Improving the Gating Mechanism of Recurrent Neural Networks

A.Pseudocode

We show how the gated update in a typical LSTM
implementation can be easily replaced by UR- gates.

The following snippets show pseudocode for the the gated
state updates for a vanilla LSTM model (top) and UR-LSTM
(bottom).

forget_bias = 1.0 # hyperparameter

f, i, u, o = Linear (x, prev_hidden)
f_ = sigmoid(f + forget_bias)

i_ = sigmoid(i)

next_cell = f_ % prev_cell + i_ * tanh(u)
next_hidden = sigmoid (o) = tanh (next_cell)

Listing 1: LSTM

Initialization

u = np.random.uniform(low=1/hidden_size,
high=1-1/hidden_size,
size=hidden_size)

forget_bias = -np.log(l/u-1)

Recurrent update

f, r, u, o= Linear(x, prev_hidden)

f_ = sigmoid(f + forget_bias)

r_ = sigmoid(r - forget_bias)

g = 2xr_»f_ + (1-2xr_)*f_»*=*2

next_cell = g » prev_cell + (1-g) % tanh(u)
next_hidden = sigmoid (o) = tanh(next_cell)

Listing 2: UR-LSTM

B. Further discussion on related methods

Section 4 briefly introduced chrono initialization (Tallec
& Ollivier, 2018) and the ON-LSTM (Shen et al., 2018),
closely related methods that modify the gating mechanism of
LSTMs. We provide more detailed discussion on these in Sec-
tions B.3 and B.4 respectively. Section B.1 has a more thor-
ough overview of related work on recurrent neural networks
that address long-term dependencies or saturating gates.

B.1. Related Work

Several methods exist for addressing gate saturation or allow-
ing more binary activations. Gulcehre et al. (2016) proposed
to use piece-wise linear functions with noise in order to allow
the gates to operate in saturated regimes. Li et al. (2018b) in-
stead use the Gumbel trick (Maddison et al., 2016; Jang et al.,
2016), a technique for learning discrete variables within a neu-
ral network, to train LSTM models with discrete gates. These
stochastic approaches can suffer from issues such as gradient
estimation bias, unstable training, and limited expressivity

from discrete instead of continuous gates. Additionally they
require more involved training protocols with an additional
temperature hyperparameter that needs to be tuned explicitly.

Alternatively, gates can be removed entirely if strong con-
straints are imposed on other parts of the model. (Li et al.,
2018a) use diagonal weight matrices and require stacked
RNN layers to combine information between hidden units. A
long line of work has investigated the use of identity or orthog-
onal initializations and constraints on the recurrent weights
to control multiplicative gradients unrolled through time (Le
etal., 2015; Arjovsky et al., 2016; Henaff et al., 2016). (Chan-
dar et al., 2019) proposed another RNN architecture using
additive state updates and non-saturating activation func-
tions instead of gates. However, although these gate-less
techniques can be used to alleviate the vanishing gradient
problem with RNNs, unbounded activation functions can
cause less stable learning dynamics and exploding gradients.

As mentioned, a particular consequence of the inability of
gates to approach extrema is that gated recurrent models
struggle to capture very long dependencies. These problems
have traditionally been addressed by introducing new
components to the basic RNN setup. Some techniques
include stacking layers in a hierarchy (Chung et al., 2016),
adding skip connections and dilations (Koutnik et al., 2014;
Chang et al., 2017), using an external memory (Graves et al.,
2014; Weston et al., 2014; Wayne et al., 2018; Gulcehre
etal., 2017), auxiliary semi-supervision (Trinh et al., 2018),
and more. However, these approaches have not been widely
adopted over the standard LSTM as they are often specialized
for certain tasks, are not as robust, and introduce additional
complexity. Recently the transformer model has been
successful in many applications areas such as NLP (Radford
etal.,2019; Dai et al., 2019). However, recurrent neural net-
works are still important and commonly used due their faster
inference without the need to maintain the entire sequence
in memory. We emphasize that the vast majority of proposed
RNN changes are completely orthogonal to the simple gate
improvements in this work, and we do not focus on them.

A few other recurrent cores that use the basic gated update (1)
but use more sophisticated update functions u include the
GRU, Reconstructive Memory Agent (RMA; Hung et al.,
2018), and Relational Memory Core (RMC; Santoro et al.,
2018), which we consider in our experiments.

