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Abstract

In this paper, we study distributed algorithms for
large-scale AUC maximization with a deep neu-
ral network as a predictive model. Although dis-
tributed learning techniques have been investi-
gated extensively in deep learning, they are not
directly applicable to stochastic AUC maximiza-
tion with deep neural networks due to its strik-
ing differences from standard loss minimization
problems (e.g., cross-entropy).Towards address-
ing this challenge, we propose and analyze a
communication-efficient distributed optimization
algorithm based on a non-convex concave refor-
mulation of the AUC maximization, in which the
communication of both the primal variable and
the dual variable between each worker and the
parameter server only occurs after multiple steps
of gradient-based updates in each worker. Com-
pared with the naive parallel version of an existing
algorithm that computes stochastic gradients at in-
dividual machines and averages them for updating
the model parameters, our algorithm requires a
much less number of communication rounds and
still achieves a linear speedup in theory. To the
best of our knowledge, this is the first work that
solves the non-convex concave min-max problem
for AUC maximization with deep neural networks
in a communication-efficient distributed manner
while still maintaining the linear speedup property
in theory. Our experiments on several benchmark
datasets show the effectiveness of our algorithm
and also confirm our theory.
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1. Introduction

Large-scale distributed deep learning (Dean et al., 2012; Li
et al., 2014) has achieved tremendous successes in various
domains, including computer vision (Goyal et al., 2017),
natural language processing (Devlin et al., 2018; Yang et al.,
2019), generative modeling (Brock et al., 2018), reinforce-
ment learning (Silver et al., 2016; 2017), etc. From the
perspective of learning theory and optimization, most of
them are trying to minimize a surrogate loss of a specific
error measure using parallel minibatch stochastic gradient
descent (SGD). For example, on the image classification
task, the surrogate loss is usually the cross entropy between
the estimated probability distribution according to the out-
put of a certain neural network and the vector encoding
ground-truth labels (Krizhevsky et al., 2012; Simonyan &
Zisserman, 2014; He et al., 2016), which is a surrogate loss
of the misclassification rate. Based on the surrogate loss,
parallel minibatch SGD (Goyal et al., 2017) is employed to
update the model parameters.

However, when the data for classification is imbalanced,
AUC (short for Area Under the ROC Curve) is a more
suitable measure (Elkan, 2001). AUC is defined as the
probability that a positive sample has a higher score than a
negative sample (Hanley & McNeil, 1982; 1983). Despite
the tremendous applications of distributed deep learning in
different fields, the study about optimizing AUC with dis-
tributed deep learning technologies is rare. The commonly
used parallel mini-batch SGD for minimizing a surrogate
loss of AUC will suffer from high communication costs in
a distributed setting due to the non-decomposability nature
of AUC measure. The reason is that positive and negative
data pairs that define a surrogate loss for AUC may sit on
different machines. To the best of our knowledge, Liu et al.
(2020b) is the only work trying to optimize a surrogate loss
of AUC with a deep neural network that explicitly tackles
the non-decomposability of AUC measure. Nevertheless,
their algorithms are designed only for the single-machine
setting and hence are far from sufficient when encountering
a huge amount of data. Although a naive parallel version of
the stochastic algorithms proposed in (Liu et al., 2020b) can
be used for distributed AUC maximization with a deep neu-
ral network, it would still suffer from high communication
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overhead due to a large number of communication rounds.

In this paper, we bridge the gap between stochastic AUC
maximization and distributed deep learning by proposing a
communication-efficient distributed algorithm for stochastic
AUC maximization with a deep neural network. The focus
is to make the total number of communication rounds
much less than the total number of iterative updates.
‘We build our algorithm upon the nonconvex-concave min-
max reformulation of the original problem. The key ingredi-
ent is to design a communication-efficient distributed algo-
rithm for solving the regularized min-max subproblems us-
ing multiple machines. Specifically, we follow the proximal
primal-dual algorithmic framework proposed by (Rafique
et al., 2018; Liu et al., 2020b), i.e., by solving a sequence of
quadratically regularized min-max saddle-point problems
with periodically updated regularizers successively. The
key difference is that the inner min-max problem solver is
built on a distributed periodic model averaging technique,
which consists of a fixed number of stochastic primal-dual
updates over individual machines and a small number of
averagings of model parameters from multiple machines.
This mechanism can greatly reduce the communication cost,
which is similar to (Zhou & Cong, 2017; Stich, 2018; Yu
et al., 2019b). However, their analysis cannot be applied to
our case since their analysis only works for convex or non-
convex minimization problems. In contrast, our algorithm is
designed for a particular non-convex concave min-max prob-
lem induced by the original AUC maximization problem.
Our contributions are summarized as follows:

