

12.4.1. EDGEWORTH IS NOT TRANSITIVE

Proposition 14. Suppose f satisfies an Edgeworth con-
straint on features a and b, and also satisfies an Edgeworth
constraint on features a and c, then it cannot be concluded
that f satisfies an Edgeworth constraint on a and b.

Proof. Proof by counterexample: consider the second-
degree polynomial function f(x) = x[a]x[b] + x[a]x[c]−
+x[b] sin(x[c]). This function satisfies Edgeworth on inputs
a and b, and satsifies Edgeworth on b and c, but does not
satisfy Edgeworth on b and c.

Multidimensional Shape Constraints

12.4.2. EDGEWORTH ENSEMBLES

It was already shown in Cotter et al. (2019a) that an en-
semble of base models that satisfy Edgeworth also satisfies
Edgeworth (that is, the set of Edgeworth-constrained func-
tions is closed under linearity). However, we next prove a
further point that differs between Edgeworth and Trapezoid
constraints and is important in the practice when building
ensembles with random subsets of features: whether each
base model must be a function of the a & b features in order
for the constraints to hold. Specifically, for the ensemble to
satisfy Edgeworth, we do not need to ensure that each base
model has access to inputs a or b:

Proposition 15. If a function f does not depend on at least
one of the inputs a, b then it satisfies the Edgeworth con-
straint on features a and b.

Proof. Case 1: f does not depend on input a, such that
∂f(x)
∂x[a] = 0. Then since the partial of 0 is 0, the Edgeworth
constraint is satisfied. Case 2: f does not depend on input
b, such that ∂f(x)∂x[b] = 0. Then ∂

∂x[b]
∂f(x)
∂x[a] = 0. Case 3: f

does not depend on input a or input b, again the Edgeworth
constraint holds with equality.

12.5. Trapezoid Results

Proofs for most of the Trapezoid properties given in this pa-
per can be found in Cotter et al. (2019a), with the exception
of the following new results.

12.5.1. TRAPEZOID IS NOT TRANSITIVE

Proposition 16. Suppose f satisfies a Trapezoid constraint
on features a and b, and also satisfies a Trapezoid constraint
on features a and c, then it cannot be concluded that f
satisfies a Trapezoid constraint on b and c.

Proof. Due to the asymmetry of the trapezoid constraint
definition and its requirement that the primary feature be
monotonic, transitivity is not even well-defined in the gen-
eral case, as it could be that neither input b and c is mono-
tonic.

12.5.2. TRAPEZOID ENSEMBLES

It was already shown in Cotter et al. (2019a) that an ensem-
ble of base models that each satisfy Trapezoid also satisfies
Trapezoid (that is, the set of Trapezoid-constrained func-
tions is closed under linearity). However, we next prove a
further point that differs between Edgeworth and Trapezoid
constraints and is important in the practice when building
ensembles with random subsets of features: whether each
base model must be a function of the a & b features in order
for the constraints to hold. Specifically, for the ensemble
to satisfy Trapezoid, in order for each of the base models

to satisfy Trapezoid, one must ensure that any base model
that includes the conditioning feature b also includes the
primary monotonic feature a:

Proposition 17. A function f(x) may not satisfy the Trape-
zoid constraint on features a and b and be monotonic in-
creasing (or decreasing) on b.

Proof. Trapezoid requires that f is monotonically increas-
ing in b when a is maximal and monotonically decreasing in
b when a is minimal. Thus f cannot be either monotonically
increasing in b or monotonically decreasing on b for every
choice of the other features.

Proposition 18. A function f(x) may not satisfy the Trape-
zoid constraint on features a and b if f depends on b but
does not depend on a.

Proof. Trapezoid requires that f is monotonically increas-
ing in b when a is maximal and monotonically decreasing in
b when a is minimal, but if f does not depend on a it cannot
be increasing/decreasing conditioned on a.

12.6. Joint Monotonicity Results

12.6.1. JOINT MONOTONICITY IS NOT TRANSITIVE

Proposition 19. Suppose f satisfies a joint monotonicity
constraint on features a and b, and also satisfies a joint
monotonicity constraint on features a and c, then it cannot
be concluded that f satisfies a joint monotonicity constraint
on b and c.

Proof. Note that f can be jointly monotonic in a and b
even if f is monotonically decreasing in b. Similarly, f
could be jointly monotonic in a and c but be monotonically
decreasing in c. However, if f is monotonically decreasing
in b and c, then f ′b + f ′c ≤ 0, and thus f is not jointly
monotonic in b and c.

12.6.2. JOINT MONOTONICITY FOR GAMS AND
LINEAR MODELS

Proposition 20. Let f(x) =
∑D
i=1 fi(x[i]) be a GAM.

Then f is jointly monotonic in features a and b iff f ′a+f ′b ≥ 0

Proof. Readily follows from the fact that ∂if = f ′i .