B.2. Effect of proposed methods on timescales

We briefly review the connection between our methods and
the effective timescales that gated RNNs capture. Recall
that Section 3.2 defines the characteristic timescale of a
neuron with forget activation f; as 1/(1— f;), which would
be the number of timesteps it takes to decay that neuron by
a constant.

Improving the Gating Mechanism of Recurrent Neural Networks

The fundamental principle of gated RNNs is that the
activations of the gates affects the timescales that the model
can address; for example, forget gate activations near 1.0 are
necessary to capture long-term dependencies.

Thus, although our methods were defined in terms of acti-
vations g, it is illustrative to reason with their characteristic
timescales 1/(1—g;) instead, whence both UGI and refine
gate also have clean interpretations.

First, UGl is equivalent to initializing the decay period from
a particular heavy-tailed distribution, in contrast to standard
initialization with a fixed decay period (1—o(bs)) .

Proposition 1. UGI is equivalent to to sampling the decay
period D = 1/(1 — f;) from a distribution with density
proportional to P(D =) %(1 —1/x) =272% ie a
Pareto(a=2) distribution.

On the other hand, for any forget gate activation f; with
timescale D = 1/(1 — f;), the refine gate fine-tunes it be-
tween D=1/(1—f2)=1/(1—f;)(1+f;) and 1/(1— f;)%.

Proposition 2. Given a forget gate activation with timescale

D, the refine gate creates an effective forget gate with
timescale in (D /2, D?).

B.3. Chrono Initialization

The chrono initialization

by ~log(U([1,Tnar—1])) (14)
bi=—by. (15)

was the first to explicitly attempt to initialize the activation
of gates across a distributional range. It was motivated by
matching the gate activations to the desired timescales.

They also elucidate the benefits of tying the input and forget
gates, leading to the simple trick (15) for approximating
tying the gates at initialization, which we borrow for
UGI. (We remark that perfect tied initialization can be
accomplished by fully tying the linear maps L¢,L£;, but (15)
is a good approximation.)

However, the main drawback of CI is that the initialization
distribution is too heavily biased toward large terms.
This leads to empirical consequences such as difficult
tuning (due to most units starting in the saturation regime,
requiring different learning rates) and high sensitivity to the
hyperparameter 7, that represents the maximum potential
length of dependencies. For example, Tallec & Ollivier
(2018) set this parameter according to a different protocol
for every task, with values ranging from 8 to 2000. Our
experiments used a hyperparameter-free method to initialize
Timae (Section 5), and we found that chrono initialization
generally severely over-emphasizes long-term dependencies
if T4z 1S not carefully controlled.

A different workaround suggested by Tallec & Ollivier
(2018) is to sample from P(T'=k) m and setting
by =log(T"). Note that such an initialization would be almost
equivalent to sampling the decay period from the distribution
with density P(D = z) o (zlog®z)~! (since the decay
period is (1 — f)~! = 1 +exp(bs)). This parameter-free
initialization is thus similar in spirit to the uniform gate
initialization (Proposition 1), but from a much heavier-tailed
distribution that emphasizes very long-term dependencies.

These interpretations suggest that it is plausible to define
a family of Pareto-like distributions from which to draw
the initial decay periods from, with this distribution treated
as a hyperparameter. However, with no additional prior
information on the task, we believe the uniform gate
initialization to be the best candidate, as it 1. is a simple
distribution with easy implementation, 2. has characteristic
timescale distributed as an intermediate balance between
the heavy-tailed chrono initialization and sharply decaying
standard initialization, and 3. is similar to the ON-LSTM’s
cumax activation, in particular matching the initialization
distribution of the cumax activation.

Table 4 summarizes the decay period distributions at
initialization using different activations and initialization
strategies.

In general, our experimental recommendation for CI is that
it can be better than standard initialization or UGI when
certain conditions are met (tasks with long dependencies and
nearly fixed-length sequences as in Sections 5.1, 5.4) and/or
when it can be explicitly tuned (both the hyperparameter
Tinaz» as well as the learning rate to compensate for almost
all units starting in saturation). Otherwise, we recommend
UGI or standard initialization. We found no scenarios where
it outperformed UR- gates.

B.4. ON-LSTM

In this section we elaborate on the connection between the
mechanism of (Shen et al., 2018) and our methods. We define
the full ON-LSTM and show how its gating mechanisms can
be improved. For example, there is a remarkable connection
between its master gates and our refine gates — independently
of the derivation of refine gates in Section 3.4, we show how
a specific way of fixing the normalization of master gates
becomes equivalent to a single refine gate.