e We propose a communication-efficient distributed
stochastic algorithm named CoDA for solving a
nonconvex-concave min-max reformulation of AUC
maximization with deep neural networks by local
primal-dual updating and periodically global vari-
able averaging. To our knowledge, this is the first
communication-efficient distributed stochastic algo-
rithm for learning a deep neural network by AUC max-
imization.

e We analyze the iteration complexity and communica-
tion complexity of the proposed algorithm under the
commonly used Polyak- Lojasiewicz (PL) condition
as in (Liu et al., 2020b). Comparing with (Liu et al.,
2020b), our theoretical result shows that the iteration
complexity can be reduced by a factor of K (the num-
ber of machines) in a certain region, while the commu-
nication complexity (the rounds of communication) is
much lower than that of a naive distributed version of
the stochastic algorithm proposed in (Liu et al., 2020b).
The summary of iteration and communication com-
plexities is given in Table 1.

e We verify our theoretical claims by conducting experi-
ments on several large-scale benchmark datasets. The

experimental results show that our algorithm indeed
exhibits good acceleration performance in practice.

2. Related Work

Stochastic AUC Maximization. It is challenging to di-
rectly solve the stochastic AUC maximization in the online
learning setting since the objective function of AUC maxi-
mization depends on a sum of pairwise losses between sam-
ples from positive and negative classes. Zhao et al. (2011)
addresses this problem by maintaining a buffer to store rep-
resentative data samples, employing the reservoir sampling
technique to update the buffer, calculating gradient informa-
tion based on the data in the buffer, and then performing a
gradient-based update rule to update the classifier. Gao et al.
(2013) does not maintain a buffer, while they instead main-
tained first-order and second-order statistics of the received
data to update the classifier by gradient-based update. Both
of them are infeasible in big data scenarios since Zhao et al.
(2011) suffers from a large amount of training data and Gao
et al. (2013) is not suitable for high dimensional data. Ying
et al. (2016) addresses these issues by introducing a min-
max reformulation of the original problem and solving it by
a primal-dual stochastic gradient method (Nemirovski et al.,
2009), in which no buffer is needed and the per-iteration
complexity is the same magnitude as the dimension of the
feature vector. Natole et al. (2018) improves the conver-
gence rate by adding a strongly convex regularizer upon
the original formulation. Based on the same saddle point
formulation as in (Ying et al., 2016), Liu et al. (2018) gets
an improved convergence rate by developing a multi-stage
algorithm without adding the strongly convex regularizer.
However, all of these studies focus on learning a linear
model. Recently, Liu et al. (2020b) considers stochastic
AUC maximization for learning a deep non-linear model,
in which they designed a proximal primal-dual gradient-
based algorithm under the PL condition and established
non-asymptotic convergence results.

Communication Efficient Algorithms. There are mul-
tiple approaches for reducing the communication cost in
distributed optimization, including skipping communica-
tion and compression techniques. Due to limit of space,
we mainly review the literature on skipping communication.
For compression techniques, we refer the readers to (Jiang &
Agrawal, 2018; Stich et al., 2018; Basu et al., 2019; Wangni
et al., 2018; Bernstein et al., 2018) and references therein.
Skipping communication is realized by doing multiple local
gradient-based updates in each worker before aggregating
the local model parameters. One special case is so-called
one-shot averaging (Zinkevich et al., 2010; McDonald et al.,
2010; Zhang et al., 2013), where each machine solves a
local problem and averages these solutions only at the last
iterate. Some works (Zhang et al., 2013; Shamir & Sre-
bro, 2014; Godichon-Baggioni & Saadane, 2017; Jain et al.,
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Table 1. The summary of Iteration and Communication Complexities, where K is the number of machines and © < 1. NP-PPD-SG
denotes the naive parallel version of PPD-SG, which is also a special case of our algorithm, whose complexities can be derived by

following our analysis.

