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Abstract

Distribution shift is a major obstacle to the de-
ployment of current deep learning models on real-
world problems. Let Y be the target (label) and
X the predictors (features). We focus on one
type of distribution shift, target shift, where the
marginal distribution of the target variable PY

changes, but the conditional distribution PX|Y
does not. Existing methods estimate the density
ratio between the source- and target-domain la-
bel distributions by density matching. However,
these methods are either computationally infeasi-
ble for large-scale data or restricted to shift correc-
tion for discrete labels. In this paper, we propose
an end-to-end Label Transformation Framework
(LTF) for correcting target shift, which implicitly
models the shift of PY and the conditional distri-
bution PX|Y using neural networks. Thanks to
the flexibility of deep networks, our framework
can handle continuous, discrete, and even multi-
dimensional labels in a unified way and is scal-
able to big data. Moreover, for high dimensional
X , such as images, we find that the redundant
information in X severely degrades the estima-
tion accuracy. To remedy this issue, we propose
to match the distribution implied by our genera-
tive model and the target-domain distribution in
a low-dimensional feature space that discards in-
formation irrelevant to Y . Both theoretical and
empirical studies demonstrate the superiority of
our method over previous approaches.
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1. Introduction
Standard supervised learning methods typically assume that
the training set (source domain) and the test set (target do-
main) have the same distribution. However, the data avail-
able for training is always limited and may not represent
and reflect the statistics of the test data. As such, the source-
domain distribution PS

XY is often different from the target-
domain distribution PT

XY , degrading the performance of
the models learned on the training set. This phenomenon
is called distribution shift, which has become a significant
obstacle to the deployment of deep learning models in the
real world.

To overcome distribution shift and improve the prediction
on test data, existing methods have studied various distribu-
tion shift settings, among which covariate shift and target
shift have been widely considered. Covariate shift assumes
that the marginal PX changes across training and test sets,
whereas the conditional distribution PY |X is invariant (Shi-
modaira, 2000; Sugiyama et al., 2008; Gretton et al., 2009;
Long et al., 2015; 2017; 2018; Liu et al., 2019). Target
shift assumes that the label distribution PY changes but the
conditional distribution PX|Y stays the same (Zhang et al.,
2013; Iyer et al., 2014; Lipton et al., 2018; Azizzadenesheli
et al., 2019).

Here we focus on the target shift problem since it appears in
a wide range of real-world learning problems. For example,
in disease prediction, where our goal is to predict disease
Y from symptoms X , the distribution of the disease can
change over location and time, while the mechanism of
symptoms PX|Y is rather stable. Consider the flu prediction
task, the data available for flu prediction is always has a
regular morbidity rate, but if a model is trained on these
data, the performance of this model will decrease when it
is used to detect flu in a location or over a period with a
high morbidity rate (Tasche, 2017). In addition, target shift
also exists in many computer vision applications, such as
predicting object locations (Yang et al., 2018) and direction
and human poses (Martinez et al., 2017). The distribution
of object locations or human poses often changes across
training and test sets.

Despite being a natural phenomenon in many real appli-
cations, target shift is relatively understudied compared to
covariate shift. Chan & Ng (2005) proposed an expectation-
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maximization algorithm that requires estimation of the con-
ditional distribution PX|Y . Unfortunately, estimating PX|Y
is difficult for high-dimensional X and moreover, it does
not apply to regression problems. Zhang et al. (2013) pro-
posed a nonparametric method to estimate the density ratio
PT
Y /P

S
Y by kernel mean matching of distributions, which

applies to both regression and classification problems. How-
ever, this approach is not compatible with large data as
the computational cost is quadratic in the sample size. Re-
cently, Lipton et al. (2018); Azizzadenesheli et al. (2019)
proposed efficient and sample size-independent methods
that make use of the confusion matrix of a classifier learned
on the training set. These methods have shown promising
performance on large-scale data but are only applicable to
classification problems.

In this paper, we aim to propose a new framework that
can correct target shift for both discrete and continuous
Y . Compared to existing methods, we make the following
contributions. First, instead of estimating the density ra-
tio PT

Y /P
S
Y , we model the change in the distribution PY

by a neural label transformation T , which transforms the
training label distribution PS

Y to a new label distribution
PR
Y that can approximate the unknown PT

Y in the test set.
Thanks to the flexibility of neural nets, we can design dif-
ferent transform models T to deal with different types of Y ,
including discrete, continuous, and even multi-dimensional
labels. Second, because of the absence of labels in the test
set, we model the invariant conditional distribution PX|Y
using a conditional generator G on the training set. By
concatenating the label transformation model T with the
conditional generator G, we can generate corresponding
sample distribution PR

X , which is then matched with PT
X to

estimate the parameters in T . Third, for high dimensionalX ,
such as images, we observe that the redundant information
significantly degrades the estimation accuracy. To remedy
this issue, we theoretically analyze this phenomenon and
propose to match the distributions of a feature representation
of X that discards the information irrelevant to Y .

