
DROCC: Deep Robust One-Class Classification

A. OCLN

A.1. DROCC–LF Proof

Proof of Proposition 1. Recall the problem:

min
x̃
‖x̃− z‖2, s.t., r2 ≤ ‖x̃− x‖2Σ ≤ γ2r2.

Note that both the constraints cannot be active at the same
time, so we can consider either r2 ≤ ‖x̃− x‖2Σ constraint
or ‖x̃− x‖2Σ ≤ γ2r2. Below, we give calculation when the
former constraint is active, later’s proof follows along same
lines.

Let τ ≤ 0 be the Lagrangian multiplier, then the Lagrangian
function of the above problem is given by:

L(x̃, τ) = ‖x̃− z‖2 + τ(‖x̃− x‖2Σ − r2).

Using KKT first-order necessary condition (Boyd & Van-
denberghe, 2004), the following should hold for any optimal
solution x̃, τ :

∇x̃L(x̃, τ) = 0.

That is,

x̃ = (I + τΣ)−1(z + τ · Σx) = x+ (I + τ · Σ)−1δ,

where δ = z − x. This proves the first part of the lemma.

Now, by using primal and dual feasibility required by the
KKT conditions, we have:

min
τ≤0
‖x̃− z‖2, s.t., ‖x̃− x‖2Σ ≥ r2,

where x̃ = (I+τΣ)−1(z+τ ·Σx) = x+(I+τ ·Σ)−1δ. The
lemma now follows by substituting x̃ above and by using
the fact that Σ is a diagonal matrix with Σ(i, i) = σi.

A.2. DROCC–LF Algorithm

See Algorithm Box 2.

B. Synthetic Experiments
B.1. 1-D Sine Manifold

In Section 5.1.1 we presented results on a synthetic dataset
of 1024 points sampled from a 1-D sine wave (See Figure
1a). We compare DROCC to other anomaly detection meth-
ods by plotting the decision boundaries on this same dataset.
Figure 5 shows the decision boundary for a) DROCC b)
OC-SVM with RBF kernel c) OC-SVM with 20-degree
polynomial kernel d) DeepSVDD. All methods are trained
only on positive points from the 1-D manifold.

We further evaluate these methods for varied sampling of
negative points near the positive manifold. Negative points
are sampled from a 1-D sine manifold vertically displaced in
both directions (See Figure 6). Table 7 compares DROCC
against various baselines on this dataset.

Algorithm 2 Training neural networks via DROCC–LF
Input: Training data D = [(x1, y1), (x2, y2), . . . , (xn, yn)].
Parameters: Radius r, λ ≥ 0, µ ≥ 0, step-size η, number
of gradient steps m, number of initial training steps n0.
Initial steps: For B = 1, . . . n0

XB : Batch of training inputs
θ = θ − Gradient-Step

( ∑
(x,y)
∈XB

`(fθ(x), y)
)

DROCC steps: For B = n0, . . . n0 +N
XB : Batch of normal training inputs (y = 1)
∀x ∈ XB : h ∼ N (0, Id)
Adversarial search: For i = 1, . . .m

1. `(h) = `(fθ(x+ h),−1)

2. h = h+ η ∇h`(h)
‖∇h`(h)‖

3. h = Projection given by Proposition 1(δ = h)
`itr = λ‖θ‖2 +

∑
(x,y)
∈XB

`(fθ(x), y) + µ`(fθ(x+ h),−1)

θ = θ − Gradient-Step(`itr)
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Figure 4. (a) Spherical manifold (a unit sphere) that captures the
normal data distribution. Points are uniformly sampled from the
volume of the unit sphere. (b) OOD points (red) are sampled on
the surface of a sphere of varying radius. Table 6 shows AUC
values with varying radius.

B.2. Spherical Manifold

OC-SVM and DeepSVDD try to find a minimum enclos-
ing ball for the whole set of positive points, while DROCC
assumes that the true points low on a low dimensional man-
ifold. We now test these methods on a different synthetic
dataset: spherical manifold where the positive points are
within a sphere, as shown in Figure 4a. Normal/Positive
points are sampled uniformly from the volume of the unit
sphere. Table 6 compares DROCC against various base-
lines when the OOD points are sampled on the surface of
a sphere of varying radius (See Figure 4b). DROCC again
outperforms all the baselines even in the case when mini-
mum enclosing ball would suit the best. Suppose instead
of neural networks, we were operating with purely linear
models, then DROCC also essentially finds the minimum
enclosing ball (for a suitable radius r). If r is too small,
the training doesn’t converge since there is no separating
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Table 6. Average AUC for Spherical manifold experiment (Section B.2). Normal points are sampled uniformly from the volume of a unit
sphere and OOD points are sampled from the surface of a unit sphere of varying radius (See Figure 4b). Again DROCC outperforms all
the baselines when the OOD points are quite close to the normal distribution.

