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Abstract
We present a new method for evaluating and train-
ing unnormalized density models. Our approach
only requires access to the gradient of the unnor-
malized model’s log-density. We estimate the
Stein discrepancy between the data density p(x)
and the model density q(x) defined by a vector
function of the data. We parameterize this func-
tion with a neural network and fit its parameters
to maximize the discrepancy. This yields a novel
goodness-of-fit test which outperforms existing
methods on high dimensional data. Furthermore,
optimizing q(x) to minimize this discrepancy pro-
duces a novel method for training unnormalized
models which scales more gracefully than exist-
ing methods. The ability to both learn and com-
pare models is a unique feature of the proposed
method.

1. Introduction
Energy-Based Models (EBMs), also known as unnormal-
ized density models, are perhaps the most flexible way to
parameterize a density. They hinge on the observation that
any density p(x) can be expressed as

p(x) =
exp(−E(x))

Z
, (1)

where E : RD → R, known as the energy function, maps
each point to a scalar, and Z =

∫
x

exp(−E(x)) is the
normalizing constant.

A major benefit of EBMs is that they allow maximal free-
dom in designing the energy function E. This makes
it straightforward to incorporate prior knowledge about
the problem, such as symmetries or domain-specific de-
sign choices, into the structure of the model. This has
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Figure 1. Density models trained with approximate MCMC sam-
plers can fail to match the data density while still generating high-
quality samples. Samples from approximate MCMC samplers
follow a different distribution than the density they are applied to.
It is this induced distribution which is trained to match the data. In
contrast, our approach LSD directly matches the model density
to the data density without reliance on a sampler.

made EBMs an appealing candidate for applications in
physics (Noé et al., 2019), biology (Ingraham et al., 2019),
neuroscience (Scellier & Bengio, 2017), and computer vi-
sion (LeCun et al., 2007; Osadchy et al., 2007; Xie et al.,
2016; 2019; 2018), to name a few.

Despite their many benefits, EBMs present a central chal-
lenge which complicates their use: because we cannot effi-
ciently compute the normalizing constant, we cannot com-
pute likelihoods under our model, making training and eval-
uation difficult. Much prior work on EBMs has relied on
MCMC sampling techniques to estimate the likelihood (for
evaluation) and its gradient (for training). Other approaches
train EBMs by finding easier-to-compute surrogate objec-
tives which have similar optima to the maximum likelihood
objective. These include Score Matching (Hyvärinen, 2005)
and Noise-Contrastive Estimation (Gutmann & Hyvärinen,
2010).

These original sampling- and score-based approaches were
not able to scale to large, high-dimensional datasets as well
as subsequently developed alternative models, such as Vari-
ational Autoencoders (VAEs) (Kingma & Welling, 2013)
and Normalizing Flows (NFs) (Rezende & Mohamed, 2015).
These approaches offer more easily scalable training, evalua-
tion, and sampling, but do so at the cost of a more restrictive
model parameterization which can lead to well-known prob-
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lems like posterior collapse in VAEs (Lucas et al., 2019),
and the inability of NFs to model distributions with certain
topological structures (Falorsi et al., 2018).

Recently, a number of improvements have been made
to EBM training techniques which have enabled EBMs
to be trained on high-dimensional data. These include
improvements to MCMC-based training (Nijkamp et al.,
2019a), Score Matching (Song & Ermon, 2019), and noise-
contrastive approaches (Gao et al., 2019). These improve-
ments enabled new applications in domains such as protein
structure prediction (Ingraham et al., 2019; Du et al., 2020),
and provided benefit to fundamental problems in machine
learning such as adversarial robustness, calibration, out-of-
distribution detection (Grathwohl et al., 2019; Du & Mor-
datch, 2019), and semi-supervised learning (Song & Ou,
2018).

Despite this progress, we have little insight into the quality
of the models we are learning. One solution is to indirectly
measure quality of the model by evaluating performance on
downstream discriminative tasks as advocated for in Theis
et al. (2015), and recently applied to EBMs by Grathwohl
et al. (2019). Another solution is to use metrics that rely
on samples generated by expensive MCMC algorithms (Ni-
jkamp et al., 2019a; Song & Ermon, 2019; Du & Mordatch,
2019).

In this work, we develop a unified approach to training
and evaluating EBMs which addresses many of the afore-
mentioned issues. We produce a measure of model fit that
requires only an unnormalized model and data from the tar-
get distribution. This measure is given by a neural network
which is trained to estimate the Stein Discrepancy between
distributions. To our knowledge, our work is the first to em-
pirically demonstrate that a neural network can be trained to
reliably estimate the Stein Discrepancy in high dimensions.
The resulting evaluation and training procedures outperform
previous approaches at both tasks.

2. Problems with Sample-Based Training and
Evaluation of Energy-based Models

EBMs and MCMC sampling have been closely intertwined
since their inception. Much prior work trains EBMs by
approximating the gradient of the model likelihood with:

∂ log pθ(x)

∂θ
= Ex′∼pθ(x)

[
∂Eθ(x

′)

∂θ

]
− ∂Eθ(x)

∂θ
, (2)

where θ parameterizes the model, and the expectation on
the right-hand-side of Equation 2 is estimated using MCMC.
We refer to such approaches as Approximate Maximum
Likelihood (AML). When the Markov chain is seeded from
training data, this approach is referred to as Contrastive
Divergence (CD). This gradient estimator has been used in

the past to train product-of-experts (Hinton, 2002) and Re-
stricted Boltzmann Machines (Hinton et al., 2006). Recently,
advances in generic gradient-based samplers (Welling &
Teh, 2011) have allowed this gradient estimator to be used
to train much more large-scale models (Du & Mordatch,
2019; Grathwohl et al., 2019; Ingraham et al., 2019).