First, we formally define the full ON-LSTM. The master
gates are a cumax-activation gate

ft:cumax(ﬁf(xt,ht,l)) (16)
iy =1—cumax(L;(z4,hi—1)). (17)

These combine with an independent pair of forget and input
gates f,i;, meant to control fine-grained behavior, to create
an effective forget/input gate f;,i; which are used to update

Improving the Gating Mechanism of Recurrent Neural Networks

Table 4. Distribution of the decay period D= (1— f) " using different initialization strategies.

Initialization method

Timescale distribution

Constant bias by =b

Chrono initialization (known timescale T,)
Chrono initialization (unknown timescale) P

Uniform gate initialization
cumax activation

P(D=z)x1{z=1+¢"}

P(D:x) OCI{IE [2,Tmaac]}
(D=2)x s

P(D=xz)x

P(D=z)x 3

the state (equation (1) or (5)).

Wt:ftozt (18)
fe= frowi+(fr—wy) (19)
%t :it owt—k(%t —wt). (20)

As mentioned in Section B.1, this model modifies the
standard forget/input gates in two main ways, namely
ordering the gates via the cumax activation, and supplying

an auxiliary set of gates controlling fine-grained behavior.

Both of these are important novelties and together allow
recurrent models to better capture tree structures.

However, the UGI and refine gate can be viewed as
improvements over each of these, respectively, demonstrated
both theoretically (below) and empirically (Sections 5
and E.3), even on tasks involving hierarchical sequences.

Ordered gates Despite having the same parameter count
and asymptotic efficiency as standard sigmoid gates, cumax
gates seem noticeably slower and less stable in practice
for large hidden sizes. Additionally, using auxiliary master
gates creates additional parameters compared to the basic
LSTM. Shen et al. (2018) alleviated both of these problems
by defining a downsize operation, whereby neurons are
grouped in chunks of size C, each of which share the same
master gate values. However, this also creates an additional
hyperparameter.

The speed and stability issues can be fixed by just using the
sigmoid non-linearity instead of cumax. To recover the most
important properties of the cumax—activations at multiple
timescales—the equivalent sigmoid gate can be initialized so

as to match the distribution of cumax gates at initialization.

This is just uniform gate initialization (equation (12)).

However, we believe that the cumax activation is still
valuable in many situations if speed and instability are not
issues. These include when the hidden size is small, when
extremal gate activations are desired, or when ordering
needs to be strictly enforced to induce explicit hierarchical
structure. For example, Section (5.1) shows that they can
solve hard memory tasks by themselves.

Master gates We observe that the magnitudes of master
gates are suboptimally normalized. A nice interpretation of
gated recurrent models shows that they are a discretization
of a continuous differential equation. This leads to the leaky
RNN model hyy1 = (1—«)hs +aug, where u; is the update
to the model such as tanh(W,x; + Wy hy +0b). Learning «
as a function of the current time step leads to the simplest
gated recurrent model’

ft :U(ﬁf(ft,ht—l))
up =tanh(Ly, (x¢,hi—1))
I :fthtfl""_(l_ft)ut-

Tallec & Ollivier (2018) show that this exactly corresponds
to the discretization of a differential equation that is invariant
to time warpings and time rescalings. In the context of
the LSTM, this interpretation requires the values of the
forget and input gates to be tied so that f; +i; = 1. This
weight-tying is often enforced, for example in the most
popular LSTM variant, the GRU (Cho et al., 2014), or our
UR- gates. In a large-scale LSTM architecture search, it
was found that removing the input gate was not significantly
detrimental (Greff et al., 2016).

However, the ON-LSTM does not satisfy this conventional
wisdom that the input and forget gates should sum to close
to 1.

Proposition 3. At initialization, the expected value of the
average effective forget gate activation f is 5/6.

Let us consider the sum of the effective forget and input
gates at initialization. Adding equations (19) and (20) yields

fetiv=(fetic)owe+(fetis—2wy)
:ft+{t+(ft+zt72)owt

Note that the master gates (16), (17) sum 1 in expectation
at initialization, as do the original forget and input gates.
Looking at individual units in the ordered master gates, we

5In the literature, this is called the JANET (van der Westhuizen
& Lasenby, 2018), which is also equivalent to the GRU without a
reset gate (Chung et al., 2014), or a recurrent highway network with
depth L =1 (Zilly et al., 2017).

