
MCTS as regularized policy optimization

A. Details on search for AlphaZero
Below we briefly present details of the search procedure for AlphaZero. Please refer to the original work (Silver et al.,
2017a) for more comprehensive explanations.

As explained in the main text, the search procedure starts with a MDP state x0, which is used as the root node of the tree. The
rest of this tree is progressively built as more simulations are generated. In addition to Q-function Q(x, a), prior πθ(x, a)
and visit counts n(x, a), each node also maintains a reward R(x, a) = r(x, a) and value V (x) estimate.

In each simulation, the search consists of several parts: Selection, Expansion and Backup, as below.

Selection. From the root node x0, the search traverses the tree using the action selection formula of Eq. 1 until a leaf node
xl is reached.

Expansion. After a leaf node xl is reached, the search selects an action from the leaf node, generates the cor-
responding child node xc and appends it to the tree T . The statistics for the new node are then initialized to
Q(xc, a) = minx∈T ,a′∈AQ(x, a′) (pessimistic initialization), n(x, a) = 0 for ∀a ∈ A.

Back-up. The back-up consists of updating statistics of nodes encountered during the forward traversal. Statistics that
need updating include the Q-function Q(x, a), count n(x, a) and value V (x). The newly expanded node nc updates its
value V (x) to be either the Monte-Carlo estimation from random rollouts (e.g. board games) or a prediction of the value
network (e.g. Atari games). For the other nodes encountered during the forward traversal, all other statistics are updated as
follows:

V (x)← (V (x) ·
∑
b

n(x, b) + (R(x, a) + γV (child(x, a))/(1 +
∑
b

n(x, b))

Q(x, a)← R(x, a) + γV (child(x, a)),

n(x, a)← n(x, a) + 1,

where child(x, a) refers to the child node obtained by taking action a from node x.

Note that, in order to make search parameters agnostic to the scale of the numerical rewards (and, therefore, values),
Q-function statistics Q(x, a) are always normalized by statistics in the search tree before applying the action selection
formula; in practice, Eq. 1 uses the normalized Qz(x, a) defined as:

Qz(x, a) =
Q(x, a)−minx∈T ,a∈AQ(x, a)

maxx∈T ,a∈AQ(x, a)−minx∈T ,a∈AQ(x, a)
. (18)

B. Implementation details
B.1. Agent

For ease of implementation and availability of computational resources, the experimental results from Section 5 were
obtained with a scaled-down version of MuZero (Schrittwieser et al., 2019). In particular, our implementation uses smaller
networks compared to the architecture described in Appendix F of (Schrittwieser et al., 2019): we use only 5 residual blocks
with 128 hidden layers for the dynamics function, and the residual blocks in the representation functions have half the
number of channels. Furthermore, we use a stack of only 4 past observations instead of 32. Additionally, some algorithmic
refinements (such as those described in Appendix H of (Schrittwieser et al., 2019)) have not been implemented in the version
that we use in this paper.

Our experimental results have been obtained using either 4 or 8 Tesla v100 GPUs for learning (compared to 8 third-generation
Google Cloud TPUs (Google, 2020) in the original MuZero paper, which are approximately equivalent to 64 v100 GPUs).
Each learner GPU receives data from a separated, prioritized experience replay buffer (Horgan et al., 2018) storing the last
500000 transitions. Each of these buffers is filled by 512 dedicated CPU actors12, each running a different environment
instance. Finally, each actor receives updated parameters from the learner every 500 learner steps (corresponding to

12For 50 simulations per step; this number is scaled linearly as 12 + 10 ·Nsim to maintain a constant total number of frames per second
when varying Nsim.
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approximately 4 minutes of wall-clock time); because episodes can potentially last several minutes of wall-clock time,
weights updating will usually occur within the duration of an episode. The total score at the end of an episode is associated
to the version of the weights that were used to select the final action in the episode.

Hyperparameters choice generally follows those of (Schrittwieser et al., 2019), with the exception that we use the Adam
optimizer with a constant learning rate of 0.001.

B.2. Details on discretizing continuous action space

AlphaZero (Silver et al., 2017a) is designed for discrete action spaces. When applying this algorithm to continuous control,
we use the method described in (Tang and Agrawal, 2019) to discretize the action space. Although the idea is simple,
discretizing continuous action space has proved empirically efficient (Andrychowicz et al., 2020; Tang and Agrawal, 2019).
We present the details below for completeness.

