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Abstract

The application of Gaussian processes (GPs) to
large data sets is limited due to heavy memory
and computational requirements. A variety of
methods has been proposed to enable scalability,
one of which is to exploit structure in the ker-
nel matrix. Previous methods, however, cannot
easily deal with mixtures of non-stationary pro-
cesses. This paper investigates an efficient GP
framework, that extends structured kernel inter-
polation methods to GPs with a non-stationary
phase. We particularly treat the separation of non-
stationary sources, which is a problem that com-
monly arises e.g. in spatio-temporal biomedical
datasets. Our approach employs multiple sets of
non-equidistant inducing points to account for the
non-stationarity and retrieve Toeplitz and Kro-
necker structure in the kernel matrix allowing for
efficient inference and kernel learning. Our ap-
proach is demonstrated on numerical examples
and large spatio-temporal biomedical problems.

1. Introduction

Gaussian processes (GPs) provide interpretable models for
solving regression, classification and prediction problems
in a huge number of scientific domains. GP regression
originates from early work in geostatistics, where the tech-
nique was known under the name of kriging (Rasmussen &
Williams, 2005). Since then, its great potential of discover-
ing intricate structure in data has been shown empirically
in numerous problems. Still, due to O(n?®) computational
and O(n?) storage cost in the number of training points 7,
scalability to large datasets remains as the main limiting
factor in many practical applications and restricts GPs to
datasets containing at most a few thousand observations.

Different approaches to scalable GP regression have been
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proposed (Liu et al., 2018), one of which is based on com-
puting low-rank approximations of the kernel matrix by
using sparse inducing point sets (Snelson & Ghahramani,
2006; Quinonero Candela & Rasmussen, 2005). Inducing
point methods are particularly useful when the data are
densely sampled compared to the characteristic length-scale
of the underlying process. However, short-scale variability
requires a large amount of inducing points, which in such
cases diminishes the performance. Also, these methods
scale poorly on long time-series data (and spatio-temporal
data) as the extending domain has to be filled up with induc-
ing points (Solin et al., 2018).

Another orthogonal line of research deals with the exploita-
tion of structure in the kernel matrix: among the most
promising approaches are (1) state-space representation
methods (Hartikainen & Sarkkid, 2010; Solin & Sarkka,
2014; Sarkkd & Hartikainen, 2012) and (2) methods exploit-
ing Toeplitz and Kronecker matrix structure (Cunningham
et al., 2008; Saatci, 2011). The state-space approach enables
highly scalable O(n) inference and marginal likelihood eval-
uation for spatio-temporal data — though, it might become
slow if the gaps between data points are very uneven. We
focus on the second structure exploiting approach, namely
Toeplitz/Kronecker matrix structure for fast matrix-vector
multiplications (MVMs) which requires that samples are
distributed on a multidimensional lattice and that the kernel
is stationary/separable. The restriction to lattice structures
was later lifted through an approach called structured ker-
nel interpolation (SKI), introduced by Wilson & Nickisch
(2015). It employs a structured set of inducing points and
a sparse interpolation matrix enabling fast MVMs with the
kernel matrix without requiring any special data structure.

In this paper we are concerned with solving the source
separation and model learning problem for additive mix-
tures of non-stationary processes. We show, that SKI can
be naturally extended for mixtures of non-stationary ker-
nels, more specifically kernels with a non-stationary phase
in an approach we call warpSKI. We propose to use mul-
tiple non-equispaced sets of inducing points to recover
structure in the kernel matrix. This permits us to solve
new classes of important problems via GPs, in particular
temporal/spatio-temporal source separation and regression
problems on large biomedical datasets, which is the main
contribution of this work. We focus on the case that the
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non-stationary phase can be directly extracted as a feature
from the data. It was also proposed to learn non-linear
transformations of the inputs using neural networks (Wil-
son et al., 2016) or a second GP (Plagemann et al., 2008;
Heinonen et al., 2016) — for the herein considered biomed-
ical problems it can be beneficial to use mixtures of pre-
determined warping functions, e.g. accounting for known
fluctuations in the respiratory or heart rate, to extract highly
interpretable structure from the data. We combine this ap-
proach with stochastic trace estimation (Dong et al., 2017)
to efficiently evaluate the marginal likelihood of the full
mixture model. We demonstrate scalability of our proposed
method to n > 10° points on a numerical example and on
openly available biomedical datasets. As in standard SKI,
storage complexity is reduced to O(n + m) and computa-
tional complexity to O(n + g(m)) for inference/learning,
where g(m) < m logm with m being the number of
inducing points. Code implementations of the proposed
warpSKI in MATLAB are provided as an extension to
the GPML 4.2 toolbox (Rasmussen & Nickisch, 2010)
and are available under github.com/ime-luebeck/
non-stationary—-phase—gp—-mod.