Unfortunately, unless extreme care is taken (Jacob et al.,
2017), estimating an expectation with a finite Markov chain
will produce biased estimates. This leads to optimizing an
objective other than the one we wish to. An MCMC sampler
will only draw true samples from an unnormalized density
if it is run for an infinite number of steps. When a finite
number of steps are used, the distribution of the resulting
samples can be arbitrarily far away from the true distribution
parameterized by the model. This difference is a function
of the model itself as well as the parameters of the sampler
such as its step size, number of steps, and initialization
distribution. This means the bias of this training objective
cannot be easily quantified and is greatly complicated by the
choice of sampler. This phenomenon has been explored in
Nijkamp et al. (2019b) where the authors argue that training
in this way actually learns an implicit sampler and not a
density model. This is illustrated in Figure 1.

Figure 2. Cutting out the “middle-man” of approximate sampling
can lead to simpler training and evaluation that is tied directly to
the quality of our model and is not obfuscated by the parameters
of an MCMC sampler.

3. Assessing Fit Without Samples or
Normalizing Constants

To avoid the problems of sampler-based training and evalua-
tion, we seek a measure of model fit that can be evaluated
given a finite set of datapoints and an unnormalized density
model. Surprisingly, such a measure exists and is based on
the following, known as Stein’s Identity (Stein et al., 1972):

Ep(x)
[
∇x log p(x)T f(x) + Tr (∇xf(x))

]
= 0 (3)

where f : RD → RD is any function such that
lim||x||→∞ p(x)f(x) = 0. We refer to f as the critic. Note
that ∇x log p(x) can be evaluated without computing the
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normalizing constant of p(x). If we replace the p(x) inside
of the expectation with a different distribution q(x), then
this expectation is zero for all f if and only if p = q.

Taking f to be the supremum over a class of functions F ,
we can create a quantitative measure:

S(p, q) = sup
f∈F

Ep(x)
[
∇x log q(x)T f(x) + Tr (∇xf(x))

]
,

(4)

which is known as the Stein Discrepancy (SD) (Gorham &
Mackey, 2017).

If F is taken to be a ball in a Reproducing Kernel Hilbert
Space (RKHS), then a kernelized version of this discrepancy
can be derived:

KSD(p, q) = Ex,x′∼p(x)[∇x log q(x)T k(x, x′)∇x′ log q(x′)

+∇x log q(x)T∇x′k(x, x′)

+∇xk(x, x′)T∇x′ log q(x′)

+ Tr(∇x,x′k(x, x′))] , (5)

known as the Kernelized Stein Discrepancy (KSD), which
has been used to build hypothesis tests to assess goodness-
of-fit for unnormalized densities (Liu et al., 2016; Gorham &
Mackey, 2017; Jitkrittum et al., 2017) and to learn implicit
samplers for unnormalized densities (Hu et al., 2018).

4. Learning the Stein Discrepancy
The KSD allows us to circumvent the functional optimiza-
tion in Equation 4 by using a kernel function k(·, ·). Un-
fortunately, it is known that methods based on distances
and kernels quickly degrade in performance as dimension
increases (Ramdas et al., 2015). Further, the power of tests
based on these kernel methods is closely tied to their asymp-
totic run-time; the quadratic time test of Liu et al. (2016) sig-
nificantly outperforms their linear-time variant, which pre-
vents using the best-performing approach on large datasets.

Using the Stein Discrepancy directly has the potential to
address both these issues. By employing a larger and more
expressive class of functions F , we can produce a more
discriminative measure in high dimensions. In the functional
form, we can estimate the discrepancy in linear time with
respect to the number of examples.

We propose to parameterize the critic with a neural network
fφ and optimize its parameters to maximize

LSD(fφ, p, q) = Ep(x)[∇x log q(x)T fφ(x)+Tr(∇xfφ(x))] ,
(6)

which we call the Learned Stein Discrepancy (LSD). We
will then use this learned discrepancy to evaluate and train
unnormalized models.

Choosing F To estimate a Stein Discrepancy as in Equa-
tion 4, we must optimize the critic over a bounded space
of functions F . In general, unconstrained neural networks
do not fall into this category, so additional care must be
taken. This can be accomplished in many ways such as with
weight-clipping, or spectral normalization (Miyato et al.,
2018). In this work, we optimize critic networks within

F = {f : Ep(x)[f(x)T f(x)] <∞}, (7)

the space of functions whose squared norm has finite expec-
tation under the data distribution. This constraint will be
enforced by placing an L2 regularizer on our critic’s output

Rλ(fφ) = λEp(x)[fφ(x)T fφ(x)] (8)

with strength λ. Thus, our critic will be trained to maximize
LSD(fφ,p, q)−Rλ(fφ).

Under this class of functions, Hu et al. (2018) prove the
optimal critic takes the following form:

fφ(x) =
1

2λ
(∇x log q(x)−∇x log p(x)). (9)

Thus, the optimal critic depends on λ only up to a constant
multiplier. While this theory is convenient, it does not tell us
if we can learn this function given finite data and compute –
requirements for this to be a useful discrepancy for model
evaluation and training. In this work, we demonstrate em-
pirically that we can learn this function from finite data on a
wide variety of datasets and models. In Figure 3 we show
that the theoretically optimal critic can be recovered while
estimating the Stein Discrepancy between 100 dimensional
Gaussian distributions.

Iteration

S(
p,

q)

p = N(1, I), q = N(0, I)

Theoretical
Emperical

Iteration

S(
p,

q)

p = N(0, 3I), q = N(0, I)

Theoretical
Emperical

Figure 3. Training a neural net to estimate S(p, q) on 100-
dimensional data. In both cases, a near-optimal critic is learned
and the true discrepancy is closely approximated.

We achieve similar results on more complicated distributions
such as RBMs and Normalizing Flows trained on image data.
See Sections 7.2 and 7.3 for details.