Discretizing the action space We consider a continuous action space A = [−1, 1]m with m dimensions. Each dimension
is discretized into K = 5 bins; specifically, the continuous action along each dimension is replaced by K atomic categorical
actions, evenly spaced between [−1, 1]. This leads to a total of Km actions, which grows exponentially fast (e.g. m = 6
leads to about 104 joint actions). To avoid the curse of dimensionality, we assume that the parameterized policy can be
factorized as πθ(a|x) = Πm

i=1π
(i)
θ (ai|x), where π(i)

θ (ai|x) is the marginal distribution for dimension i, ai ∈ {1, 2...K} is
the discrete action along dimension i and a = [a1, a2...am] is the joint action.

Modification to the search procedure Though it is convenient to assume a factorized form of the parameterized policy
(Andrychowicz et al., 2020; Tang and Agrawal, 2019), it is not as straightforward to apply the same factorization assumption
to the Q-function Q(x,a). A most naive way of applying the search procedure is to maintain a Q-table of size Km with one
entry for each joint action, which may not be tractable in practice. Instead, we maintain m separate Q-tables each with K
entries Qi(x, ai). We also maintain m count tables n(x, ai) with K entries for each dimension.

To make the presentation clear, we detail on how the search is applied. At each node of the search tree, we maintain m
tables each with K entries as introduced above. The three core components of the tree search are modified as follows.

• Selection. During forward action selection, the algorithm needs to select an action a at node x. This joint action a has
all its components ai selected independently, using the action selection formula applied to each dimension. To select
action at dimension i, we need the Q-table Qi(x, ai), the prior π(i)

θ (ai|x) and count n(x, ai) for dimension i.

• Expansion. The expansion part does not change.

• Back-up. During the value back-up, we update Q-tables of each dimension independently. At a node x, given the
downstream reward R(x, a) and child value V (child(x,a)), we generate the target update for each Q-table and count
table as Q(x, ai)← R(x, a) + γV (child(x,a)) and n(x, ai)← n(x, ai) + 1.

The m small Q-tables can be interpreted as maintaining the marginalized values of the joint Q-table. Indeed, let us denote
by Q(x,a) the joint Q-table with Km entries. At dimension i, the Q-table Q(x, ai) increments its values purely based on
the choice of ai, regardless of actions in other dimension aj , j 6= i. This implies that the Q-table Q(x, ai) marginalizes the
joint Q-table Q(x,a) via the visit count distribution.

Details on the learning At the end of the tree search, a distribution target π̂ or π̄ is computed from the root node. In
the discretized case, each component of the target distribution is computed independently. For example, π̂i is computed
from N(x0, ai). The target distribution derived from constrained optimization π̄i is also computed independently across
dimensions, from Q(x0, ai) and N(x0, ai). In general, let πtarget(·|x) be the target distribution and π(i)

target(·|x) its marginal
for dimension i. Due to the factorized assumption on the policy distribution, the update can be carried out independently for
each dimension. Indeed, KL[πtarget(·|x), πθ(·|x)] =

∑m
i=1 KL[π

(i)
target(·|x), π

(i)
θ (·|x)], sums over dimensions.
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B.3. Practical computation of π̄

The vector π̄ is defined as the solution to a multi-dimensional optimization problem; however, we show that it can be
computed easily by dichotomic search. We first restate the definition of π̄,

π̄ , arg max
y∈S

[
qTy − λNKL[πθ,y]

]
. (8)

Let us define

∀a ∈ A πα[a] , λN
πθ[a]

α− q[a]
and α? , max

{
α ∈ R s.t

∑
b

πα[b] = 1

}
· (19)

Proposition 4.

(i) πα? = π̄ (20)

(ii) α? ≥ αmin , max
b∈A

(q[b] + λN · πθ[b]) (21)

(iii) α? ≤ αmax , max
b∈A

q[b] + λN (22)

(23)

As
∑
b π̄α[b] is strictly decreasing on α ∈ (αmin, αmax), Proposition 4 guarantees that π̄ can be computed easily using

dichotomic search over (αmin, αmax).