To demonstrate the advantage of our framework in practi-
cal applications, we apply our method to a range of label
types, including classification (discrete label), regression
(continuous label) and objects 2D object position prediction
(multi-dimension label), in various target shift settings, such
as random target shift, high probability label quantification
and low probability label quantification). The empirical
results demonstrate the generality, flexibility and superiority
of our framework compared to previous methods.

2. Related Work
Covariate shift and target shift are two common types of
distribution shift. The former one assumes that the feature
distribution PX changes over training set and test set, but

the conditional distribution PY |X from label to data remains
unchanged, while the latter one assumes that the label distri-
bution PY changes but PX|Y is invariant.

The existing methods solve covariate shift and target shift
using re-weighting methods, which are also used in a wide
range of problems, e.g., label-noise (Liu & Tao, 2015; Yu
et al., 2017b; Cheng et al., 2017; Fang et al., 2020) . We
firtstly introduce methods dealing with covariate shift prob-
lems shortly, where many methods estimate importance
sample weights PT

X/P
S
X (Zadrozny, 2004; Huang et al.,

2007; Sugiyama et al., 2008; Gretton et al., 2009) via kernel
methods (Huang et al., 2007; Gretton et al., 2009; Zhang
et al., 2013) or using a discriminative classifier (Lopez-Paz
& Oquab, 2016; Liu et al., 2017). Then they correct models
by retraining a new model with re-weighted training samples
using estimated PT

X/P
S
X under the ERM framework (Shi-

modaira, 2000). More recent works learn domain-invariant
representations X ′ = h(X) that have similar marginal dis-
tributions across domains ( PT

X′ ≈ PS
X′) (Si et al., 2009;

Pan et al., 2010; Baktashmotlagh et al., 2013; Tzeng et al.,
2014; Ganin et al., 2016; Long et al., 2015).

Similar to the correction of Covariate shift, there are two
major steps to solve target shift problems. The first step is
to estimate the label distribution PT

Y in the target domain
or the ratio PT

Y /P
S
Y . The second step is to construct an

unbiased estimate of the target domain risk based on the
results from the first step. Zhang et al. (2013); Iyer et al.
(2014); Nguyen et al. (2016); Gong et al. (2016) proposed to
estimate PT

Y or PT
Y /P

S
Y by matching a weighted combina-

tion of conditionals PS
X|Y in the source domain the marginal

distribution PT
X in the target domain. The matching of dis-

tributions is achieved by minimizing suitable divergence
measures (Gretton et al., 2012; Sugiyama et al., 2012) w.r.t.
the weights on PS

X|Y . In the discrete Y scenario, Lipton
et al. (2018) proposed a method which estimates the impor-
tance weight (PT

Y / PS
Y ) by matching the output of trained

classifier on the training set (confusion matrix), and then
Azizzadenesheli et al. (2019) turned this problem as a linear
programming problem and iteratively minimized the error
of label distributions between the training set and the test
set, improving the accuracy of estimated target label distri-
bution PT

Y . In addition, Azizzadenesheli et al. (2019) added
a regularization term to make the algorithm compatible with
the situation where the target sample size is small.

3. Methodology
Given training data Ds = {xsi , ysi }

ns
i=1 ⊆ X × Y indepen-

dently drawn from an unknown joint distribution PS
XY ,

denoted as the source domain distribution, and test data
Dt = {xti, yti}

nt
i=1 drawn from the target-domain distribu-

tion PT
XY , where yti is unknown, target shift assumes that

PS
X|Y = PT

X|Y = PX|Y and PS
Y 6= PT

Y . Our goal is to build
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a model to estimate the label distribution PT
Y in the target

domain such that we can correct the label shift between
the training and test data and thus improve the prediction
performance on the test set. We consider both continuous Y,
i.e., Y = Rd, and discrete Y , i.e., Y = {1, . . . ,K}.