Algorithm ‘ Setting ‘ Iteration Complexity ‘ Communication Complexity
PPD-SG (Liu et al., 2020b) | Single O(1/(u?e)) -

NP-PPD-SG Distributed | O(1/(K u?¢)) O(1/(K pi%¢))

CoDA Distributed | O(1/(K p2€)) O(1/(u?/%€'/?))

2017; Koloskova et al., 2019; Koloskova* et al., 2020) con-
sider one-shot averaging with one-pass of the entire data
and establish statistical convergence, which is usually not
able to guarantee the convergence of the training error. The
scheme of local SGD update at each worker with skipping
communication is analyzed for convex (Stich, 2018; Jaggi
et al., 2014) and nonconvex problems (Zhou & Cong, 2017;
Jiang & Agrawal, 2018; Wang & Joshi, 2018b; Lin et al.,
2018b; Wang & Joshi, 2018a; Yu et al., 2019b;a; Basu et al.,
2019; Haddadpour et al., 2019). There are also several
empirical studies (Povey et al., 2014; Su & Chen, 2015;
McMabhan et al., 2016; Chen & Huo, 2016; McMabhan et al.,
2016; Lin et al., 2018b; Kamp et al., 2018) showing that this
scheme exhibits good empirical performance for distributed
deep learning. However, all of these works only consider
minimization problems and do not apply to the nonconvex-
concave min-max formulation as considered in this paper.

Nonconvex Min-max Optimization. Stochastic noncon-
vex min-max optimization has garnered increasing attention
recently (Rafique et al., 2018; Lin et al., 2018a; Sanjabi
etal., 2018; Lu et al., 2019; Lin et al., 2019; Jin et al., 2019;
Liu et al., 2020a). Rafique et al. (2018) considered the case
where the objective function is weakly-convex and concave
and proposed an algorithm based on the spirit of proxi-
mal point method (Rockafellar, 1976), in which a proximal
subproblem with periodically updated reference points is ap-
proximately solved by an appropriate stochastic algorithm.
They established the convergence to a nearly stationary point
for the equivalent minimization problem. Under the same
setting, Lu et al. (2019) designed a block-based algorithm
and showed that it can converge to a solution with a small
stationary gap, and Lin et al. (2019) considered solving the
problem using vanilla stochastic gradient descent ascent and
established its convergence to a stationary point under the
smoothness assumption. There are also several papers (Lin
et al., 2018a; Sanjabi et al., 2018; Liu et al., 2020a) trying
to solve non-convex non-concave min-max problems. Lin
et al. (2018a) proposed an inexact proximal point method
for solving a class of weakly-convex weakly-concave prob-
lems, which was proven to converge to a nearly stationary
point. Sanjabi et al. (2018) exploited the PL condition for the
inner maximization problem and designed a multi-step alter-
nating optimization algorithm which was able to converge
to a stationary point. Liu et al. (2020a) considered solving
a class of nonconvex-nonconcave min-max problems by

designing an adaptive gradient method and established an
adaptive complexity for finding a stationary point. However,
none of them is particularly designed for the distributed
stochastic AUC maximization problem with a deep neural
network.

3. Preliminaries and Notations
The area under the ROC curve (AUC) on a population level
for a scoring function i : X — R is defined as

AUC(h) =Pr(h(x) > h(X)ly=1,4' = -1), (D)

where z = (x,y) and z' = (x',y’) are drawn independently
from P. By employing the squared loss as the surrogate for
the indicator function which is commonly used by previ-
ous studies (Gao et al., 2013; Ying et al., 2016; Liu et al.,
2018; 2020b), the deep AUC maximization problem can be
formulated as

min By 0 [(1—h(w;x) + h(w;x)*|ly = 1,y = 1],
we
where h(w;x) denotes the prediction score for a data sam-
ple x made by a deep neural network parameterized by w.
It was shown in (Ying et al., 2016) that the above problem
is equivalent to the following min-max problem:

]EZ[F(anab70‘7Z)]a (2)

min maxf(w a,b,a) =

(e
where
F(w,a,b,a;2z) = (1 = p)(h(w;x) — a)?[},_y
T p(h(wsx) = b)2Ly +2(1 + ) (ph(wix)Ty—

— (1 = p)h(w,x)I—1)) — p(1 — p)a’,

where p = Pr(y = 1) denotes the prior probability that
an example belongs to the positive class, and I denotes
an indicator function. The above min-max reformulation
allows us to decompose the expectation over all data into
the expectation over data on individual machines.