2. Background
2.1. Gaussian Process Regression

This section provides a brief overview of Gaussian process
regression and model learning, the interested reader is re-
ferred to Rasmussen & Williams (2005) for more details.
A Gaussian process f(x) ~ GP(0, k(x,x’)) with x € RP
encodes the prior belief in the distribution of the function val-
ues f(x) and is fully specified by a kernel function k(x, x’),
parameterized in a (usually low) number of hyperparameters
6. The choice of the kernel allows to define the properties
of the function f, e.g. its noise color or periodicity. A GP
can formally be understood as an infinite-dimensional gen-
eralization of the normal distribution. For any finite set of
points X = {x1,...,%,} C RP, the function f(x;) evalu-
ated at those points has a multivariate Gaussian distribution
f=[f(x1),...f(xn)]" ~N(0,Kxx), where the entries
of the kernel matrix (K xx), ; are formed by evaluating
the kernel function for all pairs x; and x;. In most GP appli-
cations it is assumed, that only noisy measurements of the
latent function are available, which we denote as a vector of
targets y = (y1,...,9yn) € R". Here we assume that the
measurements are subject to additive noise y = f(x) + €(x)
which is in turn a Gaussian process € ~ GP(0, k.(x,x")).
In this specific case, the predictive distribution at n, test
points X, has a closed form solution given by

f*‘Xa X*vYaaao-Q NN(fMCOV(f*))’
f* :KX*X[KXX+K5,XX]71y7 (l)
cov(f.) = Kx,x, — Kx.x[Kxx + Ke xx] ' Kxx.,

where f, is the vector of function values evaluated at the
test points and matrices of the form Ky, x,; denote cross-
covariances between respectively two sets of points X; and
X;. In the standard GP regression setting, ¢ is assumed to
be a Gaussian white noise process with variance o2, which
corresponds to choosing K xx = o21.

The hyperparameters @ of the kernel are usually learned di-
rectly from the data by optimizing the negative log marginal
likelihood

—log L(Oy) x

T 1 2)
v (Kxx+Kexx) 'y +log|Kxx + Ke xxl,

which can be done e.g. by gradient-based minimization or
sampling. Computing the inverse and the log determinant of
Kxx + K¢ xx are the main bottlenecks for GP inference
and model learning. Both involve computing the Cholesky
factorization which leads to an overall complexity of O(n?).
The storage complexity is determined by the need to store
the full kernel matrix, leading to O(n?).

2.2. Kronecker and Toeplitz Methods

A growing line of research investigates the exploitation
of structure in the kernel matrix to achieve scalable GP
inference and model learning. When input points are
on a multidimensional rectilinear lattice (not necessarily
equispaced) and the kernel is separable along input di-
mensions, k(x,x') = [], k@ (x® x'(4) the kernel
matrix has Kronecker structure, i.e. it can be written as
K = Ky ® --- ® Kp. This enables fast MVMs in
(’)(Dn%) time (Wilson et al., 2014) and the eigendecom-
position of the full matrix can be efficiently calculated by
separately taking the eigendecompositions of the smaller
matrices K;. Thus, in the GP regression setting subject
to Gaussian white noise, the solution to the linear system
(K x x +02I)~ 'y and the log determinant log | K x x +021|
can be evaluated efficiently (Wilson & Nickisch, 2015).