Efficient Estimation The Tr(∇xf(x)) term in Eq. 6 is ex-
pensive to compute, requiring O(D) vector-Jacobian prod-
ucts (or “backward-passes”), where D is the dimension of
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the data. Fortunately, an efficient, unbiased estimator ex-
ists, known as Hutchinson’s estimator (Hutchinson, 1990).
This estimator has been widely used in the machine learning
community in recent years (Grathwohl et al., 2018; Tsit-
sulin et al., 2019; Han et al., 2017). The estimator, which
requires only one vector-Jacobian product to compute, is
the single-sample Monte-Carlo estimator derived from the
following identity:

Tr(∇xf(x)) = EN(ε|0,1)
[
εT∇xf(x)ε

]
(10)

which can be computed efficiently since εT∇xf(x) is a
vector-Jacobian product. Thus, during the critic-learning
phase, we replace the LSD objective (Equation 6) with

LSDE(fφ,p, q) = Ep(x)N(ε|0,I)[∇x log q(x)T fφ(x)

+ εT∇xfφ(x)ε] (11)

an Efficient LSD version which can be estimated and op-
timized on mini-batches of data sampled from p(x) for the
same asymptotic time cost as evaluating f and ∇x log q(x)
once on each sample in the mini-batch.

5. Model Evaluation with LSD
Now that we have a procedure for estimating the Stein Dis-
crepancy, we provide two applications related to model eval-
uation: comparing the performance of models on held-out
evaluation data, and goodness-of-fit testing.

5.1. Model Comparison

In this setting we are given two or more unnormalized mod-
els {qi}Mi=1, and a finite set of samples {xi}ni=1 from the
target distribution p(x) which {qi}Mi=1 are trying to approx-
imate. The goal is to estimate which qi approximates the
data samples better.

We phrase this evaluation task as a standard learning prob-
lem. We split the data into training, validation, and testing
sets, and train a critic fφi on model qi, using the validation
data to do model selection. We then compute the LSD on
the test data for each model and score the models by this
value.

Due to the nature of our training objective, the variance of
the LSD must be taken into consideration when monitoring
for over-fitting. We propose an uncertainty-aware model
selection procedure where we choose the model which max-
imizes µ − σ where µ and σ are the sample mean and
standard deviation of the LSD on the validation data. We
provide a more in-depth discussion in Appendix A.

Our approach is summarized in Algorithm 1. See Sec-
tions 7.2, 7.3 for experimental result for experimental results,
where we find that LSD can scale to complicated models
of high-dimensional data such as images.

Algorithm 1 LSD Model Comparison
Input: Critic architecture fφ, models {qi}Mi=1, data x =
{xi}ni=1, L2 regularization hyperparameter λ

Output: Estimated Stein Discrepancies, {S(p, qi)}Mi=1

Split x into xtrain, xval, and xtest
for model qi in {qi}Mi=1 do

find φi = argmaxφLSDE(fφ,xtrain, qi) − Rλ(fφ)
(using xval for model selection)
si = LSD(fφi ,xtest, qi)

end for
Rank models in increasing order of si.

5.2. Goodness-Of-Fit Testing

Given an unnormalized model q(x) and a finite set of sam-
ples {xi}ni=1 from an unknown distribution p(x), the prob-
lem of Goodness-Of-Fit (GoF) testing asks us to decide
between two hypotheses:

H0 : p = q, H1 : p 6= q.

GoF is a standard problem in statistics. An ideal hypothesis
test will reject H0 whenever p 6= q, even if p and q are
quite similar. In settings relevant to the machine learning
community, GoF becomes particularly challenging as we
often deal with very complicated, high-dimensional data.

We use LSD to develop a procedure for solving GoF
problems. Assuming we are given a critic f , we define
sqf (x) = ∇x log q(x)T f(x) + Tr(∇xf(x)). Following
Equation 3, this problem reverts to a test of

H0 : Ep(x)

[
sqf (x)

]
= 0 H1 : Ep(x)

[
sqf (x)

]
6= 0

which is a simple one-sample location test. This test is
carried out by computing the statistic t =

√
nµsσs where µs

and σs are the sample mean and standard deviation of sf (x)
evaluated over the dataset. For sufficiently large n, we have
t ∼ N(0, 1) under H0, thus for a given test confidence α
we should reject H0 if t < Φ(1− α) where Φ is the inverse
CDF of the standard Normal distribution.

As above, to obtain the critic, we parameterize it as a neu-
ral network fφ and train its parameters on a subset of the
given data. In Section 5.1 we were interested in estimating
S(p, q) directly. Here we are only interested in correctly
choosing H0 or H1, so we should optimize fφ to minimize
the probability we accept H0 given H1 is true. The inverse
of this quantity is known as the test power. Given that the
test statistic t is asymptotically normal under both H1 and
H0 we can follow the same argument as Sutherland et al.
(2016); Jitkrittum et al. (2017), and maximize the test power
by optimizing

P(fφ, p, q) =
Ep(x)[s

q
fφ

(x)]

σp(x)[s
q
fφ

(x)]
. (12)
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We split our finite sample set into disjoint sets xtrain,xval,
and xtest, using xtrain for training and xval for model selec-
tion. Then, given our learned fφ we run the test on xtest. A
summary of our test can be seen in Algorithm 2. As before,
we use Hutchinson’s estimator for the trace term in sqf (x).
Because this increases the variance of sqf (x), optimizing the
objective maximizes a lower-bound on the test power.

Experimental details and results can be found in Section 7.1.