In this paper, we consider the following distributed AUC
maximization problem:

min max f(w,a,b,a) = r(w,a,b,a), (3)
werd  a€R

(a,b)ER2

HMN

where K is the total number of machines, fi(w,a,b, a) =
B« [Fru(w,a,b,a;2%)], 28 = (x*,yF) ~ Py, Py, is the
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data distribution on machine k, and Fj(w,a,b, a;z*) =
F(w,a,b,c;z"). Our goal is to utilize K machines to
jointly solve the optimization problem (3). We emphasize
that the k-th machine can only access data z° ~ P, of
its own. It is notable that our formulation includes both
the batch-learning setting and the online learning setting.
For the batch-learning setting, P, represents the empirical
distribution of data on the k-th machine and p denotes the
empirical positive ratio for all data. For the online learning
setting, P, = P, Vk represents the same population distribu-
tion of data and p denotes the positive ratio in the population
level.

Notations. We define the following notations:

v=(w'ab)", ¢(v)=maxf(v,a),
6:(v) = 6(v) + 5| I?
s(V) = o(v 27 V—=Vs_1]
vy, = argmin¢(v), v; = argmin¢s(v).
v v
We make the following assumption throughout this paper.

Assumption 1

(i) There exist vo, Ag > 0 such that ¢(vo) — ¢(vy) < Do.
(ii) For any x, ||Vh(w;x)| < G,

(iii) ¢(v) satisfies the pu-PL condition, i.e., u(p(v) —
d(v.)) < 2IVo(V)||% (V) is Ly-smooth, i.e., |p(v1) —
O(vVo)l| < Lafvi — val|.

(iv) For any x, h(w;x) is Lp-smooth, and h(w;x) € [0,1].

Remark: Assumptions (i), (ii), (iii) and h(w;x) € [0, 1] of
(iv) are also assumed in (Liu et al., 2020b), which have been
justified as well. L-smoothness of function h is a standard
assumption in the optimization literature. Finally, it should
be noted that p is usually much smaller than 1 (Yuan et al.,
2019). This is important for us to understand our theoretical
result later.

4. Main Result and Theoretical Analysis

In this section, we first describe our algorithm, and then
present its convergence result followed by its analysis. For
simplicity, we assume that the ratio p of data with the pos-
itive label is known. For the batch learning setting, p is
indeed the empirical ratio of positive examples. For the
online learning setting with an unknown distribution, we
can follow the online estimation technique in (Liu et al.,
2020b) to do the parameter update.

Algorithm 1 describes the proposed algorithm CoDA for
optimizing AUC in a communication-efficient distributed
manner. CoDA shares the same algorithmic framework as
proposed in (Liu et al., 2020b). In particular, we employ a
proximal-point algorithmic scheme that successively solves

Algorithm 1 CoDA
1: Initialization: (vg = 0 € R®*2 oy = 0,7).
2: fors=1,...,5do
3: Vs :DSG(stl,Oésfl,T]S,Ts,ms,fs,’)/);
4:  Each machine draws a minibatch {z},...,z*, } of
size m, and does:

ms M
. ko— <k ko
5 h* - Z h(v57xi )]ny:—laNf - Z ]ny:_ly
i=1 i=1
ko SR k ko ]2
6: hi = 2 h(vs;x; )]ny:hNJr =2 Hyf:l;
i=1 ' i=1
1 K h’i hi .
T as=3 > | NF T NFLS © communicate
k=1t~ +
8: end for

9: Return vg.

the following convex-concave problem approximately:
. 1 2
min max f(v,a) + —||v — vol|*, 4
v o« 2y

where y is an appropriate regularization parameter to make
sure that the regularized function is strongly-convex and
strongly-concave. The reference point v is periodically
updated after a number of iterations. At the s-th stage our
algorithm invokes a communication-efficient algorithm for
solving the above strongly-convex and strongly-concave
subproblems. After obtaining a primal solution v at the
s-th stage, we sample some data from individual machines
to obtain an estimate of the corresponding dual variable c.