Cunningham et al. (2008) proposed another, orthogonal
method namely the exploitation of Toeplitz structure (con-
stant diagonals of the kernel matrix), which arises when the
input points are placed equidistantly in R and the kernel
is stationary (that is, k(x,2") = k(7), with 7 = =z — 2’).
Toeplitz structure allows for fast MVMs using Fourier trans-
forms (Cunningham et al., 2008; Wilson & Nickisch, 2015),
thus the matrix inverse can be computed by conjugate gradi-
ents in O(n logn). Kronecker and Toeplitz methods com-
plement each other in the sense that they exploit multidimen-
sional and 1D structure, respectively. The supplementary
material contains a comprehensive overview of fast Kro-
necker/Toeplitz methods in the GP setting.
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2.3. Structured Kernel Interpolation

Kronecker and Toeplitz methods are restricted to a few
highly specialized problems due to the requirement, that
input points are either equispaced or on a multidimensional
lattice. The highest performance gains are reached when
both of these requirements are met. Wilson & Nickisch
(2015) presented a general purpose inference framework,
that exploits structure even for partial-grid/unstructured data
by placing inducing points on a multidimensional equi-
spaced lattice. Inducing point methods have long been used
throughout the literature for large-scale GP applications and
reduce runtime cost to O(m3 + mzn) and storage cost to
O(mn + m?) (Quinonero Candela & Rasmussen, 2005),
where m is the number of inducing points. Usually inducing
point methods perform best when the data are densely sam-
pled and few inducing points suffice, i.e. m < n. Yet, in
long temporal/spatio-temporal regression tasks these meth-
ods suffer from the need to sample the extending input
domain with a high amount of inducing points. Addressing
these problems, Wilson & Nickisch (2015) introduced an
approximation called structured kernel interpolation (SKI)
of the form K xy = W Kyy, where Ky € R™*™ is the
exact kernel matrix evaluated for inducing points U and
W e R™ ™ is an interpolation weight matrix. The interpo-
lation matrix can be made very sparse, consisting of only
four non-zero entries per row. The full approximate kernel
matrix can thus be written as

Kxx ~ WKyyW ' = Kski. 3)

MVMs with W can be computed in O(n) time and, when
placing the inducing points on a lattice, MVMs with Ky
can exploit Kronecker and Toeplitz structure, with worst-
case cost of O(mlogm) for only Toeplitz structure — the
total runtime for MVMs is thus O(n + mlogm) (Wil-
son & Nickisch, 2015). When both Toeplitz structure and
Kronecker structure are exploited, the total runtime for
MVMs becomes O(n + g(m)), where g(m) < mlogm
and in many cases we can assume a quasi-linear complexity
g(m) = m, (Wang et al., 2019). Storage costs are reduced
to O(n+m). Thus, SKI significantly relaxes restrictions on
the number of inducing points, allowing even for m ~ n.

3. Scalable GPs with a Non-Stationary Phase

In this work, we are concerned with mixtures of non-
stationary Gaussian processes of the form

fm (X) = Z fi,warp (X)

with fi,warp ~ QP(O, kz(¢z (X)a QS’L (X,))a

“4)

where k; are product separable along input dimensions and
stationary (that is, k;(x,x’) = k;(7), with 7 = x — x/).

The functions ¢; : D;, — D; are invertible space warping
functions with D;,, € RP, D; C RP and do not have singu-
larities in the input domain D;,,. The full kernel correspond-
ing to (4) is given by kn(x,x') = >, ki warp(X,X') =
> ki(0i(x), ¢i(x")). In our experiments we will show that
this kernel is applicable to a large number of important
problems. The kernel property would be preserved also for
non-invertible space warping functions, but for reasons that
will become clear later, we focus on invertible functions.
Note, that product separability of the kernel is lost due to
the warping function.

The particular use case, that is investigated in this paper,
is the separation of non-stationary GPs. In the GP frame-
work, source separation can be achieved by extracting the
function corresponding to the jth source of the mixture via
the posterior f; warp|y. Again, this posterior has a closed
form solution (Liutkus et al., 2011), which is given by equa-
tion (1) replacing k with k; warp, ke With Zi#j ki warp and
choosing X = X,.

3.1. WarpSKI

We wish to reduce the time and storage costs for marginal
likelihood evaluations and for the source separation problem
when the GP is a mixture of processes with a non-stationary
phase as in (4). We do not want to introduce any restrictions
on the structure of input points, in particular partial grid
structures or missing values must be supported. At first,
structure in kernels with a non-stationary phase cannot easily
be exploited: previously proposed methods fail in this case
because they either assume stationarity of the kernel or rely
on its separability. One of the main difficulties in using (4)
in temporal GP regression is that Toeplitz structure is lost
due to the warping functions. To make things worse, the
summation structure in (4) alone leads to the loss of the
Kronecker product property for the whole kernel &, even
when all ¢; are linear functions.