Proof of (i).

Proof. The proof start the same as the one of Lemma 3 of Appendix D.1 setting f(x) = − log(x) to get

∃α q + λN ·
πθ
π̄

= α1, (24)

with 1 being the the vector such that ∀a 1a = 1. Therefore there exists α ∈ R such that

π̄ =
λN · πθ
α− q

(25)

Then α is set such that
∑
b π̄b = 1 and ∀b π̄b ≥ 0.

Proof of (ii).

Proof.

∀a 1 ≥ π̄[a] =
λN · πθ[a]

α− q[a]
=⇒ ∀a α ≥ q[a] + λN · πθ[a] (26)

Proof of (iii).

Proof. ∑
b

παmax [b] =
∑
b

λN · πθ[b]
maxc∈A q[c] + λN − q[b]

≤
∑
b

λN · πθ[b]
λN

= 1 (27)

We combine this with the fact that
∑
b πα[b] is a decreasing function of α for any α > maxb q[b], and

∑
b πα? [b] = 1.
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(e) 24 simulations
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(f) 50 simulations

Figure 6. Dispersion between seeds at different number of simulations per step on Ms Pacman.

C. Additional experimental results
C.1. Complements to Section 5.1

Figure 6 presents a comparison of the score obtained by our MuZero implementation and the proposed ALL variant at
different simulation budgets on the Ms. Pacman level; the results from Figure 2 are also included fore completeness. In this
experiment, we used 8 seeds with 8 GPUs per seed and a batch size of 256 per GPU. We use the same set of hyper-parameters
for MuZero and ALL; these parameters were tuned on MuZero. The solid line corresponds to the average score (solid line)
and the 95% confidence interval (shaded area) over the 8 seeds, averaged for each seed over buckets of 2000 learner steps
without additional smoothing. Interestingly, we observe that ALL provides improved performance at low simulation budgets
while also reducing the dispersion between seeds.

Figure 7 presents a comparison of the score obtained by our MuZero implementation and the proposed ALL variant on six
Atari games, using 6 seeds per game and a batch size of 512 per GPU and 8 GPUs; we use the same set of hyper-parameters
as in the other experiments. Because the distribution of scores across seeds is skewed towards higher values, we represent
dispersion between seeds using the min-max interval over the 6 seeds (shaded area) instead of using the standard deviation;
the solid line represents the median score over the seeds.

C.2. Complements to Section 5.3

Details on the environments The DeepMind Control Suite environments (Tassa et al., 2018) are control tasks with
continuous action space A = [−1, 1]m. These tasks all involve simulated robotic systems and the reward functions are
designed so as to guide the system for accomplish e.g. locomotion tasks. Typically, these robotic systems have relatively
low-dimensional sensory recordings which summarize the environment states. To make the tasks more challenging, for
observations, we take the third-person camera of the robotic system and use the image recordings as observations to the RL
agent. These images are of dimension 64× 64× 3.

Figures 9 to 12 present a comparison of MuZero and ALL on a subset of 4 of the medium-difficulty (Van de Wiele et al.,
2020) DeepMind Control Suite (Tassa et al., 2018) tasks chosen for their relatively high-dimensional action space among
these medium-difficulty problems (ndim = 6). Figure 8 compare the score of MuZero and ALL after 100k learner steps on
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Figure 7. Comparison of median score over 6 seeds of MuZero and ALL on six Atari games with 50 simulations per step. The shaded area
correspond the the best and worst seeds.

these four medium difficulty Control problems. These continuous control problems are cast to a discrete action formulation
using the method presented in Appendix B.2; note that these experiments only use pixel renderings and not the underlying
scalar states.

These curves present the median (solid line) and min-max interval (shaded area) computed over 3 seeds in the same settings
as described in Appendix C.1. The hyper-parameters are the same as in the other experiments; no specific tuning was
performed for the continuous control domain. The horizontal dashed line corresponds to the performance of the D4PG
algorithm when trained on pixel observations only (Barth-Maron et al., 2018), as reported by (Tassa et al., 2018).