Corollary 7. Let f : RD → R be a D-dimensional linear
model with parameters {αi}Di=0. Then f is jointly mono-
tonic in features a and b iff iff αa + αb ≥ 0.

Proof. Note that f can be regarded as a GAM with fi(x) =
αix+ α0/D. The result now follows from Proposition 20.

Multidimensional Shape Constraints

Corollary 8. Let f(x)=
∑D
i=1 PLF(x[i]; {(ξi,k, βi,jk)}Ki

k=0)
be a GAM-PLF. Then f is jointly monotonic in features a
and b iff γa,j + γb,k ≥ 0 for all j ∈ [Ka],k ∈ [Kb].

Proof. Result follows as a special case of Proposition 20.

12.6.3. JOINT MONOTONICITY FOR LATTICE MODELS

Proposition 21. Let f be the function of a lattice with size
V, dimension D, and vertex values {θv}. Let a, b ∈ [D].
Then f is jointly monotonic in features a, b iff for all v ∈
MV with v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2,

θv ≤
θv+ea

+ θv+eb

2
≤ θv+ea+eb

. (14)

Proof. By Lemma 1 we have

∂af(x) + ∂bf(x)

=
∑

v∈N (x)

Φv(x)(θdvea,x
− θbvca,x

+ θdveb,x − θbvcb,x)

Thus in each cell, N (x), ∂af + ∂bf is a multilinear in-
terpolation of particular differences of the lattice values.
Thus Since the multilinear weights Φv(x) ≥ 0, to ensure
∂af(x) +∂bf(x) ≥ 0 we must ensure that the lattice-value-
differences are all non-negative, that is, for each v ∈MV

with v[a] ≤ V[a]− 2,v[b] ≤ V[b]− 2, we require that:

θv+ea
− θv + θv+eb

− θv ≥ 0

θv+ea
− θv + θv+ea+eb

− θv+ea
≥ 0

θv+eb+ea
− θv+eb

+ θv+eb
− θv ≥ 0

θv+eb+ea
− θv+eb

+ θv+ea+eb
− θv+ea

≥ 0.

Simplifying these inequalities row-by-row becomes:

θv+ea
+ θv+eb

≥ 0

θv+ea+eb
− θv ≥ 0

θv+ea+eb
− θv ≥ 0

2θv+eb+ea − θv+eb
− θv+ea ≥ 0.

which can be further simplified to (14).

Proposition 22. Let f = g(c1(x), . . . , cD(x)) be a D-
dimensional function, where g : RD → R is a D-
dimensional function and each ci : R → R is a 1-
dimensional function. If for a, b ∈ [D], g is jointly mono-
tonic in features a and b, and ca and cb are both affine with
the same nonnegative slope then f is also jointly monotonic
in features a and b.

Proof. Let s ≥ 0 be the slope of ca and cb. By the chain
rule, ∂af + ∂bf = s(∂ag + ∂bg) ≥ 0.

Corollary 9. Let f be a calibrated lattice with lattice func-
tion g and calibrators {ci}i∈[D]. Assume that for a, b ∈ [D],
the calibrators ca and cb are affine with the same nonnega-
tive slope. Then if g is jointly monotonic in features a and b,
so is f .

Proof. Follows as a special case of Proposition 22.

Proposition 23. Let f : RD → R be a D-dimensional
function jointly monotonic in features a, b ∈ [D]. Let g :
R → R be a 1-dimensional increasing function. Then
g(f(·)) is jointly monotonic in features a, b.

Proof. By the chain rule ∂ag(f(x)) + ∂bg(f(x)) =
g′(f(x))(∂af(x) + ∂bf(x)). By our assumptions on g and
f the RHS is nonnegative.

12.6.4. JOINT MONOTONICITY AND ENSEMBLES

We show that joint monotonicity is closed under addition:

Proposition 24. Let {ft}Tt=1, with ft : RD → R for t ∈
[T] and let a, b ∈ [D]. If each ft is jointly monotonic in a
and b then so is f .

Proof. ∂af + ∂bf =
∑T
t=1(∂aft + ∂bft). By our assump-

tion, the RHS is non-negative.

Note that when constraining an ensemble to be jointly mono-
tonic on inputs a and b, if any base model ft only takes one
of the inputs, then the joint monotonicity constraint on the
ensemble will force that base model to be monotonically
increasing in the other input (see proposition below). This
need not be a problem but should be taken into considera-
tion.

Proposition 25. For a function f(x) to satisfy the joint
monotonicity constraint on two features a and b where f
does not depend on a, it must be that f(x) is monotonically
increasing in b.

Proof. If f does not depend on a, its partial is zero by
definition, such that ∂af + ∂bf = ∂bf , and thus to satisfy
joint monotonicity it must be that ∂bf ≥ 0.