Algorithm 2 LSD Goodness of Fit Test
Input: Critic architecture fφ, model q, x = {xi}ni=1, L2

regularization hyperparameter λ, confidence α
Output: Decision whether p = q

Split x into xtrain, xval, and xtest
maximize φ = argmaxφP(fφ,xtrain, q) (using xval for
model selection)
Compute t =

√
nE[s(xtest)]
σ[s(xtest)]

If t > Φ(1− α) reject H0, else accept H0

6. Training Unnormalized Models with LSD
Above we have developed a method which can effectively
quantify the quality of fit of an unnormalized model to
a fixed set of datapoints. We now extend this method to
develop a way of learning the parameters of an unnormal-
ized model to best fit the data. Unlike sampling based
approaches, we produce an objective that is 0 in expectation
if and only if the data and model distributions are equiva-
lent, given our critic is suitably expressive. Ideally, we will
minimize

L(θ) = sup
φ

LSD(fφ, p, qθ)−Rλ(fφ) (13)

with respect to θ but this is infeasible due to the supremum
on the right-hand-side. Instead, we follow recent work on
minimax optimization (Goodfellow et al., 2014) and itera-
tively update the model qθ(x) = exp(−Eθ(x))/Z and the
critic function fφ in an alternating fashion where the critic
is trained to more accurately estimate the Stein Discrepancy
and the model is trained to minimize the critic’s estimate of
the discrepancy. The proposed training algorithm is summa-
rized in Algorithm 3.

Our approach can effectively train unnormalized models on
complicated high-dimensional datasets without requiring
samples of the model – only needing access to the model’s
score function. In contrast, score matching (which also does
not require sampling), requires the Hessian of log qθ for
training. For many distributions of interest this computa-
tion can be numerically unstable leading to training issues
(see Section 8.1 for more details). Further, optimizing func-
tions implicitly through their higher-order derivatives can be
challenging as they are often sparse or discontinuous. See
Figure 4 for examples of toy densities trained with LSD.

Figure 4. Density models trained using LSD. Top: Data. Bottom:
Learned densities.

Algorithm 3 LSD Training
Input: Critic architecture fφ, model qθ, data x =
{xi}ni=1 ∼ p(x), L2 regularization hyperparameter λ,
training iterations T , critic training iterations C

Output: Parameters θ such that qθ ≈ p
for T iterations do

for C iterations do
Sample mini-batch x′

Update φ with∇φ (LSDE(fφ,x
′, qθ)−Rλ(fφ))

end for
Sample mini-batch x′

Update θ with −∇θLSD(fφ,x
′, qθ)

end for
Return resulting model qθ

7. Model Evaluation Experiments
We run a number of experiments to demonstrate the utility
of the LSD. First, we demonstrate that the LSD can be
used to build a competitive test for goodness-of-fit which
scales more favorably to high-dimensional data than prior
linear-time methods. Next we show that LSD can be used
to provide a fine-grained model evaluation tool which is
sensitive to small differences in high-dimensional models.

Unless otherwise stated, all critics fφ are MLPs with 2
hidden layers and 300 units per layer. We use the Swish (Ra-
machandran et al., 2017) nonlinearity throughout.

7.1. Hypothesis Testing

We compare our linear-time hypothesis testing method from
Section 5.2 with a number of kernel-stein approaches; the
quadratic-time Kernelized Stein Discrepancy (KSD), its
linear-time variant (LKSD) (Liu et al., 2016), and the linear-
time Finite Set Stein Discrepancy (FSSD) (Jitkrittum et al.,
2017). We also compare against a kernel-MMD test (Gret-
ton et al., 2012) which requires MCMC sampling from the
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Figure 5. Hypothesis testing results. Test confidence 0.05. Perturbed RBMs of increasing data dimension. Perturbation magnitude on the
x-axis, rejection rate on the y-axis. Number of datapoints n = 1000. Ideal behavior is a 5% rejection when perturbation is 0 and close to
100% rejection otherwise. In high dimensions our linear-time LSD matches the performance of the quadratic-time KSD.

model. We test these approaches in their ability to determine
whether or not a set of samples was drawn from a given
Gaussian-Bernoulli Restricted Boltzmann Machine (Cho
et al., 2013). This is an unnormalized latent-variable model

p(x, h) =
1

Z
exp

(
1

2
xTBh+ bTx+ cTh− 1

2
||x||2

)
∇x log p(x) = b− x+B · tanh

(
BTx+ c

)
with parametrs B, b, c, whose gradients can be efficiently
computed making it an ideal candidate for evaluating meth-
ods such as ours. We randomly sample the parameters
of the model, then draw a set of n = 1000 samples.
We then perturb the weights of the model with Gaussian
noise of standard deviation in [0, 0.01, 0.02, 0.04, 0.06] and
our tests must determine if the samples were drawn from
this model. We perform this test with RBMs of increas-
ing visible dimension x and hidden dimension h from
x, h = {(50, 40), (100, 80), (200, 100)}.

As can be seen in Figure 5, our proposed hypothesis test
performs comparably to the linear-time kernel methods at
50 dimensions and begins to dominate those approaches as
dimensionality is increased, matching the performance of
the quadratic-time test (we note that this quadratic-time test
takes much longer to run than our linear-time method). We
also see that while the MMD test performs comparably at 50
dimensions, as we increase dimensionality the performance
quickly drops below all of the Stein approaches. This result
further supports our claim that MCMC sampling should not
be relied upon in high dimensional settings.

We run further experiments to empirically verify the normal-
ity of our test statistic under H0. These results can be found
in Appendix C.

7.2. RBM Evaluation

We now demonstrate LSD’s ability to rank and evaluate
the fit of unnormalized models on fixed test data. Again,
we experiment with Gaussian-Bernoulli RBMs. As above
we randomly initialize an RBM, draw n = 1000 samples,

perturb its weights with increasing Gaussian perturbations,
and then and provide a score for each model. This score
should increase as the perturbation becomes larger, starting
at 0 when p = q. As above, we experiment with RBMs of
dimension 50, 100, and 200.