C.3. Complemantary experiments on comparison with PPO

Since we interpret the MCTS-based algorithms as regularized policy optimization algorithms, as a sanity check for the
proposal’s performance gains, we compare it with state-of-the-art proximal policy optimization (PPO) (Schulman et al.,
2017). Since PPO is a near on-policy optimization algorithm, whose gradient updates are purely based on on-policy data,
we adopt a lighter network architecture to ensure its stability. Please refer to the public code base (Dhariwal et al., 2017) for
a review of the neural network architecture and algorithmic details.

To assess the performance of PPO, we train with both state-based inputs and image-based inputs. State-based inputs are
low-dimensional sensor data of the environment, which renders the input sequence strongly Markovian (Tassa et al., 2018).
For image-based training, we adopt the same inputs as in the main paper. The performance is reported in Table 1 where each
score is the evaluation performance of PPO after the convergence takes place. We observe that state-based PPO performs
significantly better than image-based PPO, while in some cases it matches the performance of ALL. In general, image-based
PPO significantly underperforms ALL.
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Figure 8. Score of MuZero and ALL on Continuous control tasks after 100k learner steps as a function of the number of simulations Nsim.
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Figure 9. Comparison of MuZero and ALL on Cheetah Run.
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Figure 10. Comparison of MuZero and ALL on Walker Stand.
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Figure 11. Comparison of MuZero and ALL on Walker Walk.
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Figure 12. Comparison of MuZero and ALL on Walker Run.

Benchmarks PPO (state) PPO (image) MuZero (image) ALL(image)

WALKER-WALK 406 270 925 941
WALKER-STAND 937 357 959 951
WALKER-RUN 340 71 533 644
CHEETAH-RUN 538 285 887 882

Table 1. Comparison to the performance of PPO baselines on benchmark tasks. The inputs to PPO are either state-based or image-based.
The performance is computed as the evaluated returns after the training is completed, averaged across 3 random seeds.
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D. Derivations for Section 3
D.1. Proof of Proposition 1, Eq. 11 and Proposition 2.

We start with a definition of the f -divergence (Csiszár, 1964).

Definition 2 (f -divergence). For any probability distributions p and q onA and function f : R→ R such that f is a convex
function on R and f(1) = 0, the f -divergence Df between p and q is defined as

Df (p, q) =
∑
b∈A

q(b)f

(
p(b)

q(b)

)
(28)

Remark 1. Let Df be a f -divergence,

(1) ∀x, y D(x, y) ≥ 0 (2) D(x, y) = 0 ⇐⇒ x = y (3) D(x, y) is jointly convex in x and y.

We states four lemmas that we formally prove in Appendix D.2.

Lemma 1.

∇π
(
qTπ − λ ·Df [π, πθ]

)
= q− λ · f ′

(
π

πθ

)
(29)

Where πθ is assumed to be non zero. We now restate the definition of π̂[a] , na+1
N+|A| .

Lemma 2.

arg max
a

[
∂

∂na

(
qTπ − λ ·Df [π̂, πθ]

)]
= arg max

a

[
qa − λ · f ′

(
π̂(a)

πθ(a)

)]
(30)

Now we consider a more general definition of π̄ using any f -divergence for some λf > 0 and assume πθ > 0,

π̄f , arg min
y∈S

qTy − λfDf (πθ,y). (31)

We also consider the following action selection formula based on f -divergence Df .

a?f , arg max
a

[
qa − λf · f ′

(
π̂

πθ

)]
, with. (32)

Lemma 3.

arg max
a

[
qa − λf · f ′

(
π̂(a)

πθ(a)

)]
= arg max

a

[
f ′
(
π̄f (a)

πθ(a)

)
− f ′

(
π̂(a)

πθ(a)

)]
. (33)

Lemma 4.

π̂(a?f ) ≤ π̄(a?f ). (34)

Applying Lemmas 2 and 4 with the appropriate function f directly leads to Proposition 1, Proposition 2, and Proposition 3.
In particular, we use

For AlphaZero: f(x) = − log(x) (35)

For UCT: f(x) = 2− 2
√
x (36)

Algorithm Function f(x) Derivative f ′(x) Associated f -divergence Associated action selection formula