Radius Nearest
Neighbor OC-SVM AutoEncoder DeepSVDD DROCC (Ours)

1.2 100± 0.00 92.00± 0.00 91.81± 2.12 93.26± 0.91 99.44± 0.10
1.4 100± 0.00 92.97± 0.00 97.85± 1.41 98.81± 0.34 99.99± 0.00
1.6 100± 0.00 92.97± 0.00 99.92± 0.11 99.99± 0.00 100.00± 0.00
1.8 100± 0.00 91.87± 0.00 99.98± 0.04 100.00± 0.00 100.00± 0.00
2.0 100± 0.00 91.83± 0.00 100± 0.00 100.00± 0.00 100.00± 0.00

Table 7. Average AUC for the synthetic 1-D Sine Wave manifold experiment (Section B.1). Normal points are sampled from a sine wave
and OOD points from a vertically displaced manifold (See Figure 6). The results demonstrate that only DROCC is able to capture the
manifold tightly

Vertical
Displacement

Nearest
Neighbor OC-SVM AutoEncoder DeepSVDD DROCC (Ours)

0.2 100± 0.00 56.99± 0.00 52.48± 1.15 65.91± 0.64 96.80± 0.65
0.4 100± 0.00 68.84± 0.00 58.59± 0.61 78.18± 1.67 99.31± 0.80
0.6 100± 0.00 76.95± 0.00 66.59± 1.21 82.85± 1.96 99.92± 0.11
0.8 100± 0.00 81.73± 0.00 77.42± 3.62 86.26± 1.69 99.98± 0.01
1.0 100± 0.00 88.18± 0.00 86.14± 2.52 90.51± 2.62 100± 0.00
2.0 100± 0.00 98.56± 0.00 100± 0.00 100± 0.00 100± 0.00
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Figure 5. (a) Decision boundary of DROCC trained only on the
positive points lying on the 1-D sine manifold in Figure 1a. Blue
represents points classified as normal and red classified as abnor-
mal. (b) Decision boundary of classical OC-SVM using RBF
kernel and same experiment settings as in (a). Yellow sine wave
just shows the underlying train data. (c) Decision boundary of clas-
sical OC-SVM using a 20-degree polynomial kernel. (d) Decision
boundary of DeepSVDD.

boundary). Assuming neural networks are implicitly regu-
larized to find the simplest boundary, DROCC with neural
networks also learns essentially a minimum enclosing ball
in this case, however, at a slightly larger radius. Therefore,
we get 100% AUC only at radius 1.6 rather than 1 + ε for
some very small ε.

C. LFOC Supplementary Experiments
In Section 5.2.1, we compared DROCC–LF with various
baselines for the OCLN task where the goal is to learn a

Displacement = 1.00

Figure 6. Illustration of the negative points sampled at various dis-
placements of the sine wave; used for reporting the AUC values in
the Table 7. In this figure, vertical displacement is 1.0. Blue repre-
sents the positive points (also the training data) and red represents
the negative/OOD points

Table 8. Ablation Study on CIFAR-10: Sampling negative points
randomly in the set Ni(r) (DROCC–Rand) instead of gradient
ascent (DROCC).

CIFAR Class One-Class
Deep SVDD DROCC DROCC–Rand

Airplane 61.7±4.1 81.66± 0.22 79.67± 2.09
Automobile 65.9±2.1 76.74± 0.99 73.48± 1.44
Bird 50.8±0.8 66.66± 0.96 62.76± 1.59
Cat 59.1±1.4 67.13± 1.51 67.33± 0.72
Deer 60.9±1.1 73.62± 2.00 56.09± 1.19
Dog 65.7±2.5 74.43± 1.95 65.88± 0.64
Frog 67.7±2.6 74.43± 0.92 74.82± 1.77
Horse 67.3±0.9 71.39± 0.22 62.08± 2.03
Ship 75.9±1.2 80.01± 1.69 80.04± 1.71
Truck 73.1±1.2 76.21± 0.67 70.80± 2.73

classifier that is accurate for both the positive class and
the arbitrary OOD negatives. Figure 9 compares the recall
obtained by different methods on 2 keywords ”Forward”
and ”Follow” with 2 different FPR. Table 9 lists the close
negatives which were synthesized for each of the keywords.
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Figure 7. Ablation Study : Variation in the performance DROCC when r (with γ = 1) is changed from the optimal value.
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Figure 8. Ablation Study : Variation in the performance of DROCC with µ (1) which is the weightage given to the loss from adversarially
sampled negative points

Figure 9. OCLN on Audio Commands: Comparison of Recall for
key words — “Forward” and “Follow” when the False Positive
Rate(FPR) is fixed to be 3% and 5%.

