Supplementary: Neural Topic Modeling with Continual Lifelong Learning ### Pankaj Gupta ¹ Yatin Chaudhary ¹² Thomas Runkler ¹ Hinrich Schütze ² # A. Data Description Discussed in section 3, we perform lifelong topic learning over following three streams: - **S1**: AGnews \rightarrow TMN \rightarrow R21578 \rightarrow 20NS \rightarrow 20NSshort - **S2**: AGnews \rightarrow TMN \rightarrow R21578 \rightarrow 20NS \rightarrow TMNtitle - S3: AGnews \rightarrow TMN \rightarrow R21578 \rightarrow 20NS \rightarrow R21578title Each stream of document collections consisting of four long-text (high-resource) corpora in sequence: AGnews, TMN, R21578 and 20NS (20NewsGroups), and three short-text (low-resource, sparse) corpora T+1 as future (target) tasks T+1: 20NSshort, TMNtitle and R21578title. Following is the description of document collections used in this work: - 1. 20NSshort: We take documents from 20News-Groups data, with document size (number of words) less than 20. - 2. TMNtitle: Titles of the Tag My News (TMN) news dataset. - 3. R21578title: Reuters corpus, a collection of new stories from nltk.corpus. We take titles of the documents. - 4. TMN: The Tag My News (TMN) news dataset. - R21578: Reuters corpus, a collection of new stories from nltk.corpus. - 6. AGnews: AGnews data sellection. - 7. 20NS: 20NewsGroups corpus, a collection of news stories from nltk.corpus. See Table 1 for the description of each of the document collections used in our experiments. Observe that we employ sparse document collections as target datasets. Proceedings of the 37th International Conference on Machine Learning, Online, PMLR 119, 2020. Copyright 2020 by the author(s). Table 1. Data statistics: Document collections used in lifelong topic modeling. Symbols- K: vocabulary size, L: average text length (#words), C: number of classes and k: thousand. For short-text, L < 15. We use \mathcal{T}^1 , \mathcal{T}^2 and \mathcal{T}^3 are treated as target corpora for future tasks T+1 of topic modeling and \mathcal{S}^1 - \mathcal{S}^4 are used as historical corpora in the stream of document collections. | ID | Data | Train | Val | Test | K | L | C | |----------------------------|-------------|-------|------|------|------|-------|----| | $\overline{\mathcal{T}^1}$ | 20NSshort | 1.3k | 0.1k | 0.5k | 1.4k | 13.5 | 20 | | \mathcal{T}^2 | TMNtitle | 22.8k | 2.0k | 7.8k | 2k | 4.9 | 7 | | \mathcal{T}^3 | R21578title | 7.3k | 0.5k | 3.0k | 2k | 7.3 | 90 | | \mathcal{S}^1 | AGNews | 118k | 2.0k | 7.6k | 5k | 38 | 4 | | \mathcal{S}^2 | TMN | 22.8k | 2.0k | 7.8k | 2k | 19 | 7 | | \mathcal{S}^3 | R21578 | 7.3k | 0.5k | 3.0k | 2k | 128 | 90 | | \mathcal{S}^4 | 20NS | 7.9k | 1.6k | 5.2k | 2k | 107.5 | 20 | Table 2. Illustration of Domain-overlap in pairs of corpora, when used in source-target settings. \mathcal{I} : Identical, \mathcal{R} : Related and \mathcal{D} : Distant domains determined based on overlap in labels | | \mathcal{T}^1 | $\mid \mathcal{T}^2 \mid$ | \mathcal{T}^3 | | |-------------------|-----------------|---------------------------|-----------------|--| | $ \mathcal{S}^1 $ | \mathcal{R} | \mathcal{R} | \mathcal{D} | | | \mathcal{S}^2 | \mathcal{R} | \mathcal{I} | \mathcal{D} | | | \mathcal{S}^3 | \mathcal{D} | \mathcal{D} | \mathcal{I} | | | \mathcal{S}^4 | \mathcal{I} | \mathcal{R} | \mathcal{D} | | Table 