Improving the Gating Mechanism of Recurrent Neural Networks

have E f E 1) =1—] . Thus the above simplifies to

]E[ft +m = 1—Ewt

Ef0+i)-1- %)

/ da

E Eje[n]ft(j)-‘rl

\3\@

| Ot

The gate normalization can be fixed by re-scaling equa-
tions (19) and (20). It turns out that tying the master gates
and re-scaling is exactly equivalent to the mechanism of a
refine gate. In this equivalence, the role of the master and
forget gates of the ON-LSTM are played by our forget and
refine gate respectively.

Proposition 4. Suppose the master gates ft,it are tied and
the equations (19)-(20) defining the effective gates f; ¢ are
rescaled such as to ensure E[f, + 1, = 1 at initialization.
The resulting gate mechanism is exactly equivalent to that
of the refine gate.

Consider the following set of equations where the master
gates are tied (f; +1i; = 1, f; + i, = 1) and (19)-(20) are
modified with an extra coefficient (rescaling in bold):

i=1—F, 21
wr= -1y (22)
ftzz'ft'wﬂr(ft*wt) (23)
iy =20 Wi+ (1 —wy) (24)

Now we have

fotie=fitir+2(fitic—1)w;
=1+2(fi+is—1)-wy
which has the correct scaling, ie. E[f, + 4] = 1 at
initialization assuming that E[f; 44;] =1 at initialization.

But (23) can be rewritten as follows:

f=2f-wt(f-w)
=2f-f-(A=)+(F=F-(1=F)
=2f-f-2f f*+f?
=f2f—f PP f PP
=f-(1=(1=1)P+(1-1)-F2.
This is equivalent to the refine gate, where the master gate

plays the role of the forget gate and the forget gate plays the
role of the refine gate. It can be shown that in this case, the

effective input gate i (24) is also defined through a refine
gate mechanism, where i, =1— ft is refined by ;:

i=i-(1—(1—1))%+(1—14)-22.

Based on our experimental findings, in general we would
recommend the refine gate in place of the master gate.

B.5. Gate ablation details

For clarity, we formally define the gate ablations considered
which mix and match different gate components.

We remark that other combinations are possible, for example
combining CI with either auxiliary gate type, which would
lead to CR- or CM- gates. Alternatively, the master or refine
gates could be defined using different activation and initial-
ization strategies. We chose not to consider these methods
due to lack of interpretation and theoretical soundness.

O- This ablation uses the cumax activation to order the
forget/input gates and has no auxiliary gates.

fr=cumax (L f(x¢,hi—1)) (25)
iy =1—cumax(L;(x¢,hi—1)). (26)

We note that one difficulty with this in practice is the reliance
on the expensive cumax, and hypothesize that this is perhaps
the ON-LSTM'’s original motivation for the second set of
gates combined with downsizing.

UM- This variant of the ON-LSTM ablates the cumax
operation on the master gates, replacing it with a sigmoid
activation initialized with UGI. Equations (16), (17) are
replaced with

u=U(0,1) 27)
bp=0""(u) (28)
fr=0(Ls(@i,hi1)+by) (29)
ir=0(L;(xs,he—1)—by) (30)

quations (18)-(20) are then used to define effective gates
ft,i+ which are used in the gated update (1) or (5).

OR- This ablation combines ordered main gates with an
auxilliary refine gate.
ft:cumax(ﬁf-(a:t,ht_l)+bf) 3D
re=0(Ly (¢, he—1)+by) (32)
gr=re-(1=(1=f1)*)+(1—ry)- /7 (33)
iy=1-g (34

g1 are used as the effective forget and input gates.

Improving the Gating Mechanism of Recurrent Neural Networks

C. Analysis Details

The gradient analysis in Figure 3 was constructed as follows.
Let f, r, g be the forget, refine, and effective gates

g=2rf+(1-2r)f2

Letting z,y be the pre-activations of the sigmoids on f and
r, the gradient of g can be calculated as

Vog=2rf(1=f)+1=2r)2/)(f(1-1))
=2f(A=f)lr+(1-2r)f]

Vyg=2[r(1—r)+(=2f*)r(1-r)=

IVgll*=12f (1= H)P[(r+f~2fr)*+

Substituting the relation

2fr(1-=r)(1-f)
(1—r)2].

g—f?
2f(1—f)’

this reduces to the Equation 35,

T=

IVgli*=((g—f*)(1-2f)+2f*(1~f))
+(g—?)? (1‘(’”@)2 (35)
2f(1—f)) -
Given the constraint f2 < g<1—(1— f)2, this function can

be minimized and maximized in terms of g to produce the
upper and lower bounds in Figure 3b. This was performed
numerically.