In the following we apply structured kernel interpolation
to mixtures of non-stationary functions in a variant we call
warpSKI. We propose to employ multiple sets of inducing
points to recover structure in the kernel of the GP in (4) and
enable scalable GP regression.

As a first step we consider a single warped kernel
Ewarp(x,X") = k(é(x), ¢(x’)), corresponding to one of
the summands in (4). It is easily verified, that SKI can be
applied to the stationary and separable kernel £ when using
the warped input points z = ¢(x) (Wilson et al., 2016).
This leads to an approximate form for the warped kernel
matrix

Koarp xx =~ Wz KypWy, )

where we have used K zv = Wz Kyy and Wy interpo-
lates between the inducing points and the warped points
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Figure 1: Illustrative example of warpSKI for squared exponential kernel ksg(é(x), ¢(z')) with ¢(x) = 222 + 2. In (a), the
warping function ¢ and the equidistant inducing points U as well as the non-equidistant inducing points U are depicted. The
approximate warping function induced by U and U closely reflects the true function within the support domain of U and U.
In (b), samples from the warped kernel are depicted. Figures (c) to (f) show the different matrices involved in warpSKI.

Z ={¢(x1),...,6(xp)} = ®(X). The matrix Ky now
only depends on the stationary/separable kernel k and thus
structure (Toeplitz and Kronecker) can be imposed by place-
ment of U. Interestingly, the non-stationarity of kywarp S
now fully embedded in the sparse matrix W.

We propose a reinterpretation for the case that ¢ is invertible:
Instead of using interpolation between the warped points
Z = ®(X) and the inducing points U (placed on an equi-
spaced rectilinear grid), one can equivalently interpolate
between the original input points X and a set of inducing
points U/ = ®~1(U). This leads to the approximation

Kyarp,xx ® Wx K 0 0oWx = (5)

v ©)
= WXKUUWX = KwarpSKIa

where we have used K5 = WXKwarp,UU and we ex-

ploit the fact that K, = Kyy. The sparse matrix

Wx interpolates between the inducing points U and the
input points X. Here, in contrast to standard SKI, the in-
ducing point set U does have a warped (non-equidistant)
lattice structure and thereby accounts for the warping func-
tion. Using this consideration, we now have an approximate
form WXKUUW; for the warped kernel kyarp, that is
fully specified in the structure of an inducing point set U
and a stationary and separable kernel k. This can be seen
as an extension to SKI, that is able to generate rich kernel
structure by placing non-equidistant/warped inducing points
U. The herein presented idea is related to the deep kernel
learning method (Wilson et al., 2016), where a single set of

equidistant inducing points is placed in the warped space —
when ¢ is invertible this directly leads to working with non-
equidistant inducing points, whether this is done explicitly
or implicitly. See Figure 1 as an example for all matrices
involved in warpSKI.

We continue by specifying the approximate form for the full
non-stationary kernel in (4):

.
Knxx = E K warpSK1 = E Wi xKiv,u,W; x»
i i
@)

where we use multiple sets of non-equispaced/warped in-
ducing point sets U; and W; x interpolating between those
points and the input points X . Note, that the space warping
functions are now fully embedded in the matrices W; x
through placement of Ui and structure (Toeplitz/Kronecker)
is imposed on K y,y; by placing U;. Fast MVMs are pos-
sible and the inference problem can be solved by linear
conjugate gradients requiring j < n steps for convergence
up to machine precision leading to O(n + g(m)) runtime
with g(m) < mlogm.