We compare LSD (which approximates the Stein Discrep-
ancy over L2 functions) with a linear-time and a quadratic-
time estimate of the KSD using RBF Kernels with learned
bandwidth. We also compare with the theoretical upper-
bound on the LSD from Equation 9.

We test all approaches using n = 1000 samples as this was
the largest n that could feasibly be used for the quadratic-
time KSD. In all dimensions, we find that LSD is a much
stronger measure of model quality. It is able to closely
match the theoretical upper bound even in higher dimen-
sions. Further, it is much more discriminative for small-
scale perturbations than the kernel methods. Results can be
seen in Figure 6. We plot the reported scores with error-bars
indicating standard deviation of the sample mean σ√

ntest
.

7.3. Normalizing Flow Evaluation

For the LSD to be an effective discrepancy for use on
problems of scale, it must be able to distinguish between rel-
atively similar, high-dimensional models. To assess LSD’s
ability to do so, we trained a number of normalizing flow
models based on the Glow architecture (Kingma & Dhari-
wal, 2018). We save these models throughout training and
record their log-likelihoods on the MNIST test dataset. We
compare the standard likelihood evaluation with the LSD
evaluation procedure. We split the MNIST test set into parti-
tions to train, validate, and test the LSD critic. This ensures
that the scores from LSD were given access to the exact
same data as the likelihood evaluation procedure. We also
compare with the objective of Score Matching (Hyvärinen,
2005) to provide a baseline method which does not require
the model’s normalizing constant.
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Figure 6. Model evaluation results for Gaussian-Bernoulli RBMs. Predicted discrepancy should increase as perturbation increases. LSD
reliably increases, approaching the theoretical ground-truth value. LSD provides much more certain results than both linear-time and
quadratic-time kernel-based approaches.

Figure 7. Flow model evaluation. Left to right: Bits/Dim, LSD,
Score Matching. Y-axis is removed because scales are not compa-
rable.

Results can be seen in Figure 7. We find that the score
reported by LSD goes down throughout training, tracking
the negative log-likelihood. Conversely, score matching
reports a score which is not highly correlated with likelihood,
demonstrating that LSD can be a more effective metric to
compare unnormalized models than previous approaches.

8. Model Training Experiments
Here we demonstrate that minimizing LSD is an effective
method for training unnormalized models which scales to
high dimensional data more effectively than previously pro-
posed approaches. We have trained deep EBMs on some
simple toy 2D densities using LSD which can be seen in
Figure 4. Below we present quantitative results on some
more challenging problems.

8.1. Linear ICA

The linear Independent Components Analysis (ICA) model
is commonly used to quantitatively evaluate the performance
of methods for training unnormalized models (Gutmann &
Hyvärinen, 2010; Hyvärinen, 2005; Ceylan & Gutmann,
2018). It consists of a simple generative process

z ∼ Laplace(0, 1), x = Wz

where the model parameter W is a D × D, non-singular
mixing matrix. The log-density of a datapoint x under this
model is

log p(x;W ) = log pz
(
W−1x

)
− log |W | (14)

where pz(·) is the PDF of the Laplace(0, 1) distribution.

We train linear ICA models on randomly sampled mixing
matrices using various methods and compare their perfor-
mance as dimension D is increased from 5 to 50. To pro-
vide an upper-bound on possible performance, we train with
brute-force Maximum Likelihood (ML) (which requires
inverting the parameter matrix at each iteration). We com-
pare LSD with other approaches to train unnormalized
models; Noise-Contrastive Estimation (NCE) (Gutmann &
Hyvärinen, 2010), Conditional Noise-Constrastive Estima-
tion (CNCE) (Ceylan & Gutmann, 2018), Score Matching
(SM) (Hyvärinen, 2005).

Results can be seen in Figure 8. We find that for smaller D
these methods behave comparably, and all arrive at a similar
solution to maximum likelihood. For D above 20, other
unnormalized training methods fail to achieve the same
level of performance as ML while LSD does. For D above
30, SM quickly diverged due to instabilities that arose with
computing the second derivatives of the Laplace log-density.
Our approach only requires access to the first derivatives
of the model and the critic, avoiding these issues. Further
experimental details can be found in Appendix B.5.

8.2. Preliminary Image Modeling Results

We now show that LSD can be used to train much more
expressive unnormalized models. We train deep energy-
based models with LSD on MNIST and FashionMNIST.
The models take the form of qθ(x) = exp(−Eθ(x))/Z,
where the energy-function Eθ(x) is parameterized by a neu-
ral network with a single output variable. We parameterize
the critic fφ with a neural network which maps RD → RD.

After training, we draw approximate samples with a tem-
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Method Data Dimension
10 20 30 40 50

Max. Likelihood -10.98 -18.48 -21.49 -23.43 -25.53

LSD (Ours) −10.95 −18.37 −21.23 −25.14 −25.36
Score Matching -11.13 -27.20 -21.48 NaN NaN

NCE −10.92 -22.52 -30.33 -55.53 -73.62
CNCE -11.00 -18.77 -24.47 -37.64 -36.31 0 25 50 75 100
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Figure 8. Linear ICA training results. Left: Table comparing test set log-likelihoods of linear ICA models with various training methods.
LSD closely tracks the performance maximum likelihood training while other unnormalized methods fall behind or diverge. Right:
Learning curves for 50-dimensional ICA. While slower to converge than maximum likelihood, LSD cleanly converges to the same result.

Figure 9. Samples from deep EBMs trained with LSD. Left:
MNIST, Right: FashionMNIST.

pered SGLD sampler. These can be seen in Figure 9. With-
out the use of a sampler, LSD has trained a model which
captures the various modes of the data distribution and can
be used to draw compelling samples. Of course, these
MCMC samples are susceptible to all of the issues we have
mentioned previously in this work. Their quality is tightly
coupled with the post-hoc sampler’s parameters and we
make no claims that these represent true samples from our
models.