3.1. Review of Previous Methods

To estimate the label distribution PT
Y , existing methods use

the relation between source and target distributions:

PT
X(x) =

∫
y

PX|Y (x|y)PT
Y (y)dy (1)

=

∫
y

PS
XY (x, y)

PT
Y (y)

PS
Y (y)

dy︸ ︷︷ ︸
P new

X

. (2)

Because PS
XY and PT

X can be estimated from Ds and Dt,
previous methods (Zhang et al., 2013; Gong et al., 2016)
estimate the density ratio β∗(y) = PT

Y (y)

PS
Y (y)

by minimizing the
empirical Maximum Mean Discrepancy (MMD) (Gretton
et al., 2012) between PT

X and P new
X :

∣∣∣∣ 1
nt

nt∑
i=1

ψ(xti)−
1

ns

ns∑
i=1

β(ysi )ψ(x
s
i )
∣∣∣∣2
H, (3)

s.t. β(ysi ) ≥ 0, and
ns∑
i=1

β(ysi ) = ns, (4)

where ψ is the feature mapping from X to a reproducing
kernel Hilbert space (RKHS) H associated with a kernel
function k(x, x′) = 〈ψ(x), ψ(x′)〉H. For kernel functions
that have no explicit ψ, for example, RBF kernels, we need
to use kernel trick to calculate (3). The computational cost
is quadratic in the sample size and thus the algorithm is not
scalable to large datasets.

When Y is discrete, recent works (Lipton et al., 2018; Aziz-
zadenesheli et al., 2019) proposed to estimate β = [β(y =
1), . . . , β(y = K)]T by using the confusion matrix of a
classifier f :

q̂ = Ĉβ̂, (5)

where Ĉ is the confusion matrix with each element
Ĉij = 1

ns

∑ns

k=1 1{f(xsk) = i, ysk = j} and q̂i =
1
nt

∑nt

j=1 1{f(xtj) = i}. It can be seen that (5) corresponds
to a specific form of (3) in which the feature mapping ψ is
set to ψ(x) = one hot(f(x)), where one hot is a function
mapping ŷ = f(x) to its corresponding one-hot vector. Be-
cause the dimensionality of ψ(x) is simply the number of
classes K, which is usually much smaller than the sample
size, β̂ can be obtained efficiently. However, this type of
methods only work for discrete labels.

3.2. Our Framework

Instead of estimating the density ratio β(y), our framework
estimates the target-domain marginal distribution using a
constructed distribution PR

X defined as follows:

PR
X =

∫
yr

PX|Y (x|yr)PR
Y (yr)dyr

=

∫
yr

PX|Y (x|yr)
∫
ys

PY R|Y S (yr|ys)PS
Y (ys)dysdyr,

(6)

where we build a new label distribution PR
Y by transforming

the training label distribution PS
Y using the transition model∫

ys PY R|Y S (yr|ys)PS
Y (ys)dys. Because Y is not observed

in the test domain, we need to estimate the label transition
model by comparing PR

X and PT
X . In the following sections,

we will show how the transformation between PS
Y and PT

Y

can be estimated from the labeled training set and unlabeled
test set.

Figure 1 displays the flowchart of our framework. First,
we transform the samples drawn from PS

Y using the Label
Transformation network LT which maps PS

Y to a distri-
bution PR

Y . Because there are only unlabeled data in the
target domain, we cannot directly match PR

Y with the target-
domain label distribution PT

Y . Therefore, we then pass the
transformed labels into the Label Influence Recovery net-
work G, which models the conditional distribution PX|Y
implicitly, to generate samples with distribution PR

X . Fi-
nally, we match the generated distribution PR

X with the
target domain PT

X to estimate the parameters in the label
transformation network, such that PR

Y can approximate the
target-domain label distribution PT

Y . After estimating PR
Y ,

we can train an unbiased classifier for prediction in the tar-
get domain. In the following, we present the details of each
component in our framework.

3.2.1. LABEL TRANSFORMATION NETWORK

Here we use a neural network LT to transform the train-
ing label distribution PS

Y to a new label distribution PR
Y ,

such that we can directly generate the corresponding sample
distribution PR

X together with one generator G that models
PX|Y . Specifically, we use the following functional model:

Y R = LT (Y S , Z), (7)

where LT is modeled by a neural net and Z is a ran-
dom variable with distribution PZ . (7) models the con-
ditional distribution PY R|Y S implicitly. Because PR

Y =∫
ys PY R|Y S (yr|ys)PS

Y (ys)dys, we can sample yri ∼ PR
Y

by first sampling ysi from the source-domain labels, and
then generate the corresponding yri = LT (ysi , zi), where
zi ∼ PZ . Note that in some situations, such as discrete Y ,
it might be more convenient to directly use the parametric
form of PY R|Y S .