12.7. Unimodality Results

For the sake of building intuition, we first present a simple
proof for the one-dimensional case of a unimodal PLF. That
proof can also be distilled as a special case from the proof
for a multidimensional lattice that follows. We also provide
a picture and example of a two-dimensional unimodal lattice
model.

Multidimensional Shape Constraints

12.7.1. PROOF FOR UNIMODAL PLF

First we show that a two-layer 1D model where the first
layer is monotonically increasing and the second layer is
unimodal is overall unimodal.

Proposition 26. Let f : R → R be a 1-dimensional uni-
modal function. Let c : R→ R be a 1-dimensional monon-
tonically increasing function. Then h(x) = f(c(x)) is
unimodal.

Proof. To show that h is unimodal, we must show that there
exists a minimizer in the domain of h, call it z∗, such that
for z ≤ z∗ the function h is decreasing, and for z ≥ z∗ the
function h is increasing.

Let z∗ denote the minimizer of the unimodal function f ,
such that for z ≥ z∗, f(z) is increasing by the definition of
unimodality. Similarly, for z ≤ z∗, f(z) is decreasing by
the definition of unimodality.

Choose a x∗ such that c(x∗) = z∗: if c is strictly monotonic,
then c is invertible and x∗ = c−1(z∗); if c is only non-
decreasing, then x∗ can be any value such that c(x∗) = z∗.

Then the domain z ≤ z∗ maps to x ≤ x∗ because c is
monotonically increasing. And since f is decreasing for z ≤
z∗, by the rules of composition h(x) is a decreasing function
for x ≤ x∗. Analogously, for z ≥ z∗, h is increasing. Thus
h is unimodal.

12.7.2. CETERUS PARIBUS UNIMODALITY

Below we extend the definition for a multidimensional func-
tion f to satisfy the unimodal shape constraint to hold for
just a subset of the features. To simplify notation we will
assume that this subset is [s] for some s ∈ D. This defini-
tion and related properties can be easily generalized to an
arbitrary subset of features.

Let f : RD → R be a D-dimensional function and s ∈ [D].
We say that f satisfies the unimodal shape constraint in
features 1, 2, . . . , s if every restriction g : Rs → R of f ,
obtained by fixing the features s + 1, s + 2, . . . , D in the
input to f to some constants, satisfies the unimodal shape
constraint on all its non-fixed features.

The following proposition characterizes lattices that satisfy
the unimodal shape constraint in some subset of features
with the minimizer fixed in the lattice "center".

Proposition 27. Let f : RD → R be the function of a
D-dimensional lattice of size V. Let s ∈ [D] and assume
that V[d] is odd for d ≤ s. Define o∗ ∈ Rs by o∗[d] =
(V[d] − 1)/2, for d ∈ [s]. The following statements are
equivalent.

1. f satisfies the unimodal shape constraint in directions
1, . . . , s with minimizer o∗ for any restrictions on the

last D − s features.

2. For every v ∈ MV, δ1, . . . , δs ∈ {0, 1} and all d ∈
[s] such that v + δded,v − (1− δd)ed ∈MV,

s∑
d=1

(θv+δded
−θv−(1−δd)ed

)(v[d]−o∗[d]) ≥ 0 (15)

Proof. By the definition, f satisfies the unimodal shape con-
straint in directions 1,2,. . . ,s with minimizer o∗ if and only
if every restriction obtained from f by fixing the last D − s
features is increasing along rays originating in o∗. This con-
dition can be equivalently restated as: for each x ∈ MV,
the function hx : [0, 1] → R, given by hx(t) = f(rx(t)),
with rx(t) = (o∗[1]+ t(x[1]−o∗[1]), . . . ,o∗[s]+ t(x[s]−
o∗[s]),x[s + 1],x[s + 2], . . . ,x[D]), is increasing. Since
each such hx is continuous and piecewise-differentiable
with finitely many pieces, the last condition is equivalent
to requiring that h′x(t) ≥ 0 for all t ∈ [0, 1] where the
derivative is defined. Observe that it’s sufficient to require
that for all x ∈ MV, h′x(1) ≥ 0, when its defined, since
hx(t) = hrx(t)(1). Therefore, statement 1 holds if and only
if

∀x ∈MV, h
′
x(1) ≥ 0 (16)

By the chain rule, h′x(1)=
∑s
d=1 ∂df(x)·(x[d]−o∗[d]) and

hence using Lemma 1 we have

h′x(1) =
∑

d∈[s],v∈N (x)

Φv(x)(θdved,x − θbvcd,x)(x[d]− o∗[d])

=
∑
d,v

Φv(x)(θdved,x−θbvcd,x)(x[d]−bx[d]c)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)(bx[d]c−o∗[d]),

where to get the last equality we added to and sub-
tracted from each summand the quantity Φv(x)(θdved,x −
θbvcd,x)bx[d]c.