While these samples are not state-of-the-art, they do show-
case the ability of LSD to scale to high-dimensional prob-
lems. Scaling further to large natural images will potentially
require tricks from the GAN literature, the use of convolu-
tional architectures, and more advanced samplers. We leave
this for future work. We refer the reader to Appendix B.6
for experimental details, and Appendix D.1 for further sam-
ples and experiments using LSD to train RBMs on image
datasets.

9. Related Work
Sampler-Free EBM Training Ours is not the first
method to train unnormalized densities without MCMC
sampling. Score matching (SM) (Hyvärinen, 2005) matches
the gradients of the model density to the data density, cir-
cumventing the computation of the normalizing constant.

Unlike our approach, SM requires the computation of the
unnormalized density’s Hessisan trace, which can be expen-
sive and unstable (see our ICA results in Section 8.1). An
alternative interpretation of SM also exists known as Denois-
ing Score Matching (Vincent, 2011) which approximates
the SM objective without the Hessian term. This has been
applied to deep EBMs (Saremi et al., 2018) and recently
scaled to high resolution image data (Song & Ermon, 2019;
Li et al., 2019) with compelling results.

These methods attempt to minimize the Fisher Divergence
F(p, q) = Ep(x)[||∇x log p(x)−∇x log q(x)||22], which can
be viewed a special case of the Stein Discrepancy with
a specific, fixed critic function (Liu et al., 2016). Barp
et al. (2019) showed that other EBM training methods (such
as approximate maximum likelihood) can be viewed as
minimizing a Stein Discrepancy with respect to a different
class of critics.

Approximating Stein Discrepancies A second highly
relevant prior contribution is the Stein Neural Sampler (Hu
et al., 2018). which presents a setup very similar to our
own but with the opposite motivation. In their work, one is
given an unnormalized density q(x) (such as the posterior
of a Bayesian model) and seeks to learn an implicit sampler
x = gθ(z) such that x ∼ q(x). This is achieved through a
training procedure like ours presented in Section 6 but with
q(x) fixed, and the gradients of LSD back-propagated back
through the samples, to the parameters of the sampler.

Our work benefited significantly from the theoretical results
of their work, but their method was not particularly scal-
able due to the brute-force evaluation of a Jacobian trace.
We solve this issue with Hutchinson’s estimator (Eq. 11).
We are particularly excited about this line of work and be-
lieve there is much promise to further scale these sampling
methods in this way.

Variational Inference Computing and minimizing Stein
Discrepancies has been studied in the context of variational



Learning the Stein Discrepancy

inference for both sampling (Liu & Wang, 2016) and amor-
tized infernece. In particular, Ranganath et al. (2016) intro-
duce an objective for inference similar to LSD but utilize
a different class of critic function and not dot apply many
of the techniques we used for scalability. We expect using
our class of critics and these techniques could improve the
performance of their approach.

GANs and Adversarial Optimization Generative adver-
sarial networks (GANs) (Goodfellow et al., 2014) (and
specifically, their extension Wasserstein GANs (Arjovsky
et al., 2017)) have many similarities to LSD. They both
train a model by minimizing a discrepancy between the
model distribution and the data distribution which is defined
through a critic function. Both approaches parameterize this
critic with a neural network and train this critic online with
the model in an alternating fashion. The main difference lies
in the properties of the model; the WGAN trains an implicit
sampler while LSD trains an unnormalized density model.

GANs have successfully scaled to very high dimensional
datasets (Brock et al., 2018) and their success has moti-
vated considerable progress in minimax optimization. Due
to the similarity of the approaches, we are excited about
using these techniques to scale LSD to more challenging
problems than we have attacked in this work.

10. Conclusion
In this work we have presented LSD, a novel and scal-
able way to train and evaluate unnormalized density models
without the need for sampling or kernel-selection heuris-
tics. LSD outperforms state-of-the-art methods for high-
dimensional hypothesis testing. We show that LSD tracks
likelihood much better than common objective functions
used to train unnormalized density models. Finally, we show
that LSD can be used to train unnormalized density models
efficiently in high dimensions.
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A. Model Selection
Here we elaborate on some considerations that must be
taken when training the LSD on finite data. Like any over-
parameterized machine learning model, our critic networks
are susceptible to over-fitting.

Our training objective repeated is:

LSD(fφ, q, p) = Ep(x)[∇x log q(x)T fφ(x) + Tr(∇xfφ(x))].

If the regularization parameter λ is not set large enough, then
this objective can be increased on the finite training data
by simply adding a scalar multiplier onto the output of fφ.
This has the effect of increasing the variance of the LSD.
Since we would like to select the model which maximizes
the expectation of the LSD, a natural validation statistic
would simply be the mean of the LSD on the validation
set. Unfortunately, as the variance of the LSD increases,
so does the variance of this statistic making this statistic an
increasingly unreliable predictor of the model’s true perfor-
mance. This means it is possible for this validation statistic
to continue to increase as the model is over-fitting.

To combat this behavior, we propose a variance-aware val-
idation statistic which is simply µ − σ or the mean of the
LSD minus its standard deviation computed on the vali-
dation data. This statistic will decrease as the estimator
variance increases, solving the issue.

We demonstrate this visually in Figure 10. We train a critic
to estimate the LSD between data sampled from a 10-
dimensional N(0, 1) and a N(1, 1) model q. The training
dataset consists of 100 examples, so a flexible neural net-
work critic will certainly over-fit. We see that as the model
trains, the LSD evaluated on the 100-example training set
quickly passes the theoretical bound (which is the true Stein
Discrepancy), indicating over-fitting. The variance of the
LSD validation data increases with over-fitting. We see
that the best model is selected by our variance-aware model
selection procedure.