3.2. Spatio-Temporal Gaussian Processes

Next, we consider the case, that the space warping function
¢ is an elementwise function, which means that it can be
written as a vector of one dimensional functions

T

p(x) = oW (xD),...,oPI (x| . (@8
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When the space warping functions ¢; in (4) are elementwise
functions, the summands k; warp become product separable
and the whole kernel can be written as

ZH’C(‘“( (x@),6" (D)) . ©)

An important special case of (9) is given by the spatio-
temporal covariance function

kass Vi (Gi(t), di(t),  (10)

km sstt

where non-stationarity is only assumed for the temporal
domain — in this case ¢;(t) is called a time warping function
(Miiller, 2007). When k; ; is a periodic kernel, ¢;(t) can
be considered to be a ‘phase warping function’ and maps
from the time domain to multiples of 27, thus specifying the
period length. Such models often arise in biomedical appli-
cations due to superposition of physiological processes such
as cardiac or respiratory activity, which are inherently non-
stationary in time. In many practical large-scale biomedical
problems, this necessitates efficient solutions to the corre-
sponding inference and model learning task.

Note, that the kernel in (9) enables Kronecker structure
MVMs also for standard SKI (with equidistant lattice in-
ducing points), but Toeplitz structure is lost. In contrast,
warpSKI (with non-equidistant lattice inducing points) does
recover Kronecker and Toeplitz structure. We argue, that
Toeplitz structure is particularly important in temporal and
spatio-temporal regression problems due to the possibly
long time axis and that Kronecker structure exploitation can
quickly become prohibitive with respect to the temporal
domain. Therefore, warpSKI offers important advantages
and poses no restrictions on the amount of inducing points
placed over the temporal axis. A comparison between stan-
dard SKI methods and the warpSKI variant can be found in
the supplementary material.

3.3. Fast Source Separation

Having approximated the solution to the linear problem
ax~a= [Zl K warpsk1 + 02]} -t y via conjugate gra-
dients, we continue to consider the source separation prob-
lem (Liutkus et al., 2011), i.e. our goal is to approximate
the mean of the posterior f; warp|y corresponding to the jth
source in the mixture. The standard GP solution to the pos-
terior mean is given by K warp, x. x @ and would require
O(n?) time for n test points X, = X. For the source sepa-
ration problem we can again exploit kernel structure using
the approximation
E [fj,warpb’] ~ Kj,warpSKId = Wj,XKj,Uj U, WJTXd-
Y
The complexity for source separation, once & was ob-
tained, is O(n + m log m) for Toeplitz structure in K; 7, v,

and quasi-linear O(n + g(m
necker/Toeplitz structure.

)) (with g(m) ~ m) for Kro-

3.4. Fast Model Learning

The hyperparameters of all kernels in the sum can be learned
by jointly optimizing the marginal likelihood. Different
structure exploiting approximations have been proposed.
Unfortunately, the model specified in (4) does not allow to
use the highly efficient scaled eigenvalue method (Wilson
et al., 2014) due to its summation structure. Therefore, we
will consider the recently introduced stochastic trace estima-
tion approach (Dong et al., 2017), which approximates the
log determinant log | K x x + 21| and its derivative w.r.t.
the hyperparameters also via an iterative MVM scheme.
In its core, the method uses log| K| = trace(log(K)) =
Elz " log(K)z], where z is commonly chosen to be a vector
with Rademacher random variables as entries. Usually, few
probe vectors suffice to get a good approximation — leav-
ing us with the task of calculating log(K)z. For this task,
a Lanczos decomposition approach has been proposed by
Dong et al. (2017). The stochastic trace estimation approach
accesses the kernel matrix only through MVMs and is thus
compatible with the proposed approximate form in (7).

4. Experiments

We evaluate the non-stationary GP framework on a numer-
ical dataset and then we aim to motivate the usefulness of
the method in relevant large-scale biomedical applications,
covering both temporal and spatio-temporal problems.

WarpSKI was implemented in MATLAB as an extension to
the GPML 4.2 library, all experiments were carried out on
a workstation with an INTEL Core i7-6700K CPU. In all
experiments, L-BFGS (Liu & Nocedal, 1989) was used for
hyperparameter learning, respectively with a maximum of
100 optimization steps.

4.1. Numerical Data

As a first test, we apply warpSKI to a mildly non-linear
separable warping function on a numerical 2D example.
Samples are generated from a warped squared exponential
kernel of the form ksg(¢p(x), #(x)’), where ¢ is given by
d([r1,22] T) = [223 + 21, 22] T and the hyperparameters
were set to /sg = 0.4 and osg = 1.5. The input point
positions are sampled from a uniform distribution within a
rectangular area (spanning [—1.2,0.75] x [-2.5,2.5] C R?).
To account for the non-stationarity of the kernel, one non-
equidistant inducing point set U is used.