LTF: A Label Transformation Framework for Correcting Target Shift

Forward Process
Backpropagation 

Label
Transformation

Label
Influence Recovery

Distribution
Matching

Figure 1. The illustration of the LTF framework. Here we make an example which assumes that X = Y + ε. Firstly, the Label
Transformation Model LT transforms the training label distribution PS

Y (blue one) to a new label distribution PR
Y (green one), and then

the Label Influence Recovery Model G generates the sample distribution PR
X from the data generated from PR

Y . By matching the target
sample distribution PT

X (red one) and PR
X and fixing the G, the PR

Y from LT is expected to be close to PT
Y . As such, the target label

distribution PT
Y can be approximated by PR

Y .

If labeled data were available in the target domain, we can
then simply match the empirical PR

Y and PT
Y to learn LT .

Unfortunately, target-domain labels are not available in un-
supervised domain adaptation, but still, in the target domain
we have unlabeled data {xti}

nt
i=1, which can be used to es-

timate LT . To this end, we need to transform PR
Y to a

distribution PR
X in the X space. Because PR

X captures the
influence of PR

Y , we can possibly estimate PR
Y (or LT ) by

matching PR
X and PT

X , from which we can sample data
points to estimate and minimize their distance.

3.2.2. LABEL INFLUENCE NETWORK

In order to transform PR
Y to PR

X , we make use of the follow-
ing model:

XR = G(Y R, E), (8)

where G is a neural generator, and E is a random vari-
able with distribution PE , which is set to normal distri-
bution. We can use (8) to implicitly model PX|Y . Due
to PR

X =
∫
yr PXR|Y R(xr|yr)PR

Y (yr)dyr, we can sample
xri ∼ PR

X by first sampling yri using (7), and then generate
the corresponding xri = G(yri , ei), where ei ∼ PE .

Since G corresponds to the generator in a conditional gener-
ative adversarial network (Mirza & Osindero, 2014; Miyato
& Koyama, 2018; Gong et al., 2019), we can learn it from
the source domain data Ds = {xsi , ysi }

ns
i=1 by adversarial

training. Let QX|Y denote the conditional distribution spec-
ified by G. If the input of G is drawn from PS

Y , the joint
distribution of the generated data will be QXY = QX|Y P

S
Y .

We can estimate G by minimizing the Jensen-Shannon Di-
vergence (JSD) betweenQXY and PS

XY (Mirza & Osindero,
2014):

min
G

max
DG

E
(X,Y )∼PS

XY

[log(DG(X,Y ))]

+ E
E∼PE ,Y∼PS

Y

[log(1−DG(G(Y,E), Y ))], (9)

where DG is an introduced discriminator (Goodfellow et al.,
2014) to play the mini-max game together with G. (9) is the
negative cross entropy loss, and in some real experiments,

we need to replace (9) by negative hinge-loss because it is
more stable in image generation, as demonstrated in (Miyato
et al., 2018; Brock et al., 2018).

3.2.3. DISTRIBUTION MATCHING

As described above, we can then construct a new data dis-
tribution PR

X with the label transformation network LT and
the label influence network G. To estimate LT , we fix G
and minimize the JSD between PR

X and PT
X w.r.t. LT by

the following objective

min
LT

max
DLT

E
X∼PT

X

[log(DLT (X))]+ (10)

E
Z∼PZ ,E∼PE ,Y S∼ PS

Y

[log(1−DLT (G(LT (Y
S , Z), E)))].

where DLT is an introduced discriminator (Goodfellow
et al., 2014) to perform adversarial training with LT . In
detail, when the label is continuous, the whole network is to-
tally differentiable, so we can simply estimate LT by using
backpropagation. However, in the case of discrete labels,
we cannot backpropagate through the label yri . Fortunately,
we can assume a parametric form of PR

Y , i.e., the categorical
distribution, in case of discrete Y . Thus, we can make use
of the Gumbel-softmax trick (Jang et al., 2016; Maddison
et al., 2016) or the REINFORCE trick (Williams, 1992) to
backpropagate through the discrete labels yri . The two tricks
have been successfully employed in various problems such
as text generation (Yu et al., 2017a; Guo et al., 2017) and
neural architecture search (Xie et al., 2018).

Gumbel-softmax Trick Let Y Ro and Y So denote the
one-hot representations of Y R and Y S , respectively. We
can use a special LT function to sample from PY R|Y S :

Ỹ Ro
k =

exp((logMkY
So + Zk)/τ)∑K

i=1 exp((logMiY So + Zi)/τ)
, (11)

where Ỹ Ro
k is the kth element of Ỹ Ro, Zk ∼ Gumbel(0, 1),

τ is the temperature, and Mk is the kth row of the transition
matrix M, whose ijth element is P (Y R = i|Y S = j). As
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τ → 0, Ỹ Ro provides a good approximation of the one-
hot Y Ro. Since the softmax function is differentiable, it
enables end-to-end learning of LT , which only contains M
as parameters.