— x · log(x) log(x) + 1 Df (p, q) = KL(p, q) arg maxa qa + c√
N
· log

(
πθ(a)
na+1

)
UCT 2− 2

√
x − 1√

x
Df (p, q) = 2− 2

∑
b∈A
√
pa · qa arg maxa qa + c ·

√
πθ

na+1

AlphaZero − log(x) − 1
x Df (p, q) = KL(q, p) arg maxa qa + c · πθ ·

√
N

na+1
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D.2. Proofs of Lemmas 1 to 4

Proof of Lemma 1

Proof. For any action a ∈ A using basic differentiation rules we have

(
∇π
(
qTπ − λf ·Df [π, πθ]

))
[a] =

∂

∂πa

[∑
b∈A

(qb · πb)− λf
∑
b∈A

πθ(b)f

(
πb
πθ(b)

)]
(37)

=
∂

∂πa

[∑
b∈A

(qb · πb)

]
− λf ·

∂

∂πa

∑
b∈A

πθ(b)f

(
πb
πθ(b)

)
(38)

= qa − λf · πθ(a) · ∂

∂πa
f

(
πa
πθ(a)

)
(39)

= qa − λf · f ′
(

πa
πθ(a)

)
=

(
q− λf · f ′

(
π

πθ

))
[a] (40)

Proof of Lemma 2

Proof.

∂

∂na

(
qTπ − λf ·Df [π̂, πθ]

)
=

∂

∂na

[∑
b∈A

(
qb ·

nb + 1

|A|+
∑
c∈A nc

)
− λf

∑
b∈A

πθ(b) · f

(
nb + 1(

|A|+
∑
c∈A nc

)
· πθ(b)

)]
(41)

= β +
qa

|A|+
∑
c∈A nc

− λf
|A|+

∑
c∈A nc

f ′

(
na + 1(

|A|+
∑
c∈A nc

)
· πθ(b)

)
(42)

= β +
1

|A|+
∑
c∈A nc

(
qa − λff ′

(
π̂(a)

πθ(b)

))
, (43)

where β = −

∑
b∈A

[
qb − λff ′

(
π̂(b)
πθ(b)

)]
(
|A|+

∑
c∈A nc

)2 is independent of a. Also because 1
|A|+

∑
c∈A nc

> 0 then

arg max
a

∂

∂na

(
qTπ − λf ·Df [π̂, πθ]

)
= arg max

a

[
qa − λf · f ′

(
π̂(a)

πθ(a)

)]
(44)

(45)

Proof of Lemma 3

Proof. The Eq. 31 is a differentiable strictly convex optimization problem, its unique solution satisfies the KKT condition
requires (see Section 5.5.3 of Boyd and Vandenberghe, 2004) therefore there exists α ∈ R such that for all actions a,

∇π̄
(
qT π̄ − λfDf (πθ, π̄)

)
= α1 (46)

where 1 is the vector constant equal one: ∀a1a = 1. Using Lemma 1 setting π to π̄ we get

∃α q − λf · f ′
(
π̄

πθ

)
= α1. (47)
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q − λf · f ′
(
π̂

πθ

)
= qa − λf ·

(
f ′
(
π̂

πθ

)
+ f ′

(
π̄

πθ

)
− f ′

(
π̄

πθ

))
(48)

= α1 + λf ·
(
f ′
(
π̄

πθ

)
− f ′

(
π̂

πθ

))
(49)

arg max

[
q − λf · f ′

(
π̂

πθ

)]
= arg max

[
α1 + λf ·

(
f ′
(
π̄

πθ

)
− f ′

(
π̂

πθ

))]
(50)

= arg max

[
f ′
(
π̄

πθ

)
− f ′

(
π̂

πθ

)]
(because λf > 0) (51)

(52)

Proof of Lemma 4

Proof. Since
∑
a π̂(a|x) =

∑
a π̄(a|x) = 1, there exists at least an action a0 for which 0 ≤ π̂(a0|x) ≤ π̄(a0|x) then

0 ≤ π̂(a0|x)
πθ(a|x) ≤

π̄(a0|x)
πθ(a|x) as πθ(a|x) > 0. Because f is convex then f ′ is increasing and therefore

f ′
(
π̄(a0|x)

πθ(a0|x)

)
− f ′

(
π̂(a0|x)

πθ(a0|x)

)
≥ 0. (53)

Now using Lemma 3

f ′

(
π̄(a?f |x)

πθ(a?f |x)

)
− f ′

(
π̂(a?f |x)