The generation of high-dimensional GP samples is itself a
non-trivial task as it requires Cholesky decomposition of
the full kernel matrix. Therefore, to generate samples with
up to 10% input points, we exploit the Kronecker structure
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Figure 2: Results of warpSKI for numerical data with variable numbers of inducing/input points: Inference time is in (a),
time for marginal likelihood evaluations is in (b), hyperparameter learning runtime in (c) and RMSE against true GP sample
in (d). The number of inducing points is m = 9933 (¢), m = 49824 (+) and m = 74 836 (o). We report numerical values

and standard deviations in the supplementary material.

of the inducing point kernel matrix and use a high number
of inducing points to warp the samples with high accuracy.
We then apply additive Gaussian white noise € ~ A(0, 0%)
with 0 = 0.5 to form the final regression targets y. In
Figure 2, we show the inference and model optimization
times (here, o, osg and /sg were learned) as well as the
root-mean-square-error (RMSE) for different inducing/input
point sizes. The reported numbers are averages over five
independent runs with respectively different random seeds.
The tolerance for conjugate gradients was set to 10~ !, and
marginal likelihood evaluations were done using 20 probe
vectors in the stochastic trace estimation.

As this example does not include mixtures of non-stationary
warping functions, it enables direct comparison of the pro-
posed method to previous publications because it could be
transformed back to an equivalent standard SKI task as dis-
cussed in Section 3.1. Therefore the results obtained for
this space-warped GP match earlier results, compare for in-
stance to Wilson & Nickisch (2015). In particular, note that
SKI is inexpensive with respect to the number of inducing
points.

4.2. Fetal ECG Data

Next, we test the proposed fast source separation algorithm
based on warpSKI on large biomedical datasets. The ap-
plication of GPs to biomedical time-series data has been
proposed by many authors, but scalability to large datasets
has been lacking. In this example we apply GP models
to ECG data, specifically we treat the separation of fetal
ECG and maternal ECG signals in baseline-free abdomi-
nal recordings. This was previously demonstrated on small
datasets by Niknazar et al. (2012), where a model as in
(4) with two nonlinear warping functions was used and the
source separation was solved via the classical batch GP for-
mulation. As opposed to warpSKI this previous approach
did not exploit matrix structure and thus could not be applied

to larger datasets. We validate the proposed warpSKI on
data taken from the Physionet fetal ECG database (Jezewski
et al., 2012), using the 4th channel of subject ROl and com-
pare its performance to that of the batch GP.

Similar to Niknazar et al. (2012), the kernel is chosen as
a mixture of two phase-warped processes, i.e. kny, (¢,t') =
kmaternal(¢1 (t)v ¢1 (t/)) + kfetal((bQ (t)7 ¢2(t/)), where both
Kmaternal and Kfeta) are quasi-periodic kernels as defined
by Rasmussen & Williams (2005). Note, that vanilla SKI
cannot be applied in this example as it does not recover
Toeplitz structure.

Following Niknazar et al. (2012), the optimization of hy-
perparameters in the ECG separation problem should be
guided by prior knowledge by either fixing hyperparameters
to reasonable estimates or by using strong hyperpriors. In
this experiment, we used fixed values for the length-scales
of the two quasi-periodic kernel functions (which appears to
be beneficial for ECG signals) and optimize for the variance
hyperparameters oaternal and Ofetar. In the considered
dataset, the nonlinear warping functions can be extracted di-
rectly from the data by detecting fetal and maternal R peaks
in the provided reference signals and assuming a constant
phase between respectively two R peaks. In Niknazar et al.
(2012), it was also proposed to learn the full warping func-
tion by optimization of the model likelihood, which however
is difficult due to the high number of local minima. The opti-
mization of non-stationary warping functions was discussed
in more detail by e.g. Plagemann et al. (2008); Heinonen
et al. (2016), but shall not be the focus of this work. Gen-
erally, for this type of applications, we recommend to use
reference signals for the phase whenever possible or at least
use strong priors on the phase.