REINFORCE Trick Because PY R|Y S involves learnable
parameters M, we rewrite it as PM(Y R|Y S) and reformu-
late (10) as

min
M

max
DLT

E
X∼PT

X

[log(DLT (X))]+ (12)

E
E∼PE ,Y R∼ PM(Y R|Y S),Y S∼ PS

Y

[log(1−DLT (G(Y
R, E)))].

The gradient w.r.t. LT can be written as:

E
E∼PE ,Y R∼ PM(Y R|Y S),Y S∼ PS

Y

[log(1−DLT (G(Y
R, E)))

∇M log PM(Y R|Y S)].
(13)

Feature Matching Generally speaking, we estimate the
prior distribution in the target domain PT

Y by comparing
the marginal distributions of X in the target domain and
the transformed source domain. However, for some high
dimensional data such as images, X might contain many re-
dundant features XR that are unrelated to Y , causing unnec-
essary estimation errors of PT

Y . Intuitively, this is because
the conditional distributions of these redundant features XR

satisfy PXR|Y = PXR
, which are not helpful in identifica-

tion of PT
Y but will cause additional estimation error. To

improve the estimation accuracy, we propose to estimate
LT by matching PR

h(X) and PT
h(X) instead, where h is a

pre-trained network that extracts compact representations
from raw X data. Therefore, we replace (10) by

min
T

max
DLT

E
X∼PT

X

[log(DLT (h(X)))] + E
Z∼PZ ,E∼PE ,Y S∼ PS

Y

[log (1−DLT (h(G(LT (Y
S , Z), E))))]. (14)

Ideally, we aim to find h(X) such that Y ⊥⊥ X|h(X) by
using the source-domain labeled data. This conditional
independence property implies that h(X) contains all in-
formation in X that is relevant to Y . Learning conditional
invariant representation has been shown to be effective in
correcting covariate shift (Stojanov et al., 2019). However,
since Stojanov et al. (2019) set h as a linear transformation
and measure conditional dependency using kernel measures
(Fukumizu et al., 2004), the method cannot learn compact
representations for images and is computationally expensive.
Here we use a convolutional network as h to extract feature
representations and measure the dependency by assuming
a (generalized) linear model for PY |h(X). This is sensible
because the features extracted by nonlinear neural networks
are usually linearly separable. Proposition 1 shows how h

can be learned to satisfy the conditional independence prop-
erty. (The proof can be found at the supplementary material
A.1)

Proposition 1 Assuming PY |h(X) can be modeled by a
(generalized) linear model, i.e., linear regression model
for continuous Y and multinomial logistic regression model
for discrete Y . Let sample size n→∞, h learned by min-
imizing the mean squared error (for continuous Y) or the
cross-entropy loss (for discrete Y) satisfies Y ⊥⊥ X|h(X).

3.2.4. SHIFT CORRECTION

After quantifying the target label distribution PT
Y , the model

with target shift problems should be corrected and adapted
to the target domain. The previous work choose to re-train
the model under the importance-weighted ERM framework
(Gretton et al., 2009; Shimodaira, 2000; Sugiyama et al.,
2008). In our framework, we can retrain the source-domain
model with new data drawn from our model. As it is
time-consuming to retrain a new model, a quick adaptation
method is also provided in our framework. As described
by Proposition 1, if h learned at the uniform Training set
satisfies the conditional independence property with Y , the
output layer of a neural network is the only module needed
to be adapted to the new label distribution PR

Y given the
feature extractor h. In our framework, we fine-tune the
output layer several epochs using the samples generated
by our Label Influence Recovery network G with the label
distribution PR

Y learned by Label Transformation Network
LT . As such, the output layer will be quickly adapted to the
target domain.

4. Experiments
To verify the effectiveness and universality of the proposed
framework, we design experiments for three target shift sce-
narios, i.e., the discrete, continuous, and multi-dimensional
target shift, on various datasets.

4.1. Discrete Target Shift Experiments

We compare our method with the competitors on three
datasets, e.g., MNIST, FASHION-MNIST, and CIFAR10
(Krizhevsky & Hinton, 2009). We follow the same setting
of BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli
et al., 2019). Specifically, for MNIST, we use a simple
two-layer neural network; the Resnet-18 (He et al., 2016)
and CNN in DCGAN (Radford et al., 2015) are chosen
for CIFAR 10 and FASHION-MNIST, respectively. The
learning rate is set to 0.01. Moreover, we use the network
architecture of BigGAN (Brock et al., 2018) and the loss of
TAC-GAN (Gong et al., 2019) to model the invariant con-
ditional distribution PX|Y . The original training sets given
in the datasets are used as the training set for the proposed
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method and the baselines. The test set is sampled to have
a specific label distribution PT

Y and is of size 10,000. For
the quantification of PT

Y , we use the REINFORCE trick
instead of Gumbel-softmax trick, as the temperature τ in
the Gumbel-softmax trick is hard to choose.