Next, for a fixed d ∈ [D], partitioning the set N (x) of
size 2D into the 2D−1 pairs {(v, bvcd,x) : v ∈ N (x),v =
dved,x}, we regroup the terms in the summation and get

h′x(1) =
∑

d,v:v=dved,x

(
(Φv(x)+Φbvcd,x(x))(x[d]−bx[d]c)

· (θdved,x−θbvcd,x)
)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)(bx[d]c−o∗[d]).

(17)

Now, using (2) and defining λ(v, x)=1+(x−v)(−1)Iv=bxc

for x∈R and v∈N, we have for each v ∈ N (x), with

Multidimensional Shape Constraints

v=dved,x(
Φv(x) + Φbvcd,x(x)

)
(x[d]− bx[d]c)

= (x[d]− bx[d]c)
∑

u∈{v,bvcd,x}

D∏
i=1

λ(u[i],x[i])

= (x[d]− bx[d]c)
(∏
i 6=d

λ(v[i],x[i])
)
·

(
λ(bx[d]c+1,x[d]) + λ(bx[d]c,x[d])

)
,

where to get the last equality, observe that for i 6= d,
the ith entry of v and bvcd,x is the same. Noting that
λ(bx[d]c+1,x[d]) + λ(bx[d]c,x[d]) = 1 and that x[d] −
bx[d]c = λ(x[d],v[d]), we get

(
Φv(x) + Φbvcd,x(x)

)
(x[d]− bx[d]c) =

D∏
i=1

λ(v[i],x[i])

= Φv(x) (18)

Plugging (18) into (17), we get

h′x(1) =
∑

d,v:v=dved,x

Φv(x)(θdved,x−θbvcd,x)

+
∑
d,v

Φv(x)(θdved,x−θbvcd,x)(bx[d]c − o∗[d])

=
∑
d,v

(
Φv(x)(θdved,x−θbvcd,x)

· (Iv=dved,x+bx[d]c−o∗[d])
)

=
∑

v∈N (x)

Φv(x)

s∑
d=1

(θdved,x−θbvcd,x)(v[d]−o∗[d]),

where the last equality holds since, for each v∈N (x),
Iv=dved,x+bx[d]c=v[d].

Hence h′x(1) is a multilinear interpolation of the values
{
∑s
d=1(θdved,x−θbvcd,x)(v[d]− o∗[d])}v on N (x). Thus

requiring that it would be nonnegative for all x ∈ MV is
equivalent to requiring that

s∑
d=1

(θdved,x−θbvcd,x)(v[d]−o∗[d]) ≥ 0, ∀N (x),v∈N (x).

It’s easy to verify that these are precisely the inequalities in
Statement 2.

Given a lattice function that satisfies the unimodal shape
constraint, what are the conditions needed to be satisfied by
calibrators so that the resulting calibrated lattice function
also satisfies that constraint? One might think that it’s suf-
ficient that the calibrators for the features involved in the

unimodality constraint be increasing. However, that is not
true as the following example shows.

Let f be the function of the 2-dimensional lattice with size
(3, 3) and vertex values: θ1,1 = 0, θ0,1 = θ2,1 = 1, θ1,0 =
θ1,2 = 3, θ0,0 = θ2,0 = θ0,2 = θ2,2 = 2. It’s easy to
verify that Statement 2 of Proposition 27 holds. Thus f
satisfies the unimodality shape constraint with minimizer
(1, 1). Now, let c1 : [0, 3] → [0, 3] and c2 : [0, 3] → [0, 3]
be the calibrators given by:

c1(x) =

{
x if 0 ≤ x < 1
(x+ 1)/2 if 1 ≤ x ≤ 3

,

and

c2(x) =

{
x if 0 ≤ x < 2
2 if 2 ≤ x ≤ 3

.

Let g(x, y) = f(c1(x), c2(y)). Then it can be easily ver-
ified that the global minimum of g is at (1, 1) and it is
unique. Thus for g to satisfy the unimodal shape con-
straint, it must do so with minimizer (1, 1). However g
is not increasing along the ray r(t) = (1, 1) + t(1, 1), since
g(r(1)) = g(2, 2) = f(3/2, 2) = (θ2,2 + θ1,2)/2 = 5/2
and g(r(2)) = g(3, 3) = f(2, 2) = θ2,2 = 2.

12.7.3. STRONG CETERUS PARIBUS UNIMODALITY

It turns out, however, that there is a stronger constraint
that a function can satisfy (i.e., it implies the unimodal
shape constaint), that is invariant under composition with
increasing calibrators. We call this shape constraint strong
unimodality. Essentially, it means that f is increasing in any
direction that’s parallel to an axis and is pointing away from
the minimizer.