As a first step, we apply warpSKI to a subset of the data
consisting of n = 5000 points (corresponding to 10 seconds
of data sampled at 500 Hz) and validate it against the batch
GP solution. We then do a large-scale stress test using 10°
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Figure 3: Results of fetal ECG extraction. In (a), an excerpt
from the large-scale (100 s) source separation is depicted.
In (b), a comparison between exact and approximate warp-
SKI marginal likelihoods is shown on the smaller dataset
(10 s) for different values of oaternal-

input points (corresponding to 100 seconds of data sampled
at 1000 Hz) to demonstrate scalability. As a measure for
the separation success we use the SNR improvement met-
ric that was proposed in the context of ECG denoising by
(Bartolo et al., 1996). For the stresstest, again 20 probe
vectors were used for stochastic trace estimation. LCG tol-
erance was set to 10~% and 5 - 103 for parameter learning
and source separation, respectively. In Figure 3, an excerpt
of the large-scale source separation as well as a compari-
son of exact/approximate marginal likelihood evaluations is
depicted. Performance measures are reported in Table 1.

4.3. Electrical Impedance Tomography Data

Next, we consider a non-stationary spatio-temporal signal
separation problem given by electrical impedance tomogra-
phy (EIT) images of the chest. In this example EIT is used
to measure regional changes in the impedance of the lung,
which are caused either by changes in the ventilation or per-
fusion of the lung tissue. The separation of these two effects
is a long-standing problem, previous approaches applied
pixel-wise Fourier filtering, which however omits the spatial
structure of pixels and cannot fully separate the two effects
due to overlap in the spectrum (Pikkemaat & Leonhardt,
2010). We show that the separation of the two pulsatile com-
ponents in EIT images can be posed as a spatio-temporal
GP regression problem using a mixture of non-stationary

Table 1: Performance comparison of fetal ECG extraction
for different input sizes and methods.

| batch GP warpSKI  warpSKI
Input points 5000 5000 10°
Inducing points 3400 (m) 14300 (m)

+4800 (f) + 21600 (f)

Time for Inference 2.60s 0.27s 4.14s
Time for learning 28.5s 4745 462.3s
Ofetal 5.08 5.95 5.11
Omaternal 21.48 21.42 32.11
SNR improvement | 18.6dB 18.1dB 18.2dB

kernels. Inference and model learning can then be solved
efficiently via the methods proposed in this paper.

As a model for the two superposed effects we use the spatio-
temporal kernel

krrl(87 517 t, t/) :kvent,SE (S, S/)kvent QP ((bl( ) o1 (t/))
t

+ kperf7SE(S7 S ) perf, QP(¢2(t)a ¢2( /))a

where a squared exponential kernel is assumed for the spatial
domain and quasi-periodicity for the temporal domain in
both signal components (ventilation and perfusion).

The considered dataset of a spontaneously breathing neonate
is taken from Heinrich et al. (2006). Note, that the EIT prob-
lem has ‘partial-grid’ structure, consisting only of pixels
within a circular area. We use the first 215 frames to train
our model and as a measure of training success we predict
the next frame and evaluate the prediction error (using nor-
malized RMSE), see Table 2. As in the previous example,
the phase warping function is determined directly from the
data — the respiratory phase was extracted from a pixel be-
longing to the left lung, the cardiac phase was extracted
from a pixel between the two lungs. Note, that standard SKI
could also be applied for each of the kernels in the sum but,
in contrast to warpSKI, would not recover Toeplitz structure
and thus does not enable scalability to longer recordings.

As in the previous example, it is beneficial to use hyper-
priors and fix some of the hyperparameters (based on prior
knowledge) to guide the optimization. Here, we optimize
for the variances oyent, Opert, the length-scales of the spatial
kernel lyent,SE, fperf,sE and the length-scales of the time
domain fyent,sE-QP» fpert,sE-QP With regularizing lognor-
mal hyperpriors on all of the length-scales. The remaining
hyperparameters o, lyent, pE-Qp and lpert PE-Qp Were fixed
based on features we already found in the data a priori. For
this experiment only 15 probe vectors were used for stochas-
tic trace estimation to speed up the optimization. The LCG
tolerance was set to 0.25 and 10~2 for optimization and
source separation, respectively. Figure 4 shows the result of
the source separation on the considered dataset.