Our new contribution is the communication-efficient dis-
tributed algorithm for solving the above strongly-convex
and strongly-concave subproblems. The algorithm referred
to as DSG is presented in Algorithm 2. Each machine makes
a stochastic proximal-gradient update on the primal variable
and a stochastic gradient update on the dual variable at each
iteration. After every [ iterations, all the K machines com-
municate to compute an average of local primal solutions
v¥ and local dual solutions a¥. It is not difficult to show
that when I = 1, our algorithm reduces to the naive parallel
version of the PPD-SG algorithm proposed in (Liu et al.,
2020b), i.e., by averaging individual primal and dual gradi-
ents and then updating the primal-dual variables according
to the averaged gradient '. Our novel analysis allows us to
use [ > 1 to skip communications, leading to a much less
number of communications. The intuition behind this is
that, as long as the step size 7, is sufficiently small we can
control the distance between individual solutions (v¥, af)
to their global averages, which allows us to control the error

'A tiny difference is that we use a proximal gradient update to
handle the regularizer % |lv — vol|?, while Liu et al. (2020b) used
the gradient update. Using the proximal gradient update allows us
to remove the assumption that || v§ — vo|| is upper bounded.
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Algorithm 2 DSG(v, ag,n,T,1,7)

Each machine does initialization: v& = vg, af = ay,

fort=0,1,....,T — 1do
Each machine k updates its local solution in parallel:

koo : k k. kT
Viy1 = argmin VFr,(vi,afz8)' v

2w IV =VEI? + 2 llv = ol
0‘71;-1 = O‘f +77VaFk(Vtaaf3Zf)’
ift+1mod I =0 then

K

koo 1 k .

Viti = K kZ Vifis © communicate
=1

koo 1 k .
Ol = K > Qs & communicate
k=1

end if
end for
LS &
Return v = 4 kzl T ;_:1 A

term that is caused by the discrepancy between individual
machines. We will provide more explanations as we present
the analysis.

Below, we present the main theoretical result of CoDA.
Note that in the following presentation, L, H, B, 0,04
are appropriate constants, whose values are given in the
proofs of Lemma 1 and Lemma 2 in the supplement.

Theorem1 Set v = 5 - ¢ = Siﬁzv
ns = mKexp(=(s — 1)) < 0Q1), T, =
mex(B5CL) exp((s — 1) ), I, = max(1,1/VE7)
o = o D). i
C = % and p = max(p,1 — p). To return
vs such that Elp(vs) — ¢(vy)] < e it suffices
to choose S > wf%max log( ) logS +

log {2"0 W} } As a result, the number of

iterations is at most T = O[ max (-2 Ly
pneno K’ p?Ke
and the number of communications is at most
~ 1/2 1/2 ~
K Ay K L
O(max (u + T + BT ,  where O

suppresses logarithmic factors, and H,B,o,0, are

appropriate constants.

We have the following remarks about Theorem 1.

e First, we can see that the step size 7, is reduced ge-
ometrically in a stagewise manner. This is due to
the PL condition. We note that a stagewise geometri-
cally decreasing step size is usually used in practice in
deep learning (Yuan et al., 2019). Second, by setting

no = O(1/K) we have Iy = @(\/» exp((s — 1)c/2).
It means two things: (i) the larger the number of ma-
chines the smaller value of I, i.e., more frequently
the machines need to communicate. This is reasonable
since more machines will create a larger discrepancy
between data among different machines; (ii) the value
I can be increased geometrically across stages. This is
because that the step size 7, is reduced geometrically,
which causes one step of primal and dual updates on
individual machines to diverge less from their averaged
solutions. As a result, more communications can be
skipped.