Strong unimodality: Let f : RD → R be aD-dimensional
differentiable1 function and let x∗ ∈ R be the minimizer
of f . We say that f satisfies the strong unimodality shape
constraint with minimizer x∗ if for all x ∈ RD, d ∈ [D],
∂df(x) · (x[d]− x∗[d]) ≥ 0

The following proposition shows that this is indeed a
stronger constraint than regular unimodality.

Proposition 28. Let f : RD → R be a D-dimensional
differentiable function and x∗ ∈ RD be its minimizer. If f
satisfies the strong unimodality shape constraint with mini-
mizer x∗ then f satisfies the unimodality shape constraint
with the same minimizer.

Proof. We need to show that f is increasing along rays orig-
inating from x∗. Since f is differentiable, that is equivalent
to showing that for all x ∈ RD the directional derivative of

1One can generalize this definition to non differentiable func-
tions using differences, but though the properties below still hold,
their proofs become more complicated. To simplify the exposition
we restrict to differentiable functions.

Multidimensional Shape Constraints

f in direction x− x∗ at x is nonnegative. That is we need
to show

∑D
d=0 ∂df(x)(x[d]− x∗[d]) ≥ 0, which holds by

our assumption that each term in the above sum is nonnega-
tive.

Similarly to conventional unimodality, we extend this def-
inition to allow specifying the constraint on only a subset
of the features 1, 2, . . . , s for some s ∈ [D] by requiring
that every restriction of f to the features 1, 2, . . . , s satisfies
the strong unimodal shape constraint with some minimizer.
The following proposition characterizes lattices that satisfy
the strong unimodal shape constraint in some subset of the
features with the minimizer fixed in the lattice center.

Proposition 29. Let f : RD → R be the function of a
D-dimensional lattice of size V. Let s ∈ [D] and assume
that V[d] is odd for d ≤ s. Define o∗ ∈ Rs by o∗[d] =
(V[d] − 1)/2, for d ∈ [s]. Then the following statements
are equivalent.

1. f satisfies the strong unimodal shape constraint in di-
rections 1, . . . , s with minimizer o∗ for any restrictions
on the last D − s features.

2. For every d ∈ [s] and v ∈Mv such that v+ed ∈Mv

(a) If v[d] ≥ o∗[d] then θv ≤ θv+ed
.

(b) If v[d] < o∗[d] then θv ≥ θv+ed
.

Proof. 1⇒ 2. Let v ∈MV,d ∈ [s] satisfy the conditions
of Statement 2, and let g be the restriction of f obtained
by fixing the last D − s features to v[s+ 1], . . . ,v[D]. Let
ε ∈ (0, 1) and denote by vε = v+ εed. Since g satisfies the
strong unimodality shape constraint with minimizer o∗, we
have ∂df(vε)(vε[d]− o∗[d]) ≥ 0. It follows from (1) that
∂df(vε) = θv+ed

− θv. Thus,

(θv+ed
− θv)(vε[d]− o∗[d]) ≥ 0 (19)

Now, if v[d] ≥ o∗[d] then vε[d] − o∗[d] > 0 and thus it
follows from (19) that θv+ed

≥ θv. On the other hand, if
v[d] < o∗[d], then since ε < 1, we get vε[d] < o∗[d]; thus,
it follows from (19) that θv+ed

≤ θv. Therefore Statement 2
holds in every case.

2⇒ 1. Let x ∈ MV, d ∈ [s]. We need to show that
∂df(x)(x[d]−o∗[d]) ≥ 0. By Lemma 1 that inequality can
be rewritten as∑
v∈N (x)

Φv(x)(θdved,x − θbvcd,x)(x[d]− o∗[d]) ≥ 0 (20)

If x[d] ≥ o∗[d], then since o∗ has integer entries, we
get bx[d]c ≥ o∗[d] and, by the condition in Statement 2,
θdved,x − θbvcd,x ≥ 0. Thus each term in the sum in (20) is
nonnegative and hence (20) holds.

Figure 5. An illustrative 32 min-unimodal lattice l with the color
representing the heatmap of model output l(x). The nine num-
bers on the figure represents the model output at nine grid points,
{−1, 0, 1}2, which are the nine model parameters of the lattice
model, i.e, θ[−1,−1] ≡ l([−1,−1]) = 3, θ[0,−1] ≡ l([0,−1]) =
2, θ[1,−1] ≡ l([1,−1]) = 5, θ[−1,0] ≡ l([−1, 0]) = 1, θ[0,0] ≡
l([0, 0]) = 0, θ[1,−0] ≡ l([1, 0]) = 2, θ[−1,1] ≡ l([−1, 1]) = 7,
θ[0,1] ≡ l([0, 1]) = 3 and θ[1,1] ≡ l([1, 1]) = 3. Model output at
x /∈ {−1, 0, 1}2 is interpolated based on the model parameter at
adjacent grid points.