4.1.1. SHIFT SETTINGS

In our paper, the label distribution PS
Y in the training set is

a uniform distribution over all classes. For the test set, we
consider three types of shifts: Tweak-One shift, Minority-
Class shift, and Random Dirichlet shift. These settings
are designed to capture diverse label probability changes,
i.e., large label probability change, small label probability
change, and random label distribution change. We repeat
the experiments 10 times to verify the effectiveness and
robustness of the proposed method.

Tweak-One Shift To evaluate the performance on the large
label probability quantification. In our experiments,
the ratio of one class is set to [0.5, 0.6, 0.7, 0.8, 0.9],
respectively, while ratios of other classes are uniform.

Minority-Class Shift To evaluate the performance on the
small label probability quantification. In our experi-
ments, [20%, 30%, 40%, 50%] classes are set to 0.001,
respectively, while ratios of other classes are uniform.

Random Dirichlet Shift In this shift, we randomly gener-
ate a label distribution PT

Y by employing the Dirichlet
distribution with different values of the concentration
parameter α. Then, we re-sample the test set according
to the generated distribution PT

Y . In our experiments,
α are set to 10, 1, 0.1, 0.01. Note that the generated
label distribution PT

Y tends to be smoother for bigger
α.

4.1.2. EVALUATION METRICS AND RESULTS

As done in BBSE (Lipton et al., 2018) and RLLS (Aziz-
zadenesheli et al., 2019), the accuracy and F1 score (Goutte
& Gaussier, 2005) are used as evaluation metrics, allowing
us to compare the performance of different methods more
comprehensively (Azizzadenesheli et al., 2019). We also
evaluate the estimation error of the estimated label weights
(PT

Y /P
S
Y ) by using mean square error (MSE).

We compare our method with the two recent methods:
BBSE (Lipton et al., 2018) and RLLS (Azizzadenesheli
et al., 2019), which estimate label weights β̂ using the con-
fusion matrix of a classifier f trained on the training set. To
verify Proposition 1, we consider a variant of RLLS called
RLLS(feature), which matches distributions on the feature
space h(X). RLLS(feature) can also be considered as set-
ting ψ(X) to h(X) in (3). For the evaluation of the shift
correction, we evaluate the performance of classifiers trained

on the training set without adaptation (denoted as Baseline)
and the classifiers trained on weighted training sets, where
the weights are estimated by using target domain labels (de-
noted as BEST(ERM)). Similarly, we also test the classifiers
trained on weighted training data, where the weights are ob-
tained by RLLS, BBSE and RLLS(feature). For our method,
we have two ways to utilize the label distributions estimated
by our framework. The first one is to re-train a new classifier
using the the weighted training set (Ours(ERM)). The sec-
ond one is the fine-tuning method described in 3.2.4, which
is denoted as Ours(Fine-tune). Specifically, we fine-tune
the output layer of the pretrained classifier on the source
domain by 10 epochs, using the data generated from our
model.

Due to the page limit, we only show the results of CI-
FAR10 dataset in the paper and the results of MNIST and
FASHION-MNIST can be found in the supplemental mate-
rials A.2. In terms of the estimation error of the target label
distribution PT

Y , the subfigure (a) of Figure 2, 3, 4 demon-
strate that the label weights estimated by our framework are
more accurate and stable than previous methods. In addition,
the RLLS (feature) algorithm that matches label distribution
on feature space of classifier trained on the training set also
achieves better performance than BBSE and RLLS in most
settings. For the accuracy and F1 score of the corrected
classifiers, subfigures (b) and (c) of Figure 2, 3, 4 show
that the classifier corrected by our framework can achieve
better performance in both two evaluation metrics in most
settings. Also, our fast fine-tune method achieves compa-
rable performance compared with re-weighting methods.

10 1 0.1 0.01
alpha

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
ea

n 
Sq

ua
re

 E
RR

OR
 o

f L
ab

el 
W

eig
ht

(a)

Ours(Adv)
BBSE
RLLS
RLLS(feature)

10 1 0.1 0.01
alpha

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

(b)

Ours(Fine-tune)
Ours(ERM)
BEST(ERM)
BBSE
RLLS
Baseline

10 1 0.1 0.01
alpha

0.2

0.4

0.6

0.8

1.0

F1
 S

co
re

(c)

Ours(Fine-tune)
Ours(ERM)
BEST(ERM)
BBSE
RLLS
Baseline

CIFAR10    RANDOM DIRICHLET SHIFT

Figure 2. (a) Mean squared errors of estimated label weights (lower
is better), (b) accuracy, and (c) F-1 score (higher is better) on
CIFAR10 for uniform training set and random Dirichlet shifted
test set, where the smaller alpha corresponds to larger shift.