A.1. Hypothesis Testing

We note that the above model selection procedure is not
required when training critics for hypothesis testing. The
test power objective (Equation 12) explicitly minimizes its
variance so standard model selection may be used.

B. Experimental Details
B.1. Hypothesis Testing

We initialize RBMs following Liu et al. (2016); Jitkrittum
et al. (2017). We select the entries of B uniformly from
{+1,−1} and we sample b and c from a standard Gaussian
distribution. To test in a setting where the quadratic time

Figure 10. Visual motivation of our variance-aware model selec-
tion procedure. Plots of mean and standard deviation of the LSD
computed on training and validation data.

test can be used for comparison, we use n = 1000 samples
for our test.

For the adaptive kernel methods, we use 200 of these sam-
ples for learning the kernel parameters and use the remaining
800 samples to compute the test statistic. Given that LSD
has many more parameters to fit, we use 800 samples for
training, 100 samples for validation and 100 samples for
running the final test.

We parameterize the critic fφ as a 2-layer MLP with 300
units per layer and use the Swish nonlinearity. Due to the
small amount of training data available, we regularize the
model with dropout (Srivastava et al., 2014) and weight
decay of strength .0005. We train using the Adam opti-
mizer (Kingma & Ba, 2014) for 1,000 iterations. We do not
use mini-batches, each iteration uses the entire training set.
Every 100 iterations, we compute Pφ(xval) (Equation 12)
on the validation data and select the critic with the highest
value. We then compute the test statistic using this critic.
For all tests we let λ = .5

Rejection rates presented are the average over 200 random
tests.

B.2. RBM Evaluation

Experimental setup, (train/validation/test) splits, and models
are the same as above but the objectives for training and
testing differ. The hypothesis testing models (LSD and
baselines) are trained to optimize test power which is the
ratio of the mean of the estimated discrepancy over its stan-
dard deviation. This is the optimal objective when we wish
to make a binary choice. Here we are interested in ranking
models. Thus we train the baselines to maximize the dis-
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crepancy they report. This means maximizing Equation 5
with respect to the kernel parameters. For the LSD models,
we maximize Equation 11. For all models we let λ = .5.

We must be aware of estimator variance when doing model
selection. We follow the procedure outlined in Appendix A
to do model selection using our validation set. Over-fitting
is not an issue with the kernel methods, so this is not done
for the baselines.

B.3. Flow Evaluation

We train a small normalizing flow models based on the
Glow architecture (Kingma & Dhariwal, 2018). The flow
is an additive multi-scale architecture, uses reverse shuffle
dimension splitting, actnorm, has 3 stages with 4 blocks per
stage. Each block has 3 convolutional layers with a kernel
size of: (3× 3, 1× 1, 3× 3) respectively and 128 channels.
The flow was trained with the Adam optimizer, a learning
rate of .0001. We checkpoint the model 10 times throughout
training, once every 1000 iteration. The models get between
2.0 and 1.8 bits/dim.

We take the 10,000 examples in the MNIST test set and split
them into subsets for training, validation, and final score
estimation. We use 8000, 1000, and 1000 examples for this,
respectively. The critic was a 2-layer MLP with 1000 units
per layer and used the Swish nonlinearity. We train for 100
passes through the data using a batch size of 128, validating
after every pass.

B.4. Toy Densities

The toy densities in Figure 4 and the critic used to train
them were parameterized by a 2-layer MLP with 300 units
and Swish nonlinearity. The models were trained with the
Adam optimizer (Kingma & Ba, 2014) for 10,000 iterations
with a step size of .001. In both the critic and model, we set
the Adam momentum parameters as β1 = .5, β2 = .9. The
critic was updated 5 times for every model update. To ensure
that the our model density can be normalized, we multiply
the density we parameterize by a Gaussian distribution’s
density:

qθ(x) =
exp(−Eθ(x))N(x;µ, σ2)

Z
(15)

and we also learn the parameters µ and σ2 with our model.
We find empirically this Gaussian learns to cover the data
and the energy function learns to push down the Gaussian’s
likelihood at areas away from the data.

B.5. Linear ICA

ICA weight matrices were generated as random Gaussian
matrices such that their condition number was smaller than
the dimension of the matrix. Results shown are mean over

5 random seeds.

To make score matching efficient, we also utilize Hutchin-
son’s estimator when computing the Hessian trace, thus the
objective we use to train is

Jθ(x) =
1

2
||∇x log qθ(x)||2 + εTHx(log qθ(x))εT

ε ∼ N(0, I). (16)

This modified score matching objective has been studied
previously and is known as Sliced Score Matching (Song
et al., 2019).

All baselines were optimized for test performance.
For all methods, the learning rate was selected from
[.001, .0001, .00001].

For Noise Contrastive Estimation (Gutmann & Hyvärinen,
2010), we fit a Guassian to the training data and use this as
our noise distribution.

For Conditional Noise Contrastive Estimation, we must
choose the standard deviation of our noise distribution. We
treat this as a hyper-parameter and search over values in
[.01, .1, 1.10].

LSD has two hyper-parameters: the number of critic steps
for every model step and the L2 regularizer λ. We search
over 1 and 5 for the critic steps and [.1, 1.10.] for λ. For all
dimensions, we find that the using 1 critic step works the
best.

Models were all trained for 100,000 steps with the
Adam (Kingma & Ba, 2014) optimizer. In both the critic
and model, we set the Adam momentum parameters as
β1 = .5, β2 = .9.

B.6. Image Modeling

Our EBM takes the form

qθ(x) =
exp(−Eθ(x))N(x;µ, σ2)

Z
(17)

where Eθ is a 2-layer MLP with 1000 hidden units per
layer using the Swish nonlinearity. We multiply the energy-
function’s output by a Gaussian density (with learned param-
eters) which guarantees that our model is can be normalized.
The critic architecture is identical but with 28× 28 = 784
output dimensions.