Similarly, if x[d] < o∗[d] then bx[d]c < o∗[d] and by the
condition in Statement 2 we get θdved,x − θbvcd,x ≤ 0.
So again each term in the sum in (20) is nonnegative and
thus (20) holds.

Fig. 5 illustrates a 3× 3 strong unimodal lattice model. The
model has its minimizer at the center, and is increasing in
any ray originating from the center.

For a function f : RD → R and s ∈ [D], we denote
the restriction obtained from f by fixing the last D − s
inputs to r1, . . . , rD−s ∈ R by f |r1,...,rD−s

. That is
f |r1,...,rD−s

: Rs → R is given by f |r1,...,rD−s
(y) =

f(y[1], . . . ,y[s], r1, . . . , rD−s).

Proposition 30. Let f : RD → R be aD-dimensional func-
tion that satisfies the strong unimodality shape constraint in
directions 1, 2, . . . , s. Let {cd}Dd=1 be 1-dimensional func-
tions cd : R → R with cd increasing for d = 1, . . . , s.
Let h : RD → R denote the composed function given by
h(x) = f(c(x)), where c(x) = (c1(x[1]), . . . , cD(x[D])).
Assume that for every restriction h|rs+1,...,rD there exists a
point x∗ ∈ Rs such that (c1(x∗[1]), . . . , cs(x

∗[s])) is a min-
imizer for the restriction f |cs+1(rs+1),...,cD(rD) of f . Then
h : RD → R also satisfies the strong unimodality constraint
in directions 1, 2, . . . , s.

Proof. Let x ∈ RD. We’ll show that h|x[s+1],...,x[D] sat-
isfies the strong unimodality constraint. Let x∗ ∈ Rs

Multidimensional Shape Constraints

be such that y∗ = (c1(x∗[1]), . . . , cs(x
∗[s])) is a mini-

mizer of f |cs+1(x[s+1]),...,cD(x[D]). We need to show that
∂h · (x[d] − x∗[d]) ≥ 0 for all d ∈ [s]. By the chain rule
∂dh = ∂df(c(x))c′d(x[d]). Thus we need to show that

∂df(c(x))c′d(x[d])(x[d]− x∗[d]) ≥ 0. (21)

Since f |cs+1(x[s+1]),...,cD(x[D]) satisfies the strong uni-
modality constraint with minimizer y∗ and y∗[d] =
cd(x

∗[d]), we have

∂df(c(x))(cd(x[d])− cd(x∗[d])) ≥ 0. (22)

Now, assume first that cd(x[d])−cd(x∗[d]) 6= 0. Since cd is
increasing, c′d(x[d])(x[d]− x∗[d])/(cd(x[d])− cd(x∗[d]))
is nonnegative. Multiplying both sides of inequality (22) by
the last quantity, we get (21) as desired.

Otherwise, assume that cd(x[d]) − cd(x
∗[d]) = 0.

Clearly (21) holds if x[d] = x∗[d]. So assume x[d] 6= x∗[d].
Since cd is increasing it must follow that cd(t) = cd(x

∗[d])
for all t "in between" x∗[d] and x[d], that is for all t ∈
[min{x[d],x∗[d]},max{x[d],x∗[d]}]. Thus c′d(x[d]) = 0
and (21) follows here as well.

13. Appendix: Additional Experiments
13.1. Result Matching Prediction (Regression)

This section compares train times of models with and with-
out 2D shape constraints. We used a real-world dataset
from a large internet services company. The problem is to
predict how well a candidate result matches a given query,
expressed as a numeric score. The dataset has 1,104,439
train examples. Of the D = 14 features, based on domain
expertise, 11 features were constrained to be monotonic, 12
feature pairs were chosen for Edgeworth, and 4 feature pairs
were chosen for range dominance. We trained an ensemble
of 50 calibrated lattices with each base model seeing 6-10
of the D = 14 possible features and experimented with
batch sizes of 128 and 1024. All runs were trained for 1000
epochs on a workstation with 6 Intel Xeon W-2135 CPUs.
Table 7 reports the train time of each run in hours. Train
time with 2D shape constraints was 10-20% longer than
train time without 2D shape constraints.

Table 7. Train time comparison of models with and without 2D
shape constraints in hours.

Batch Size Monotonic Monotonic
+ 2D constraints

128 30.73 37.45
1024 11.52 12.48

13.2. Law School Admission Dataset (Classification)

In this section, we describe experiments conducted on the
Law School Admissions dataset (Wightman, 1998). The
problem is to predict whether a student would pass the bar
exam based on their LSAT score and undergraduate GPA.
The dataset has 27,234 students in total and is randomly
split 80-20 into train and test sets. Note that the intention
of this experiment is simply to provide nice illustrations of
how a calibrated lattice model looks with different choices
of constraints, as shown in Fig. 2. Table 8 shows both
train and test accuracy numbers. The numbers are no worse
when the model is further constrained with any of the 2D
shape constraints, but learns a more controlled function
providing extra interpretability of the feature interactions
and guarantees on the model behavior as illustrated by the
contour plots in Fig. 2.