2 suggests a domain overlap (in terms of labels) among the document collections used in transfer learning within neural topic modeling framework. The notations such as I, R and D represent domain overlap, where I (identical): identical-domain in terms of labels in pair of datasets, R (related): related-domain due to partial overlap in labels, and D: distant-domain due to no overlap in labels of pair of document collections. See Table 3 for the label information for each of the document collections used in streams of information to model. To reproduce the scores reported, we have also provided the **code** of the LNTM framework and **pre-processed datasets** used in our experiments. ¹Corporate Technology, Siemens AG Munich, Germany ²CIS, University of Munich (LMU) Munich, Germany. Correspondence to: Pankaj Gupta pankaj.gupta@drimco.net. | Table 3. | Label | space | of t | he o | document | col | lections | used | |----------|-------|-------|------|------|----------|-----|----------|------| | | | • | | | | | | | | data | labels / classes | | | | | |-------------|---|--|--|--|--| | TMN | world, us, sport, business, sci_tech, entertainment, health | | | | | | TMNtitle | world, us, sport, business, sci_tech, entertainment, health | | | | | | AGnews | business, sci_tech, sports, world | | | | | | | misc.forsale, comp.graphics, rec.autos, comp.windows.x, | | | | | | 20NS | rec.sport.baseball, sci.space, rec.sport.hockey, | | | | | | 20NSshort, | soc.religion.christian, rec.motorcycles, comp.sys.mac.hardware, | | | | | | | talk.religion.misc, sci.electronics, comp.os.ms-windows.misc, | | | | | | | sci.med, comp.sys.ibm.pc.hardware, talk.politics.mideast, | | | | | | | talk.politics.guns, talk.politics.misc, alt.atheism, sci.crypt | | | | | | | trade, grain, crude, corn, rice, rubber, sugar, palm-oil, | | | | | | | veg-oil, ship, coffee, wheat, gold, acq, interest, money-fx, | | | | | | | carcass, livestock, oilseed, soybean, earn, bop, gas, lead, zinc, | | | | | | | gnp, soy-oil, dlr, yen, nickel, groundnut, heat, sorghum, sunseed, | | | | | | R21578title | cocoa, rapeseed, cotton, money-supply, iron-steel, palladium, | | | | | | R21578 | platinum, strategic-metal, reserves, groundnut-oil, lin-oil, meal-feed, | | | | | | | sun-meal, sun-oil, hog, barley, potato, orange, soy-meal, cotton-oil, | | | | | | | fuel, silver, income, wpi, tea, lei, coconut, coconut-oil, copra-cake, | | | | | | | propane, instal-debt, nzdlr, housing, nkr, rye, castor-oil, palmkernel, | | | | | | | tin, copper, cpi, pet-chem, rape-oil, oat, naphtha, cpu, rand, alum | | | | | Table 4. Hyper-parameters search space in the Generalization task | Hyperparameter | Search Space | |---------------------------|--------------------| | retrieval fraction | [0.02] | | learning rate | [0.001] | | hidden units (#topics), H | [50, 200] | | activation function (g) | sigmoid | | iterations | [100] | | λ_{TR} | [0.1, 0.01, 0.001] | | λ_{EmbTF} | [1.0, 0.5, 0.1] | | λ_{SAL} | [1.0, 0.5, 0.1] | Table 5. Hyper-parameters search space in the IR task | Hyperparameter | Search Space | | | |---------------------------|--------------------|--|--| | retrieval fraction | [0.02] | | | | learning rate | [0.001] | | | | hidden units (#topics), H | [50, 200] | | | | activation function (g) | tanh | | | | iterations | [100] | | | | λ_{TR} | [0.1, 0.01, 0.001] | | | | λ_{EmbTF} | [1.0, 0.5, 0.1] | | | | λ_{SAL} | [1.0, 0.5, 0.1] | | | # **B.