Learning to Branch for Multi-Task Learning

Appendix
A. Implementation Details

In this section, we provide additional implementation details
for experiments on CelebA dataset (Liu et al., 2015) and
Taskonomy dataset (Zamir et al., 2018).

CelebA.

(a) LearnToBranch-VGG network: we train the network
topological distribution for 30 epochs. The global learning
rate is set to 10~° and the learning rate for branching opera-
tion is set to 10~%. We use exponential learning decay with
decay factor 0.97 for every 2.4 epochs. After sampling the
final architecture, we train the network for 30 epochs from
scratch. We set the learning rate to 0.03, the weight decay
to 5e 4, and the momentum to 0.9. We decay the learning
rate by half for every 10 epoch.

(b) LearnToBranch-Deep-Wide network: we train the net-
work topological distribution for 30 epochs. The global
learning rate is set to 10~* and the learning rate for branch-
ing operation is set to 10~2. We use exponential learning
decay with decay factor 0.97 for every 2.4 epochs. After
sampling the final architecture, we train the network for 30
epochs from scratch. We set the learning rate to 0.05, the
weight decay to 5e 4, and the momentum to 0.9. We decay
the learning rate by half for every 15 epoch.

We visualize both network architectures (a) and (b) in Fig-
ure 6. We observe some grouping strategies learned by
our method share some similarities with human intuition.
For instance, network (a) groups "Eyeglasses’ and *Narrow
Eyes’ and groups "Mustasche’ and ’No Beard’. Network (b)
groups ’Black Hair’ and ’Gray Hair’ and groups 'Bald’ and
’Receding Hairline’.

Taskonomy.

We train the network topological distribution for 30 epochs.
The global learning rate is set to 10~2, the learning rate for
branching operations is set to 10~!, and weight decay is
set to 107°. We use exponential learning decay with decay
factor 0.97 for every 1 epoch.

After sampling the final architecture, we train the network
for 30 epochs from scratch. We set the learning rate to 5e =4,
the weight decay to 10~4, and the momentum to 0.9. We
use exponential learning decay with decay factor 0.97 for
every 1 epoch.

We follow the work in (Sun et al., 2019) and set the follow-
ing task weightings: 1.0 for semantic segmentation, 3.0 for
surface normal estimation, 2.0 for depth estimation, 7.0 for
keypoint prediction, and 7.0 for edge detection. Note that
we can further combine the proposed method with other
adaptive task weighting methods. We leave this effort for
future investigation.

Again following (Sun et al., 2019), for the semantic seg-
mentation task, we ignore uncertain pixels (class 0) and
background pixels (class 1). For the monocular depth esti-
mation task, we ignore pixels with depth value larger than
64500 and normalize the disparities by taking the log opera-
tion and downscale by a factor of log(21°). For the surface
normal prediction task, we normalize the three-dimensional
normal vector from [0, 255] to [—1,1]. For the keypoint
estimation and the edge detection tasks, we downscale the
original values by a factor of 216, We then normalize the
values from [0,0.005] to [—1, 1] for keypoints and from
[0,0.08] to [—1, 1] for edges.

B. Learned Branching Features

We use Network Dissection (Bau et al., 2017) to examine
the features learned from Taskonomy dataset. We found that
the SDN {segmentation, depth, normal} branch shows 35%
increase in high-level features (object and part detectors)
and 20% decrease in low-level features (texture detectors)
compared to the shared layer before splitting. On the other
hand, the EK {edge, keypoint} branch continues to focus
on low-level features, showing no increase in high-level
features due to the fact that {edge, keypoint} tasks are gen-
erally considered low-level tasks. Table 3 lists the number
of detector counts before and after the branching (layer 13).

Table 3. Detector counts for different categories of input images at
different layers using Network Dissection (Bau et al., 2017).

LAYER OBJECT+PART DETECTORS TEXTURE DETECTORS
LAYER13 116 262
LAYER |4, SDN 157 208
LAYER |4, EK 118 253

C. Generalizability of the Learned Branching

We investigate whether the task grouping strategy learned
from Tasknomoy dataset can be transferred to NYUv2
dataset on the three shared tasks across the two datasets.
Following the metrics in Table 2, for {segmentation, nor-
mal, depth} tasks, we found that the grouping learned from
Tasknomoy achieves {1.611, 0.739, 0.058} on NYUv2
test set while the grouping learned from NYUv2 train-
ing set achieves {1.572, 0.748, 0.058} on NYUV2 test set.
The overall performance difference is relatively small at
1.23%. The experiment is performed on the NYUv2 la-
belled dataset with 795 training images and 654 test images
using 256 x 256 image resolution.



Learning to Branch for Multi-Task Learning

fosofieluni

(a) LearnToBranch-VGG (b) LearnToBranch-Deep-Wide

Figure 6. Network architectures learned from CelebA dataset. We observe some grouping strategies learned by our method share some
similarities with human intuition. For instance, network (a) groups 'Eyeglasses’ and 'Narrow Eyes’ and groups *Mustasche’ and ’No
Beard’. Network (b) groups ’Black Hair’ and *Gray Hair’ and groups ’Bald’ and 'Receding Hairline’. The groups are shown in red dotted
rectangles. Transparent boxes denote removed nodes because they are not selected by any child nodes.