We train models on the MNSIT and FashionMNIST datasets
for 100 epochs using the Adam optimizer with a step-size
of .0001. In both the critic and model, we set the Adam
momentum parameters as β1 = .5, β2 = .9. We update the
critic 5 times for every model update. We set λ = 10.
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B.6.1. SAMPLING

Model samples are drawn with Stochastic Gradient
Langevin Dynamics (Welling & Teh, 2011). This is an
MCMC sampler with the following update rule:

x0 ∼ p(x0), αt ∼ N(0, εI)

xt+1 = xt −
ε

2
∇xEθ(xt) + αt (18)

which is quite similar to gradient descent with random Gaus-
sian noise added. To use the sampler in this form, a number
of choices must be made. We must select an initialization
distribution p(x0), a step-size ε and a number of steps T to
run the sampler. Each of these can dramatically affect the
distribution of the final sample xT .

In practice, this sampler can be quite slow to draw samples,
so a temperature parameter is added to scale up the impact
of the gradient ∇xEθ(xt) relative to noise αt. This has
the effect of decoupling the step-size from the scale of the
Gaussian noise. This changes the update rule to:

x0 ∼ p(x0), αt ∼ N(0, σ2I)

xt+1 = xt − ε∇xEθ(xt) + αt. (19)

This temperature-scaling approach has been used in most
recent work on large-scale EBMs (Nijkamp et al., 2019a;
Grathwohl et al., 2019; Nijkamp et al., 2019b; Du & Mor-
datch, 2019). With this modified version of the sampler we
must select: the initialization distribution p(x0), the step-
size ε, the noise scale σ and the number of steps T – further
complicating the sampling process.

The samples seen in Figure 9 were generated using with
ε = 1. and σ = .01 and the sampler was run for 1000 steps.
The samples were initialized to a uniform distribution over
the data space.

B.6.2. PRE-PROCESSING

The MNIST and Fashion MNIST datasets consist of 28 by
28 images. Each pixel is represented with an integer value in
[0, 1, . . . , 254, 255]. We dequantize by adding uniform(0, 1)
noise to these pixel values, and scale to the range (0, 1). We
then apply a logit transformation (log x− log(1−x)) which
maps (0, 1) → R. All training and sampling is done in
logit-space and samples are mapped back to their original
space with a Sigmoid function for visualization.

C. Analysis of the LSD Goodness-of-fit Test
Statistic

Our analysis of the test statistic used in the LSD GOF test
rely on the central limit theorem taking effect giving our
statistic a N(0, 1) distribution under the null hypothesis.

With n � ∞ one may wonder if our test statistic still has
this property. To explore this we run a number of tests to
determine normality of data.

To generate statistic samples for testing we run 200 tests
under H0 for RBMs with dimehsion 50, 100, and 200. For
each we run a Kolmogorov–Smirnov test and compute a
qq-plot. The p-values of the Kolmogorov–Smirnov tests are
0.29, 0.68, and 0.45, respectively indicating that for each
model size there is little evidence to indicate the statistic is
not distributed as N(0, 1).

Next we show the qq-plot which plots the the quantiles of
an empirical histogram against the quantiles of the target
distribution (N(0, 1) in this case). Ideally the values should
lie on the line y = x indicating the empirical CDF aligns
with the theoretical CDF. These plots can be found in Figure
11. As we see, the empirical distribution of the statistic very
closely matches the desired distribution for each model size
indicating that our test statistic behaves as the theory would
suggest.

D. Further Image Modeling Results
D.1. Additional MNIST Samples

We show additional samples from our MNIST model in
Figure 12.

D.2. Exploring Sampler Parameters for Deep EBMs

Here we demonstrate the impact of the approximate MCMC
sampler’s parameters on sample quality. In Figure 13 we
initialize 2 sets of samples to the same value and run SGLD
samplers with different noise-scale parameters 300 steps.
Clearly, the samples on the right are more diverse and visu-
ally appealing, but this does not tell us that they are better
samples.

Next, we demonstrate the impact of the number of sampler
steps on sample quality. We initialize two sets of samples to
the same value and run a sampler for 30 steps and then 1000
steps. Results can be seen in Figure 14. We can see that
initially the samples are quite diverse and as the sampler is
run longer, the samples become more clear and high-quality
but considerably less diverse.

We find the choice of sampler parameters has a large impact
on the quality and diversity of the resulting samples. Any
sample-based evaluation metric would rate each of these
sample sets quite differently. Thus these metrics would rate
our model differently based on the choice of sampler pa-
rameters. Given that these samples are completely separate
from our model, this is not ideal behavior.
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Figure 11. Quantile-Quantile plots of the test statistic compared to N(0, 1) for RBMs of dimension 50, 100, 200, left to right. When the
two distributions are identical, the quantiles will fall along the line y = x (red) given enough samples. These results indicated that our
test’s p-values are well-calibrated under the null hypothesis.

Figure 12. Additional MNIST samples

D.3. RBMs

We find LSD can be used to train a variety of models – ICA,
deep EBMs and also Gaussian-Bernoulli RBMs. Here we
train a single-layer RBM with 100 hidden units on MNIST
and FashionMNIST. Samples from the models can be seen
in Figure 15. Samples were generated with a Gibbs sampler
chain run for 2000 iterations.

Models are trained for 100 epochs using the Adam optimizer
with a step size of .001. We use 5 critic updates per model
update and set λ = 10. We use the same pre-processing as
in our deep EBM experiments.

Figure 13. Samples from a deep EBM with different sampler pa-
rameters, but the same initialization. Left: σ = .01, Right: σ = .1

Figure 14. Samples from a deep EBM with different sampler pa-
rameters but the same initialization. Left: 30 steps, Right: 1000
steps
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Figure 15. Samples from RBMs trained with LSD. Left: MNIST,
Right: FashionMNIST .