D. Experimental Details

To normalize the number of parameters used for models
using master gates, i.e. the OM- and UM- gating mechanisms,
we used a downsize factor on the main gates (see Sec-
tion B.4). This was set to C'= 16 for the synthetic and image
classification tasks, and C' = 32 for the language modeling
and program execution tasks which used larger hidden sizes.

D.1. Synthetic Tasks

All models consisted of single layer LSTMs with 256 hidden
units, trained with the Adam optimizer (Kingma & Ba, 2014)
with learning rate 1e-3. Gradients were clipped at 1.0.

The training data consisted of randomly generated sequences
for every minibatch rather than iterating through a fixed
dataset. Each method ran 3 seeds, with the same training
data for every method.

Our version of the Copy task is a very minor variant of other
versions reported in the literature, with the main difference
being that the loss is considered only over the last 10 output
tokens which need to be memorized. This normalizes the
loss so that losses approaching 0 indicate true progress. In

contrast, this task is usually defined with the model being
required to output a dummy token at the first N 410 steps,
meaning it can be hard to evaluate performance since low
average losses simply indicate that the model learns to output
the dummy token.

For Figure 4, the log loss curves show the median of 3 seeds,
and the error bars indicate 60% confidence.

For Figure 5, each histogram represents the distribution
of forget gate values of the hidden units (of which there
are 256). The values are created by averaging units over
time and samples, i.e., reducing a minibatch of forget
gate activations of shape (batch size, sequence
length, hidden size) over the first two diensions,
to produce the average activation value for every unit.

D.2. Image Classification

All models used a single hidden layer recurrent network
(LSTM or GRU). Inputs x to the model were given in batches
as a sequence of shape (sequence length, num
channels), (e.g. (1024,3) for CIFAR-10), by flattening
the input image left-to-right, top-to-bottom. The outputs
of the model of shape (sequence length, hidden
size) were processed independently with a single ReLLU
hidden layer of size 256 before the final fully-connected
layer outputting softmax logits. All training was performed
with the Adam optimizer, batch size 50, and gradients
clipped at 1.0. MNIST trained for 150 epochs, CIFAR-10
used 100 epochs over the training set.

Table 5 All models (LSTM and GRU) used
hidden state size 512. Learning rate swept in
{2e—4,5e—4,1e—3,2e— 3} with three seeds each.

Table 5 reports the highest validation score found. The GRU
model swept over learning rates {2e —4,5¢ —4}; all methods
were unstable at higher learning rates.

Figure 6 shows the median validation accuracy with quartiles
(25/75% confidence intervals) over the seeds, for the
best-performing stable learning rate (i.e. the one with highest
average validation score on the final epoch). This was
generally 5e —4 or 1e — 3, with refine gate variants tending
to allow higher learning rates.

Table 2 The UR-LSTM and UR-GRU used 1024 hidden
units for the sequential and permuted MNIST task, and 2048
hidden units for the sequential CIFAR task. The vanilla
LSTM baseline used 512 hidden units for MNIST and 1024
for CIFAR. Larger hidden sizes were found to be unstable.

Zoneout parameters were fixed to reasonable default settings
based on Krueger et al. (2016), which are z. =0.5,2z;, =0.05
for LSTM and z = 0.1 for GRU. When zoneout was used,
standard Dropout (Srivastava et al., 2014) with probability

Improving the Gating Mechanism of Recurrent Neural Networks

Table 5. Gate ablations on pixel-by-pixel image classification. Validation accuracies on pixel image classification. Asterisks denote
divergent runs at the learning rate the best validation score was found at.

Gating Method - C- O- U- R- OM- OR- UM- UR-

pMNIST 94.77"* 94.69 96.17 96.05 95.84" 95.98 96.40 95.50 96.43
sCIFAR 63.24™* 65.60 67.78 67.63 71.85" 67.73* 70.41 67.29* 71.05
sCIFAR (GRU) 71.30" 64.61 69.81"" 70.10 70.74" 70.20* 71.40"" 69.17* 71.04

0.5 was also applied to the output classification hidden layer.