Table 8. Performance of a calibrated lattice model on the Law
School Admission dataset with different 2D shape constraints.

Model Train Acc. Test Acc.

Monotonic 94.98% 94.79%
Mono. + Monotonic Dom. 94.95% 94.81%
Mono. + Range Dom. 94.95% 94.77%
Mono. + Edgeworth 94.95% 94.79%
Mono. + Trapezoid 94.89% 94.83%

13.3. User Intent Prediction (Classification) and Result
Matching Prediction (Regression)

This section presents full results of training several cali-
brated lattice ensemble models on the User Intent Prediction
dataset discussed in section 9.4 and the Result Matching
Prediction dataset discussed in section 13.1. Models were
trained on US data and evaluated on non-US data. We exper-
imented with different levels of regularization: monotonic,
dominance, Edgeworth, trapezoid; different numbers of base
lattice models: 10, 50; and different numbers of training
epochs: 30, 100, 200, 300.

Table 9 shows the Train and Test MSE as well as the Test
AUC for the User Intent Prediction dataset for all runs. As
expected, the Train MSE is a little better for the 50 lattice
ensemble, since it has more model flexibility than the 10
lattice ensemble. In all cases except for the runs with trape-
zoid, the 100 train epoch runs performed better than the 200
and 300 train epoch runs. We also see that models with
dominance and Edgeworth constraints had comparable or
lower Test MSE than models without 2D shape constraints
across model specifications.

Table 10 shows the Train and Test MSE for random IID
splits of the User Intent Prediction dataset averaged over
5 runs. We see that Test MSEs of the models with domi-

Multidimensional Shape Constraints

nance and Edgeworth constraints are all within the margin
of error of the monotonic only model with an additional
benefit of these models being further explained by 2D shape
constraints.

Table 11 shows the Train and Test MSE for Result Matching
Prediction for all runs. Similarly as for the User Intent
Prediction dataset, the Train MSE is a little better for the
50 lattice ensemble. There is less of a consistent pattern for
the effect of the number of training epochs. Models with
Edgeworth constraints perform slightly better for 10 lattice
ensembles, while other 2D constraints increase Test MSE.

Multidimensional Shape Constraints

Table 9. Full results of different calibrated lattice ensemble models on non-IID split of the User Intent Prediction dataset.

Model Lattices Epochs Train MSE Test MSE Test AUC

Monotonic 10 100 0.6710±0.0003 0.7544±0.0004 0.8378±0.0004
200 0.6697±0.0004 0.7547±0.0005 0.8369±0.0005
300 0.6694±0.0003 0.7563±0.0004 0.8360±0.0003

50 100 0.6660±0.0001 0.7516±0.0002 0.8390±0.0001
200 0.6622±0.0010 0.7529±0.0008 0.8376±0.0007
300 0.6615±0.0001 0.7533±0.0004 0.8375±0.0003

Mono. + Dominance 10 100 0.6729±0.0001 0.7534±0.0001 0.8377±0.0002
200 0.6719±0.0002 0.7545±0.0003 0.8368±0.0002
300 0.6717±0.0004 0.7555±0.0006 0.8361±0.0003

50 100 0.6685±0.0001 0.7509±0.0002 0.8387±0.0002
200 0.6657±0.0002 0.7516±0.0002 0.8379±0.0001
300 0.6643±0.0003 0.7529±0.0003 0.8369±0.0002

Mono. + Edgeworth 10 100 0.6750±0.0001 0.7522±0.0003 0.8390±0.0002
200 0.6742±0.0003 0.7529±0.0001 0.8384±0.0001
300 0.6739±0.0003 0.7547±0.0004 0.8371±0.0004

50 100 0.6707±0.0001 0.7506±0.0001 0.8394±0.0001
200 0.6684±0.0002 0.7511±0.0004 0.8385±0.0002
300 0.6674±0.0002 0.7518±0.0005 0.8381±0.0002

Mono. + Edge. + Dom. 10 100 0.6766±0.0001 0.7518±0.0001 0.8389±0.0002
200 0.6758±0.0003 0.7525±0.0002 0.8378±0.0003
300 0.6753±0.0002 0.7543±0.0003 0.8369±0.0001

50 100 0.6726±0.0001 0.7506±0.0002 0.8389±0.0002
200 0.6706±0.0001 0.7512±0.0003 0.8379±0.0002
300 0.6697±0.0003 0.7521±0.0002 0.8371±0.0002

Mono. + Trapezoid 10 100 0.6883±0.0002 0.7650±0.0004 0.8354±0.0002
200 0.6878±0.0001 0.7642±0.0005 0.8357±0.0004
300 0.6887±0.0003 0.7656±0.0006 0.8356±0.0005