πθ(a?f |x)

)
≥ f ′

(
π̄(a0|x)

πθ(a0|x)

)
− f ′

(
π̂(a0|x)

πθ(a0|x)

)
(54)

We put Equations (53) and (54) together

f ′

(
π̄(a?f |x)

πθ(a?f |x)

)
− f ′

(
π̂(a?f |x)

πθ(a?f |x)

)
≥ 0 (55)

Finally we use again that f ′ is increasing and πθ > 0 to conclude the proof

π̂(a?f |x) ≤ π̄(a?f |x) (56)

D.3. Tracking property in the constant π̄ case

Let π be some target distribution independent of the round t ≥ 0. At each round t, starting from t = 1, an action at ∈ A is
selected and for any t ≥ 0, we define

pt(a) ,
nt(at) + 1

|A|+
∑
b nt(b)

,

where for any action a ∈ A, nt(a) is the number of rounds the action a has been selected,

∀a ∈ A nt(a) ,
∑
i≤t

δ(at = a) and δ(at = a) , 1 if and only if at = a.

Proposition 5. Assume that for all rounds t ≥ 1, and for the chosen action at ∈ A we have

pt(at) ≤ π(at). (57)

Then, we have that

∀a ∈ A, t ≥ 1 |π(a)− pt(a)| ≤ |A| − 1

|A|+ t
·
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Before proving the proposition above, note that O(1/t) is the best approximation w.r.t. t, since for any integer k ≥ 0, taking
π(a) = (1

2 + k)/(|A|+ t), we have that for all n ≥ 0,∣∣∣∣π(a)− n+ 1

|A|+ t

∣∣∣∣ ≥ 1

2

1

|A|+ t
,

which follows from the fact that ∀k, n ∈ N,
∣∣ 1

2 + k − (n+ 1)
∣∣ =

∣∣k − n− 1
2

∣∣ ≥ 1
2 ·

Proof. By induction on the round t, we prove that

∀t ≥ 1, a ∈ A pt(a) ≤ π(a) +
1

|A|+ t
· (58)

At round t = 1, Eq. 58 holds as for any action a, nt(a) ≥ 0 therefore pt(a) ≤ 1. Now, let us assume that Eq. 58 holds for
some t ≥ 1. We have that for all a,

1 + nt(a)

|A|+
∑
b nt(b)

≤ π(a) +
1

|A|+ t
·

Note that at each round, there is exactly one action chosen and therefore,
∑
b nt(b) = t. Furthermore, for a′ 6= at+1, we

have that nt+1(a′) = nt(a
′), since a′ has not been chosen at round t+ 1. Therefore, for a′ 6= at+1,

pt+1(a′) =
nt+1(a′) + 1

|A|+ t+ 1
=

nt(a
′) + 1

|A|+ t+ 1
≤ |A|+ t

|A|+ t+ 1
pt(a

′) ≤ |A|+ t

|A|+ t+ 1

(
π(a′) +

1

|A|+ t

)
≤ π(a′) +

1

|A|+ t+ 1
·

Now, for the chosen action, nt+1(at+1) = nt(at+1) + 1. Using our assumption stated in Eq. 57, we have that

pt+1(at+1) =
nt+1(at+1) + 1

|A|+ t+ 1
=
nt(at+1) + 1 + 1

|A|+ t+ 1
≤ nt(at+1) + 1

|A|+ t+ 1
+

1

|A|+ t+ 1
≤ π(at+1) +

1

|A|+ t+ 1
,

which concludes the induction. Next, we compute a lower bound. For any action a ∈ A and round t ≥ 1,

pt(a) = 1−
∑
b6=a

pt(b) ≥ 1−
∑
b 6=a

(
π(b) +

1

|A|+ t

)
=

1−
∑
b6=a

π(b)

−∑
b 6=a

1

|A|+ t
= π(a)− |A| − 1

|A|+ t
·

We have for any action a ∈ A,

π(a)− |A| − 1

|A|+ t
≤ pt(a) ≤ π(a) +

1

|A|+ t
·

Since when |A| = 1, then by definition, pt(a) = π(a) = 1 and for all rounds t ≥ 1, we get

||π − pt||∞ ≤
|A| − 1

|A|+ t
·