D.3. Language Modeling

Hyperparameters are taken from Rae et al. (2018)
tuned for the vanilla LSTM, which consist of (chosen
parameter bolded out of sweep): {1, 2} LSTM layer,
{0.0, 0.1, 0.2, 0.3} embedding dropout, {yes, no} layer
norm, and {shared, notshared} input/output embedding
parameters. Our only divergence is using a hidden size
of 3072 instead of 2048, which we found improved the
performance of the vanilla LSTM. Training was performed
with Adam at learning rate le-3, gradients clipped to 0.1,
sequence length 128, and batch size 128 on TPU. The LSTM
state was reset between article boundaries.

Figure 11 shows smoothed validation perplexity curves show-
ing the 95% confidence intervals over the last 1% of data.

10

N
n

Reward
«
-
o
a2
2

~UR-LSTM

N
n

°

[lel0 3e10 4e10

2e10
Episode Steps

(a) Passive Match without Distractor Rewards

Reward
» L
E T R

w
n

w

3e10 4e10

2e10
Episode Steps

(b) Active Match without Distractor Rewards

Figure 9. Performance on Reinforcement Learning Tasks that
Require Memory. We evaluated the image matching tasks from
Hung et al. (2018), which test memorization and credit assign-
ment, using an A3C agent (Mnih et al., 2016) with an LSTM policy
core. We observe that general trends from the synthetic tasks (Sec-
tion (5.1)) transfer to this reinforcement learning setting.

Reinforcement Learning The Active Match and Passive
Match tasks were borrowed from Hung et al. (2018) with the
same settings. For Figures 9 and 13, the discount factor in the
environment was set to v =.96. For Figure 10, the discount
factor was v =.998. Figure 13 corresponds to the full Active

Core

~C-LSTM
LSTM
U-LSTM

~UR-LSTM

Reward
Ey

/-\,\/\A\
2el0
Episode Steps

(a) Active Match with Distractor Rewards - LSTM

0 lel0

3e10 4e10

Reward

o 0.25e10 0.50e1

0e10 0.75e10 le10
Episode Steps

1.25e10

(b) Active Match with Distractor Rewards - RMA

Figure 10. The addition of distractor rewards changes the task and
relative performance of different gating mechanisms. For both
LSTM and RMA recurrent cores, the UR- gates still perform best.

Match task in Hung et al. (2018), while Figure 10 is their
version with small distractor rewards where the apples in
the distractor phase give 1 instead of 5 reward.

Figure 8 used 5 seeds per method.

D.4. Program Evaluation

Protocol was taken from Santoro et al. (2018) with minor
changes to the hyperparameter search. All models were
trained with the Adam optimizer, the Mix curriculum strategy
from Zaremba & Sutskever (2014), and batch size 128.

RMC: The RMC models used a fixed memory slot size of
512 and swept over {2,4} memories and {2,4} attention
heads for a total memory size of 1024 or 2048. They were
trained for 2e5 iterations.

LSTM: Instead of two-layer LSTMs with sweeps over skip
connections and output concatenation, single-layer LSTMs
of size 1024 or 2048 were used. Learning rate was swept
in {5e-4, le-3}, and models were trained for 5e5 iterations.
Note that training was still faster than the RMC models
despite the greater number of iterations.

Improving the Gating Mechanism of Recurrent Neural Networks

D.5. Additional Details

Implementation Details The inverse sigmoid func-
tion (12) can be unstable if the input is too close to {0,1}.
Uniform gate initialization was instead implemented by
sampling from the distribution #[1/d,1 — 1/d] instead of
U[0,1], where d is the hidden size, to avoid any potential
numerical edge cases. This choice is justified by the fact that
with perfect uniform sampling, the expected smallest and
largest samples would be 1/(d+1) and 1—1/(d+1).

For distributional initialization strategies, a trainable
bias vector was sampled independently from the chosen
distribution (i.e. equation (14) or (12)) and added/subtracted
to the forget and input gate ((2)-(3)) before the non-linearity.
Additionally, each linear model such as W rx:+Wp the 1
had its own trainable bias vector, effectively doubling the
learning rate on the pre-activation bias terms on the forget
and input gates. This was an artifact of implementation and
not intended to affect performance.