Scalable GP Separation for Kernels with a Non-Stationary Phase

Figure 4: Result of EIT perfusion-ventilation separation.
Time traces correspond to the marked pixels and include
measured signals (black) and the posterior means of perfu-
sion (green) ventilation (orange) related signals.

Table 2: Runtime and performance of warpSKI for the
spatio-temporal experiments.

\ EIT BSP
Input points 699 825 67256
. . ~3 x 10° (perf) 6
Inducing points +~2 % 105 (vent) ~1.9 x 10
Time for inference 159.1s 54s
Time for learning ~9h ~1.2h
nRMSE 0.176 0.217

4.4. Body Surface Potential Data

As a last example we consider a spatio-temporal regres-
sion problem given by body surface potentials (BSP) data
measured by means of high-density electrode grids. When
electrodes are placed on the thorax, these data can be used to
obtain detailed electrocardiographic information beyond the
classical 12 lead ECG. The measured potential is typically
displayed for diagnostic purposes using a two-dimensional
map of the unfolded thorax geometry — to this end, the
measured BSP is to be interpolated between the electrodes.
Different methods for interpolation have been proposed
(Schijvenaars et al., 1995), which however only use spatial
correlation between electrodes. We show, that the interpola-
tion task can also be solved exploiting temporal structure by
using a non-stationary spatio-temporal GP.

As a BSP model we use ksg (s, s")kqp (¢(t), #(t')) similar
to the EIT model. The spatial kernel is defined over the
surface of the thorax geometry using the cylindrical map-
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Figure 5: Results for BSP interpolation. The time traces
of measured (black) and predicted (orange) potentials cor-
respond to the six electrodes marked on the 3D geometry
(removed prior to training).

ping ksg(s,s’) = kisg (ﬁv ﬁ) - k2 sr(z, '), where
v = (z,y)" and z are the 3D electrode coordinates. As
before, the phase warping function ¢ is determined using
a linear phase between detected R peaks. We use one non-
equidistant inducing point set U to account for ¢ and solve
the regression problem. The data for this problem were
taken from (Aras et al., 2015) and consist of a 3D model
and measured electrode potentials. We train our model on
6s from 62 electrodes sampled at 200 Hz. As a measure
of training success, we remove 6 of the anterior electrodes
prior to training and report the nRMSE of predicted po-
tentials (Table 2). Figure 5 shows predictions for a single
cardiac cycle.

Again, it is beneficial to fix some hyperparameters to guide
the optimization — here we fix the parameters of the tem-
poral model (based on a priori knowledge about ECG) and
only optimize for the spatial parameters, where we learn
the length-scales of both k; sg and k3 sg. The LCG and
optimization parameters were the same as in Section 4.2.

5. Discussion

We have extended Gaussian process structured kernel inter-
polation to mixtures of kernels with a non-stationary phase.
Our approach exploits matrix structure using multiple sets
of non-equidistant/warped inducing point sets. We have
shown, that this allows to solve large-scale source separation
problems, which often arise in biomedical applications due
to superposition of non-stationary physiological processes
(such as respiratory/cardiac activity). In many biomedical
modalities, where GPs could not be applied so far, the pro-
posed method has a high potential of uncovering new and
relevant structure.

Beyond that, we argue that the placement of non-equidistant
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inducing points could be generally used as a tool to account
for non-stationarity and build rich kernel structure — this
idea might also be extended to other GP frameworks that
are compatible with SKI such as Hensman et al. (2013).

It should be mentioned, that non-stationary phase functions
can also be implemented via equivalent state-space mod-
els using the methods proposed by Hartikainen & Sarkka
(2010); Solin & Sarkka (2014); Sarkkda & Hartikainen
(2012). This, in principle, leads to linear complexity in
the number of time steps — in practice, the corresponding
state-space models are sometimes high-dimensional in par-
ticular for spatio-temporal data. When choosing between
the iterative batch approach and the recursive state-space ap-
proach one has to trade-off the different factors influencing
the runtime for the specific problem at hand.

We see our work as part of a larger push in the recent GP
literature that aims to access the kernel matrix only through
matrix multiplications (Gardner et al., 2018; Wang et al.,
2019) thus enabling highly scalable inference and learning.
Exploiting intricate matrix structure for fast MVMs will be
key to solving large-scale problems via GPs in the future.
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