** Reproducibility: Hyper-parameter Settings In the following sections, we provide the hyper-parameter settings (search space) used to build topic models based on development set. #### **B.1.** Hyper-parameter settings for Generalization Table 4 provides hyper-parameters search space used within lifelong topic modeling framework for generalization task over lifetime. The models built are used further in extracting topics and computing topic coherence. #### **B.2.** Hyper-parameter settings for IR Task Table 5 provides hyper-parameters search space used within lifelong topic modeling framework for information retrieval task over lifetime. # **B.3.** Optimal Configurations of λ^{TR} , λ^{EmbTF} , λ^{SAL} Tables 6 and 7 provide the optimal (best) hyper-parameter setting for generalization and IR task, respectively for each of the three target datasets. The hyper-parameters corresponds to the scores reported in the paper content. To reproduce the scores reported, we have also provided the **code** of the LNTM framework and **pre-processed datasets** used in our experiments. To reproduce the scores reported, we have also provided the #### Supplementary: Neural Topic Modeling with Continual Lifelong Learning Table 6. Generalization Task: Optimal settings of hyper-parameters (λ_{TR} / λ_{EmbTF} / λ_{SAL}) for each of the three streams where the datasets: 20NSshort, TMNtitle and R21578title are treated as targets, respectively in each of the streams. The optimal hyper-parameters are obtained in joint training of three approaches: TR, EmbTF and SAL with the proposed LNTM framework. | Target | Stream | Hyper-parameters (λ_{TR} / λ_{EmbTF} / λ_{SAL}) for Streams of Document Collections | | | | | | |-------------|--------|---|-------------------|-------------------|-------------------|--|--| | Target | | AGnews | TMN | R21578 | 20NS | | | | 20NSshort | S1 | 0.001 / 0.1 / 1.0 | 0.001 / 0.1 / 1.0 | 0.001 / 0.1 / 1.0 | 0.001 / 1.0 / 1.0 | | | | TMNtitle | S2 | 0.001 / 0.1 / 0.1 | 0.001 / 1.0 / 1.0 | 0.001 / 0.1 / 0.1 | 0.001 / 0.1 / 0.1 | | | | R21578title | S3 | 0.001 / 0.1 / 0.1 | 0.001 / 0.1 / 0.1 | 0.001 / 1.0 / 0.1 | 0.1 / 0.1 / 0.1 | | | Table 7. IR Task: Optimal settings of hyper-parameters (λ_{TR} / λ_{EmbTF} / λ_{SAL}) for each of the three streams where the datasets: 20NSshort, TMNtitle and R21578title are treated as targets, respectively in each of the streams. The optimal hyper-parameters are obtained in joint training of three approaches: TR, EmbTF and SAL with the proposed LNTM framework. | Target | Stream | Hyper-parameters (λ_{TR} / λ_{EmbTF} / λ_{SAL}) for Streams of Document Collections | | | | | | |-------------|--------|---|-------------------|-------------------|-------------------|--|--| | Target | | AGnews | TMN | R21578 | 20NS | | | | 20NSshort | S1 | 0.001 / 0.1 / 1.0 | 0.001 / 0.1 / 1.0 | 0.001 / 0.1 / 1.0 | 0.001 / 1.0 / 1.0 | | | | TMNtitle | S2 | 0.001 / 0.1 / 0.1 | 0.01 / 1.0 / 1.0 | 0.001 / 0.1 / 0.1 | 0.001 / 0.1 / 0.1 | | | | R21578title | S3 | 0.001 / 0.1 / 1.0 | 0.001 / 0.1 / 1.0 | 0.001 / 1.0 / 1.0 | 0.1 / 0.1 / 1.0 | | | **code** of the LNTM framework and **pre-processed datasets** used in our experiments.