The refine gate update equation (10) can instead be
implemented as

gr=re-(1=(1—=f1)*)+(1—ry)- f7
=21 fr+-(1=2r¢)- f7

Permuted image classification In an effort to standardize
the permutation used in the Permuted MNIST benchmark,
we use a particular deterministic permutation rather than
arandom one. After flattening the input image into a one-
dimensional sequence, we apply the bit reversal permutation.
This permutation sends the index ¢ to the index j such
that j’s binary representation is the reverse of ¢’s binary
representation. The intuition is that if two indices i,i’ are
close, they must differ in their lower-order bits. Then the bit-
reversed indices will be far apart. Therefore the bit-reversal
permutation destroys spatial and temporal locality, which
is desirable for these sequence classification tasks meant to
test long-range dependencies rather than local structure.

def bitreversal_po2(n):

m = int (math.log(n) / math.log(2))

perm = np.arange (n) .reshape (n, 1)
for i in range (m) :

nl = perm.shape[0]

perm = np.hstack ((

return perm.squeeze (0

// 2
perm[:nl], perm[nl:]))
)

def bitreversal_permutation(n):
m = int (math.ceil (math.log(n) / math.log(2)))
N=1<<m
perm = bitreversal_po2 (N)

return np.extract (perm < n, perm)

Listing 3: Bit-reversal permutation for permuted MNIST.

E. Additional Experiments
E.1. Synthetic Forgetting

Figure 5 on the Copy task demonstrates that extremal gate
activations are necessary to solve the task, and initializing
the activations near 1.0 is helpful.

This raises the question: what happens if the initialization
distribution does not match the task at hand; could the gates
learn back to a more moderate regime? We point out that
such a phenomenon could occur non-pathologically on more
complex setups, such as a scenario where a model trains to
remember on a Copy-like task and then needs to “unlearn’
as part of a meta-learning or continual learning setup.

>

Here, we consider such a synthetic scenario and experimen-
tally show that the addition of a refine gate helps models train
much faster while in a saturated regime with extremal activa-
tions. We also point to the poor performance of C- outside of
synthetic memory tasks when using our high hyperparameter-
free initialization as more evidence that it is very difficult
for standard gates to unlearn undesired saturated behavior.

For this experiment, we initialize the biases of the gates
extremely high (effective forget activation ~ o (6). We then
consider the Adding task (Section 5.1) of length 500, hidden
size 64, learning rate 1e-4. The R-LSTM is able to solve the
task, while the LSTM is stuck after 1e4 iterations.

3.60

Method
— C-LSTM
C11-LST™M

w
@
®

C8-LSTM
LST™M
OM-LSTM

Log Perplexity
w
&
a

= U-LSTM
3.54
== UR-LSTM

0 100000 200000 300000 400000 500000
Iteration

Figure 11. Validation learning curves, illustrating training speed
and generalization (i.e. overfitting) behavior.

E.2. Reinforcement Learning

Figures 9 and 10 evaluated our gating methods with the
LSTM and RMA models on the Passive Match and Active
Match tasks, with and without distractors. We additionally
ran the agents on an even harder version of the Active Match
task with larger distractor rewards (the full Active Match
from Hung et al. (2018)). Learning curves are shown in
Figure 13. Similarly to the other results, the UR- gated core
is noticeably better than the others. For the DNC model, it
is the only one that performs better than random chance.

Improving the Gating Mechanism of Recurrent Neural Networks

: HH ‘
2-
0 | | L I” I

0.90 0.92 0.94 0.96 0.98 1.00

0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

(a) R-LSTM (b) LSTM

Figure 12. Distribution of forget gate activations after extremal ini-
tialization, and training on the Adding task. The UR-LSTM is able
to learn much faster in this saturated gate regime while the LSTM
does not solve the task. The smallest forget unit for the UR-LSTM
after training has characteristic timescale over an order of magnitude
smaller than that of the LSTM.

Core.
~C-LSTM

U-LSTM
~UR-LSTM
VoW e /\M/"\MMA
v v

o 1le10 3e10 4e10

2e10
Episode Steps

Core
~C-LSTM+Mem
LSTM+Me:

.
AACA A AN B

’\/ 9 Y 1

2e10
Episode Steps

Figure 13. The full Active Match task with large distractor rewards,
using agents with LSTM or DNC recurrent cores.