e Second, we can see that when K < @(1/u) we have
the total iteration complexity given by O( 7). Com-
pared with the iteration complexity of the PPD~SG al-
gorithm proposed in (Liu et al., 2020b) that is O(ﬁ),
the proposed algorithm CoDA enjoys an iteration com-
plexity that is reduced by a factor of K. This means
that up to a certain large threshold ©(1 /) for the num-
ber K of machines, CoDA enjoys a linear speedup.

e Finally, let us compare CoDA with the naive parallel
version of PPD-SG, which is CoDA by setting I = 1.
In fact, our analysis of the iteration complexity for this
case is still applicable, and it is not difficult to show that
the iteration complexity of the naive parallel version of
PPD-SG is given by O( »z) when K < 1/p. Asa

result, its communication complexity is also O( 5 KE)
In contrast, CoDA’s commumcatlon complex1ty is

0 1 1 1 .
O(srar) when K < - < < < according

w < e <
to Theorem 1 2. Hence, our algorithm i is more commu-
nication efficient, i.e., 6(@) < O( 2KE) when
K < 13 This means that up to a certain large thresh-
old ©(1/p) for the number K of machines, CoDA has
a smaller communication complexity than the naive
parallel version of PPD-SG.

4.1. Analysis

Below, we present a sketch of the proof of Theorem 1 by
providing some key lemmas. We first derive some useful
properties regarding the random function F (v, o, z).

Lemma 1 Suppose that Assumption 1 holds and n <
min(m7 2(11 L 2p) Then there exist some constants
Ly, B, By, 0y, 04 such that

IV Er(vi,a52) — Vo Fi(va, ;2)|| < La||vi — val|,
IVyEi(v,a;2)||* < BS. [VaFi(v, a3 2)|* < By,
E[|Vy fu(v.a) = VyFi(v, o5 2)|°] < o3
E[|Vafe(v,a) — Vo Fir(v,;2)]] < 2.

2 Assume that e is set to be smaller than .
3Indeed, K can be as large as m for CoDA to be more

communication-efficient.
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Remark: We include the proofs of these properties in
the Appendix. In the following, we will denote B? =
max(B2, B2) and Ly, = max(Ly, Ly).

Next, we introduce a key lemma, which is of vital impor-
tance to establish the upper bound of the objective gap of
the regularized subproblem.

Lemma 2 (One call of Algorithm 2) Let ¢¥(v) =
max f(v,a) + i||v — vol|?2, Vv be the output of
argmin ¢ (v),
% IV — vol|%. By running Algorithm 2

Algorithm 2, and vdj = a*(v) =

argmax f(V,a) +

with given input v, o for T iterations, v = andn <

1
2L’

: 1 1 3 1 1 1
M st 7 T80Ty 2 009)° 207) 29
we have

2[lvo = vilI*+E[(a0 — a" (¥))’]
nT
n(202+302)
2K ’
where pio = 2p(1 — p), Lo = 2p(1 — p), Go =
2max{p,1 — p}, Gy = 2max{p,1 — p}G}y, and H =
( 6G2 6G2 | 6L2 )
Ha Voo Ly o
Remark: The above result is similar to Lemma 2 in (Liu
et al., 2020b). The key difference lies in the second and third
terms in the upper bound. The second term arises because
of the discrepancy of updates between individual machines.
The third term is due to the variance reduction by using
multiple machines, which is the key to establish the linear
speed-up. It is easy to see that by setting [ = ﬁ the
second term and the third term have the same order. With

the above lemma, the proof of Theorem 1 follows similar
analysis to in (Liu et al., 2020b).

E[$(¥) — min $(v)] <

+Hp’I’B*I151 +

Sketch of the Proof of Lemma 2. Below, we present a
roadmap for the proof of the key Lemma 2. The main idea
is to first bound the objective gap of the subproblem in
Lemma 3. Then we further bound every term in the RHS
in Lemma 3 appropriately, which is realized by Lemma 4,
Lemma 5 and Lemma 6. All the detailed proofs of Lemmas
can be found in Appendix.