50 100 0.6856±0.0001 0.7637±0.0002 0.8362±0.0001
200 0.6839±0.0001 0.7632±0.0004 0.8363±0.0002
300 0.6836±0.0003 0.7634±0.0007 0.8359±0.0004

Mono. + Trap. + Dom. 10 100 0.6968±0.0002 0.7675±0.0010 0.8315±0.0003
200 0.6973±0.0007 0.7679±0.0007 0.8307±0.0006
300 0.6969±0.0007 0.7664±0.0007 0.8317±0.0008

50 100 0.6954±0.0002 0.7663±0.0001 0.8318±0.0002
200 0.6946±0.0003 0.7658±0.0004 0.8321±0.0001
300 0.6938±0.0002 0.7653±0.0004 0.8326±0.0004

Multidimensional Shape Constraints

Table 10. Full results of different calibrated lattice ensemble models on IID splits of the User Intent Prediction dataset.

Model Lattices Epochs Train MSE Test MSE

Monotonic 10 100 0.7002±0.0010 0.7092±0.0028
200 0.6998±0.0011 0.7094±0.0026
300 0.6998±0.0010 0.7097±0.0031

50 100 0.6958±0.0008 0.7059±0.0029
200 0.6937±0.0009 0.7064±0.0027
300 0.6925±0.0011 0.7070±0.0028

Mono. + Dominance 10 100 0.7023±0.0007 0.7098±0.0031
200 0.7022±0.0009 0.7103±0.0033
300 0.7022±0.0010 0.7105±0.0029

50 100 0.6971±0.0016 0.7073±0.0033
200 0.6957±0.0011 0.7077±0.0031
300 0.6954±0.0007 0.7081±0.0026

Mono. + Edgeworth 10 100 0.7033±0.0007 0.7101±0.0031
200 0.7030±0.0012 0.7107±0.0027
300 0.7031±0.0011 0.7109±0.0029

50 100 0.6981±0.0014 0.7071±0.0028
200 0.6976±0.0006 0.7071±0.0031
300 0.6972±0.0008 0.7084±0.0038

Mono. + Edge. + Dom. 10 100 0.7046±0.0008 0.7108±0.0028
200 0.7048±0.0009 0.7116±0.0029
300 0.7051±0.0011 0.7121±0.0030

50 100 0.7002±0.0013 0.7084±0.0030
200 0.6999±0.0012 0.7094±0.0022
300 0.6997±0.0007 0.7097±0.0038

Mono. + Trapezoid 10 100 0.7191±0.0009 0.7229±0.0025
200 0.7191±0.0006 0.7231±0.0032
300 0.7195±0.0010 0.7234±0.0026

50 100 0.7152±0.0008 0.7198±0.0026
200 0.7147±0.0005 0.7194±0.0028
300 0.7143±0.0009 0.7191±0.0025

Mono. + Trap. + Dom. 10 100 0.7265±0.0013 0.7306±0.0026
200 0.7270±0.0011 0.7310±0.0028
300 0.7264±0.0014 0.7304±0.0025

50 100 0.7251±0.0009 0.7293±0.0029
200 0.7255±0.0011 0.7300±0.0027
300 0.7244±0.0013 0.7291±0.0027

Multidimensional Shape Constraints

Table 11. Full results of different calibrated lattice ensemble models on the Result Matching Prediction dataset.

Model Lattices Epochs Train MSE Test MSE

Monotonic 10 30 0.5673 0.7945
100 0.5646 0.7953
300 0.5681 0.7964

50 30 0.5657 0.7925
100 0.5659 0.7921
300 0.566 0.7926

Mono. + Dominance 10 30 0.5708 0.7961
100 0.5753 0.7996
300 0.5768 0.7979

50 30 0.5733 0.7965
100 0.5764 0.7963
300 0.5738 0.7941

Mono. + Edgeworth 10 30 0.5689 0.7927
100 0.5736 0.7949
300 0.5739 0.7923

50 30 0.5691 0.7949
100 0.5685 0.7961
300 0.565 0.7925

Mono. + Edge. + Dom. 10 30 0.5776 0.796
100 0.5789 0.7987
300 0.5766 0.7968

50 30 0.5694 0.7954
100 0.5723 0.7952
300 0.5717 0.7958

Mono. + Trapezoid 10 30 0.575 0.8003
100 0.5764 0.7997
300 0.5748 0.7974

50 30 0.5702 0.798
100 0.571 0.7968
300 0.5667 0.7958

Mono. + Trap. + Dom. 10 30 0.5785 0.8025
100 0.5801 0.8002
300 0.5768 0.7976

50 30 0.5745 0.7984
100 0.5708 0.7985
300 0.5733 0.7979