4.2. Continuous Target Shift Experiments

In this section, we design two experiments to verify the
effectiveness of our model on continuous target shift prob-
lems. Firstly, we conduct experiments on a synthetic data
that evaluates the performance of our framework on simple
continuous target shift problems. Then we apply our model
on a real data application: Object 1D position prediction
(Matthey et al., 2017), which evaluates the performance
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Figure 3. (a) Mean squared errors of estimated label weights (lower
is better), (b) accuracy, and (c) F-1 score (higher is better) on
CIFAR10 for uniform training set and Tweak-One shifted test set,
where alpha is the probability of tweaked class.
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Figure 4. (a) Mean squared errors of estimated label weights (lower
is better), (b) accuracy, and (c) F-1 score (higher is better) on
CIFAR10 for uniform training set and minority-class shifted test
set, where alpha is the ratio of minority classes.

of our model on the continuous target shift problem in the
high-dimensional X situation.

4.2.1. SYNTHETIC DATA EXPERIMENT

In this experiment, we design a toy dataset by modifying
a classic and popular synthetic data experiment (MOON
dataset (Ganin et al., 2017)) in covariate shift. We first
generate two quarter circles with radius R 10 and sample
size 1000 as the training set, which is shown in Figure 5(a).
The range of a single continuous label is from -10 to 10
and the values are uniformly distributed. Then we generate
the test set with 500 samples in the same way according to
several target label distributions. Here we consider 4 types
of target shift to evaluate model performance and robustness.

Experimental Setting In this experiment, the architectures
of all modules in our framework are three-hidden layers
neural networks with 10 hidden neurons. In the distri-
bution matching module, the baseline KMM (Zhang
et al., 2013) uses MMD with the median kernel width
to match the built data distribution Pnew

X and target
data distribution PT

X . To fairly compare the methods,
we also use MMD to do distribution matching.

Shift Settings To evaluate the model’s label quantification
performance, we set 4 target shift situations.
Shift A: Set the target label distribution PT

Y as a Gaus-
sian distribution with the mean of

√
2
2 ∗R and variance

of 1.
Shift B: Set the target label distribution PT

Y as a Gaus-
sian distribution with the mean of −

√
2
2 ∗R and vari-

ance of 1.
Shift C: The target label distribution is a mixture Gaus-
sian distribution with Shift A and Shift B, with a mix-
ture proportion 0.5.
Shift D: The target label distribution is a random label
distribution generated by a randomly parameterized
neural network.

Baselines The classic KMM methods (Zhang et al., 2013)
are chosen as our baselines. We consider two variants:
KMM that matches the distributions in the raw input
space and KMM(feature) that matches the distributions
in feature space of the regressor.

(a) (b)

Figure 5. (a) The illustration of Moon Synthetic Data (Shift C),
where the generated two quarter circles training set as blue symbols
show. (b) The visualization of label weight PT

Y /P
S
Y of KMM,

KMM(feature), our framework and the Ground Truth.

SHIFT A SHIFT B SHIFT C SHIFT D

Baseline
0.0061
± 0.0012

0.0059
± 0.0008

0.0055
± 0.0009

0.034
± 0.0114

KMM
0.0048
± 0.0011

0.0044
± 0.0005

0.0044
± 0.0004

0.0275
± 0.0096

KMM
(feature)

0.0045
± 0.0007

0.0039
± 0.0006

0.0043
± 0.0004

0.0276
± 0.0097

Ours
0.0036
± 0.0002

0.0024
± 9e-5

0.0036
± 0.0004

0.0251
± 0.0121

Table 1. The results of Continuous target shift Synthetic Data Ex-
periments. The value is the mean square error of prediction value
and groun truth. The baseline is the original regressor trained on
the standard training set, and the KMM is (Zhang et al., 2013)

Results In this section, to compare the performance of es-
timated target label distribution qualitatively, we visu-
alize the estimated density ratio (PT

Y /P
S
Y ) of Shift C

in Figure 5. More figures about other shift settings can
be found in supplementary materials A.3.Visually, our
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model has better label distribution estimation perfor-
mance compared with other methods.