Lemma 3 Define v, = &S r vk a, = L35 ok
Suppose Assumption 1 holds and by running Algorithm 2,
we have

(@) — min(v)

T
1 * — — *
< T Z |:<va(‘71*17 atfl)a‘_/t 7vw>+2LV<Vt7v07vt7Vd;>

Aq
+ (Vaf(Vic1,ai-1),a" — ay)

Az

Fon v = Vel +

Ly +3G% /pa . Lo +3G2/Ly
G Iy 3Ca e G e Le B3Iy 5y
2 2
As
2Ly, .
+T|\Vt71—vw|| — Lu[lve = vi|* - 3 S (-1 —a”)?.

Next, we will bound A, A in Lemma 4 and Lemma 5.
As can be cancelled with similar terms in the following
two lemmas. The remaining terms will be left to form a
telescoping sum with other similar terms in the following
two lemmas.

T
K
Lemma 4 Define v, = arg min <11( Y Vofvi aks 1)> v
k=1
%”V — vol|%. We have

K 3L, K
2L } (@t 1*615 1) 2 T?; \vt717vf_1||2

2

K
Ezvvfk Vi1, b)) = Ve (i1, af 1528 1))
k=

K

Z Vt 10— 1)—

k:

Vka(folvaffl; fol)a{/t - VT&)

1,_ 2 - 2 - w2y Lv - .12
+%(||Vt71—"w|| —[Ve—1=Vel|" = [[Ve = vyl )+?v||vt—vw|| :

Z Va fk(vt 17045 1)

Lemma 5 Define &y = a1 + =

and

K
o :&t—l"Tn( Z(vaFk(vf—l, oszl; fol)_vafk(vf—l»affl))'

k=1
We have,
3G2 1 — 3L2 1 & 2
AzSZM&?kZth Vi 1H+ kz::at 1_0411
3n, 1 K
+ 7(} ;[Vafk(vfflzaffl) - vaFk(folvaffl;zt—l)])z
1K
+? NV afe(Vi_1,00 1) = VaFk(Vi_ 1,08 1325 1),60—1— G
k=1
1 _ * _ — \2 — * 1 ~\\2
+o (@ —a” ()~ (@1 -~ (@ —a” (9)))
« — * ~ 1 * ~ ~ * ~ ~
+@—a" ()" + 5 (07 (%) = @) - (@7 (V) = Gen)’).

The first two terms in the upper bounds of Ay, Ao are the
differences between individual solutions and their averages,
the third term is the variance of stochastic gradient, and the
expectation of the fourth term will diminish. The lemma be-
low will bound the difference between the averaged solution
and the individual solutions.

Lemma 6 If K machines communicate every I iterations,
and update with step size 1, then
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E[[|v: — vi|?] < 4n°1* Bil1a

= =
M=

k=1

E[||a: — o ||?] < 49°1?B21;+1.

= =
M=

B
Il

1

Combining the results in Lemma 3, Lemma 4, Lemma 5
and Lemma 6, we can prove the key Lemma 2.

5. Experiments

In this section, we conduct some experiments to verify our
theory. In our experiments, one “machine” corresponds to
one GPU. We use a cluster of 4 computing nodes with each
computer node having 4 GPUs, which gives a total of 16
“machines”. We would like to emphasize that even though
4 GPUs sit on one computing node, they only access to
different parts of the data. For the experiment with K =1
GPU, We run one computing node by using one GPU. For
experiments with K = 4 GPUs, we run one computing
node by using all four GPUs, and for those experiments
with K = 16 GPUs, we use four computing nodes by using
all GPUs. We notice that the communication costs among
GPUs on one computing node may be less than that among
GPUs on different computing nodes. Hence, it should be
kept in mind that when comparing with K = 4 GPUs on
different computing nodes, the margin of using K = 16
GPUs over using K = 4 GPUs should be larger than what
we will see in our experimental results. All algorithms are
implemented by PyTorch (Paszke et al., 2019).