E.3. Program Execution

The Learning to Execute (Zaremba & Sutskever, 2014)
dataset consists of algorithmic snippets from a programming
language of pseudo-code. An input is a program from this
language presented one character at a time, and the target
output is a numeric sequence of characters representing the
execution output of the program. There are three categories
of tasks: Addition, Control, and Program, with distinctive
types of input programs. We use the most difficult setting
from Zaremba & Sutskever (2014), which uses the param-
eters nesting=4, length=9, referring to the nesting
depth of control structure and base length of numeric literals,
respectively. Examples of input programs are shown in previ-
ous works (Zaremba & Sutskever, 2014; Santoro et al., 2018).

We are interested in this task for several reasons. First, we
are interested in comparing against the C- and OM- gate
methods, because

* The maximum sequence length is fairly long (several
hundred tokens), meaning our 7),,, heuristic for
C- gates is within the right order of magnitude of
dependency lengths.

» The task has highly variable sequence lengths, wherein
the standard training procedure randomly samples
inputs of varying lengths (called the "Mix” curriculum
in Zaremba & Sutskever (2014)). Additionally, the
Control and Program tasks contain complex control
flow and nested structure. They are thus a measure of
a sequence model’s ability to model dependencies of
differing lengths, as well as hierarchical information.
Thus we are interested in comparing the effects of
UGI methods, as well as the full OM- gates which are
designed for hierarchical structures (Shen et al., 2018).

Finally, this task has prior work using a different type of
recurrent core, the Relational Memory Core (RMC), that
we also use as a baseline to evaluate our gates on different
models (Santoro et al., 2018). Both the LSTM and RMC
were found to outperform other recurrent baselines such as
the Differential Neural Computer (DNC) and EntNet.

Training curves are shown in Figure 14, which plots the
median accuracy with confidence intervals. We point out
a few observations. First, despite having a T},,,, value on
the right order of magnitude, the C- gated methods have very
poor performance across the board, reaffirming the chrono
initialization’s high sensitivity to this hyperparameter.

Second, the U-LSTM and U-RMC are the best methods on
the Addition task. Additionally, the UR-RMC vs. RMC on
Addition is one of the very few tasks we have found where
a generic substitution of the UR- gate does not improve on
the basic gate. We have not investigated what property of
this task caused these phenomena.

Aside from the U-LSTM on addition, the UR-LSTM
outperforms all other LSTM cores. The UR-RMC is also the
best core on both Control and Program, the tasks involving
hierarchical inputs and longer dependencies. For the most
part, the improved mechanisms of the UR- gates seem to
transfer to this recurrent core as well. We highlight that this is
not true of similar gating mechanisms. In particular, the OM-
LSTM, which is supposed to model hierarchies, has good
performance on Control and Program as expected (although
not better than the UR-LSTM). However, the OM- gates’
performance plummets when transferred to the RMC core.

Interestingly, the -LSTM cores are consistently better than
the -RMC versions, contrary to previous findings on easier
versions of this task using similar protocol and hyperparam-
eters (Santoro et al., 2018). We did not explore different
hyperparameter regimes on this more difficult setting.

Improving the Gating Mechanism of Recurrent Neural Networks

Accuracy

Accuracy

0.5
0.4
.3

0

0.6

o
U

<
>

0.3

Addition

1
0.75
0.50
0.25

0 2.5e5 5.0e5 7.5e5 1.0e6

Control
0.5
0.4
0.3
0.2

0 2.5e5 5.0e5 7.5e5 1.0e6

Iteration

Program

Method
— -LSTM

C-LSTM
~— OM-LSTM
= U-LSTM
=== UR-LSTM

Y

0 2.5e5 5.0e5 7.5e5 1.0e6

(a) LSTM - Learning to Execute (nesting=4, length=9)

Addition

0.6
0.4
0.2

0 1.0e5 2.0e5 3.0e5 4.0e5 5.0e5

Control
0.4
0.3
0.2

0 1.0e5 2.0e5 3.0e5 4.0e5 5.0e5
Iteration

Program

Method
—— -RMC

C-RMC
=~ OM-RMC
= U-RMC
=== UR-RMC

I

0 1.0e5 2.0e5 3.0e5 4.0e5 5.0e5

(b) RMC - Learning to Execute (nesting=4, length=9)

Figure 14. Program Execution evaluation accuracies.