Then we evaluate the mean square error of the baseline
regressor without adaptation and three others corrected
by KMM, KMM(feature), and Ours(Adv) respectively.
The results are shown in Table 1. It can be seen that the
MSE errors of our framework are significantly lower
than those of the other methods in all shift settings, and
KMM (feature) achieves slightly better performance
than the original KMM method in some settings, which
verifies the correctness of Proposition 1.

4.2.2. OBJECT 1D LOCATION PREDICTION EXPERIMENT

In this experiment, we use a popular disentanglement dataset
called Sprites 1 (Matthey et al., 2017). This dataset consists
of 737,280 2D shapes images, which are generated from
6 ground-truth independent latent factors. Some example
images are shown in Figure 6. The factors include color,
shape, scale, rotation, x, and y positions of a sprite. We
choose the x or y position of sprites as the target variable
and consider it as a regression problem.

Figure 6. Illustration of the sprites dataset. This sprites in this
dataset have 3 shapes(square, ellipse, heart), 6 scales values lin-
early spaced in [0.5, 1], 40 orientation values in [0, 2 pi], 32 X
position values in [0, 10], 32 Y position values in [0, 10]

Figure 7. The prediction mean square error of 1D sprite position
prediction (lower is better). (a) Random Dirichlet shift, where the
smaller alpha corresponding to the bigger shift. (b) Large target
shift, where alpha is the possibility of shifted label. (c) Minority
shift, where alpha is the ratio of minority classes.

1https://github.com/deepmind/dsprites-dataset

Experimental Setting We use the network architecture in
DCGAN (Radford et al., 2015) as feature extractor for
the regressor, the learning rate for the regressor is set
to 1e-4, which is the best learning rate according to our
experiments. The DCGAN (Radford et al., 2015) is
used to model the invariant distribution PX|Y and the
Transformation Model LT is a simple 3-layer neural
network.

For training set, we randomly sample 40000 images
with uniform x value distribution from overall dataset
and the test set consists of 40000 samples (sampled
from specified distribution for target shift).

Shift Settings As the x position (or y position) in this
dataset has 32 possible values (but we see it as a regres-
sion problem), we can use the same shift method with
4.1.1 to evaluate the methods’ target shift quantification
ability. Specifically, we repeat the experiments 3 times
for each setting to evaluate the model performance.

Baselines and Results As the KMM method cannot be ap-
plied into large-scale dataset, so the only baseline in
this experiment is the baseline regressor without adap-
tation. We evaluate the mean square error of output
value (x or y position) of original regression model
and the regressor corrected by our framework. The
results are shown as Figure 7, and the model corrected
by our framework outperforms the basline model in
most settings.

4.3. Multi-Dimensional Target Shift Experiments

In this experiment, we design a simple multi-dimensional
target shift experiment, which is object 2D location predic-
tion. We use the same dataset with the object 1D location
prediction experiment, but we predict both x and y position
values of a sprite. As such, the label Y in this experiment
is 2-dimension, increasing the difficulty of detecting and
correcting the target shift.

Experimental Setting We use the same network architec-
ture and train/test split as described in 4.2.2 . For
Transformation Model LT , two networks are used to
model the x and y position target shift respectively as
the x and y position value in this dataset are indepen-
dent. As such, using two networks will reduce the
difficulty of quantifying target label distribution PT

Y .

Shift Settings The settings are also same with 4.2.2 de-
scribed, but we shift the x and y position value respec-
tively.

Baselines and Results Similar to the 1D position predic-
tion, the baseline is the baseline regressor without adap-
tation as our methods is the first method which is com-
patible with large-scale multi-dimensional target shift
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Figure 8. The prediction mean square error of 2D sprite position
prediction (Lower is better). (a) Random Dirichlet shift, where the
smaller alpha corresponds to larger shift. (b) Large target shift,
where alphais the possibility of a shifted label (c) Minority shift,
where alpha is the ratio of minority classes.

problems. The results are shown in Figure 8. It can be
seen that the regressor corrected by our framework can
achieve lower MSE error than the baseline method in
most settings.

5. Conclusion
In this paper, we propose an end-to-end target shift quantifi-
cation and correction framework called Label Transforma-
tion Framework which can deal with discrete, continuous
and multi-dimensional target shift problems. Based on this
framework, we further find that matching the distributions
of a feature representation of X that discards the informa-
tion irrelevant to Y can have better performance over other
methods which quantify the label distribution PT

Y based
on scratch data or biased output. In the experiments, we
apply our framework to several classification and regression
tasks under various target shift settings. The results show
that our framework has better performance and universality
than previous methods. Future work will be extending our
framework to address conditional shift, where PX|Y also
changes across domains.
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