Data. We do experiments on 3 datasets: Cifar10, Cifar100
and ImageNet. For Cifarl0, we split the original training
data into two classes, i.e., the positive class contains 5 origi-
nal classes and the negative class is composed of the other 5
classes. The Cifar100 dataset is split in a similar way, i.e.,
the positive class contains 50 original classes and the nega-
tive class is composed of the other 50 classes. Testing data
for Cifar10 and Cifar100 is the same as the original dataset.
For the ImageNet dataset, we sample 1% of the original
training data as testing data and use the remaining data as
the training data. The training data is split in a similar way
to Cifar10 and Cifar100, i.e., the positive class contains 500
original classes and the negative class is composed of the
other 500 classes. For each dataset, we create two versions
of training data with different positive ratios. By keeping all
data in the positive and negative classes, we have p = 50%
for all three datasetes. To create imbalanced data, we drop
some proportion of the negative data for each dataset and
keep all the positive examples. In particular, by keeping all
the positive data and 40% of the negative data we construct
three datasets with positive ratio p = 71%. Training data
is shuffled and evenly divided to each GPU, i.e., each GPU
has access to 1/ K of the training data, where K is the num-
ber of GPUs. For all data, we use ResNet50 as our neural
network (He et al., 2016) and initialize the model as the

pretrained model from PyTorch. Due to the limit of space,
we only report the results on datasets with p = 71% positive
ratio, and other results are included in the supplement.

Baselines and Parameter Setting. For baselines, we com-
pare with the single-machine algorithm PPD-SG as pro-
posed in (Liu et al., 2020b), which is represented by K =1
in our results, and the naive parallel version of PPD-SG,
which is denoted by K = X, I = 1 in our results. For
all algorithms, we set T, = Tp3%, n, = no/3*. Tp
and 7y are tuned for PPD-SG and set to the same for
all other algorithms for fair comparison. 7} is tuned in
[2000, 5000, 10000], and 7 is tuned in [0.1,0.01,0.001].
We fix the batch size for each GPU as 32. For simplicity, in
our experiments we use a fixed value of I in order to see its
tradeoff with the number of machines K.

Results. We plot the curve of testing AUC versus the num-
ber of iterations and versus running time. We notice that
evaluating the training objective function value on all ex-
amples is very expensive, so we use the testing AUC as
our evaluation metric. It may cause some gap between our
results and the theory; however, the trend should be enough
for our purpose to verify that our distributed algorithms can
enjoy faster convergence in both the number of iterations
and running time. We have the following observations.

e Varying K. By varying K and fixing the value of
I, we aim to verify the parallel speedup. The results
are shown in Figure 1(a), Figure 2(a) and Figure 3(a).
They show that when K becomes larger, then our algo-
rithm requires a less number of iterations to converge
to the target AUC, which is consistent with the parallel
speedup result as indicated by Theorem 1. In addi-
tion, CoDA with K = 16 machines is also the most
time-efficient algorithm among all settings.

e Varying /. By varying I and fixing the value of K,
we aim to verify that skipping communications up to
a certain number of iterations of CoDA does not hurt
the iteration complexity but can dramatically reduce
the total communication costs. In particular, we fix
K = 16 and vary [ in the range {1, 8, 64,512,1024}.
The results are shown in Figures 1(b), Figures 2(b) and
Figures 3(b). They exhibit that even when I becomes
moderately large, our algorithm is still able to deliver
comparable performance in terms of the number of
iterations compared with the case when I = 1. The
largest value of I that does not cause a dramatic perfor-
mance drop compared with [ = 1is [ = 1024, I = 64,
I = 64 on ImageNet, CIFAR100 and CIFAR10, re-
spectively. However, up to these thresholds the running
time of CoDA can be dramatically reduced than the
naive parallel version with [ = 1.

e Trade-off between [ and K. Finally, we verify the
trade-off between I and K as indicated in Theorem 1.
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Figure 1. ImageNet, positive ratio = 71%.
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Figure 2. Cifar100, positive ratio = 71%.
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Figure 3. Cifar10, positive ratio = 71%.

To this end, we conduct experiments by fixing K = 4
GPUs and varying the value I, and comparing the
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oo using K = 4 on CIFAR100 and CIFAR10 are reported
in Figure 4 and Figure 5. We can observe that when
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Figure 4. Cifar100, positive ratio = 71%, K=4.
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Figure 5. Cifar10, positive ratio = 71%, K=4. empirical studies verify the theory and also demonstrate
the effectiveness of the proposed distributed algorithm on
benchmark datasets.
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