D. Ablation Study
D.1. Hyper-Parameters

Here we analyze the effect of two important hyper-
parameters — radius r of the ball outside, which we sam-

Table 9. Synthesized near-negatives for keywords in Audio Com-
mands

Marvin Forward Seven Follow
mar for one fall
marlin fervor eleven fellow
arvin ward heaven low
marvik reward when hollow
arvi onward devon wallow

Table 10. Hyperparameters: Tabular Experiments

Dataset Radius µ Optimizer Learning
Rate

Adversarial
Ascent
Step Size

Abalone 3 1.0 Adam 10−3 0.01
Arrhythmia 16 1.0 Adam 10−4 0.01
Thyroid 2.5 1.0 Adam 10−3 0.01

ple negative points (set Ni(r)), and µ which is the weigh-
tage given to the loss from adversarially generated negative
points (See Equation 1). We set γ = 1 and hence recall that
the negative points are sampled to be at a distance of r from
the positive points.

Figure 7a, 7b and 7c show the performance of DROCC with
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Table 11. Hyperparameters: CIFAR-10

Class Radius µ Optimizer Learning
Rate

Adversarial
Ascent
Step Size

Airplane 8 1 Adam 0.001 0.001
Automobile 8 0.5 SGD 0.001 0.001
Bird 40 0.5 Adam 0.001 0.001
Cat 28 1 SGD 0.001 0.001
Deer 32 1 SGD 0.001 0.001
Dog 24 0.5 SGD 0.01 0.001
Frog 36 1 SGD 0.001 0.01
Horse 32 0.5 SGD 0.001 0.001
Ship 28 0.5 SGD 0.001 0.001
Truck 16 0.5 SGD 0.001 0.001

Table 12. Hyperparameters: ImageNet

Class Radius µ Optimizer Learning
Rate

Adversarial
Ascent
Step Size

Tench 30 1 SGD 0.01 0.001
English springer 16 1 SGD 0.001 0.001
Cassette player 40 1 Adam 0.005 0.001
Chain saw 20 1 SGD 0.01 0.001
Church 40 1 Adam 0.01 0.001
French horn 20 1 SGD 0.05 0.001
Garbage truck 30 1 Adam 0.005 0.001
Gas pump 30 1 Adam 0.01 0.001
Golf ball 30 1 SGD 0.01 0.001
Parachute 12 1 Adam 0.001 0.001

varied values of r on the CIFAR-10 dataset. The graphs
demonstrate that sampling negative points quite far from the
manifold (setting r to be very large), causes a drop in the
accuracy since now DROCC would be covering the normal
data manifold loosely causing high false positives. At the
other extreme, if the radius is set too small, the decision
boundary could be too close to the positive and hence lead
to overfitting and difficulty in training the neural network.
Hence, setting an appropriate radius value is very critical
for the good performance of DROCC.

Figure 8a, 8b and 8c show the effect of µ on the performance
of DROCC on CIFAR-10.

D.2. Importance of gradient ascent-descent technique

In the Section 3 we formulated the DROCC’s optimiza-
tion objective as a saddle point problem (Equation 1). We
adopted the standard gradient descent-ascent technique to
solve the problem replacing the `p ball with Ni(r). Here,
we present an analysis of DROCC without the gradient as-
cent part i.e., we now sample points at random in the set of
negativesNi(r). We call this formulation as DROCC–Rand.
Table 8 shows the drop in performance when negative points
are sampled randomly on the CIFAR-10, hence emphasizing
the importance of gradient ascent-descent technique. Since
Ni(r) is high dimensional, random sampling does not find
points close enough to manifold of positive points.

Table 13. Hyperparameters: Timeseries Experiments

Dataset Radius µ Optimizer Learning
Rate

Adversarial
Ascent
Step Size

Epilepsy 10 0.5 Adam 10−5 0.1
Audio
Commands 16 1.0 Adam 10−3 0.1

Table 14. Hyperparameters: LFOC Experiments

Keyword Radius µ Optimizer Learning
Rate

Adversarial
Ascent
Step Size

Marvin 32 1 Adam 0.001 0.01
Seven 36 1 Adam 0.001 0.01
Forward 40 1 Adam 0.001 0.01
Follow 20 1 Adam 0.0001 0.01

E. Experiment details and Hyper-Parameters
for Reproducibility

E.1. Tabular Datasets

Following previous work, we use a base network consisting
of a single fully-connected layer with 128 units for the
deep learning baselines. For the classical algorithms, the
features are input to the model. Table 10 lists all the hyper-
parameters for reproducibility.

E.2. CIFAR-10

DeepSVDD uses the representations learnt in the penulti-
mate layer of LeNet (LeCun et al., 1998) for minimizing
their one-class objective. To make a fair comparison, we
use the same base architecture. However, since DROCC for-
mulates the problem as a binary classification task, we add a
final fully connected layer over the learned representations
to get the binary classification scores. Table 11 lists the
hyper-parameters which were used to run the experiments
on the standard test split of CIFAR-10.

E.3. ImageNet-10

MobileNetv2 (Sandler et al., 2018a) was used as the base
architecture for DeepSVDD and DROCC. Again we use the
representations from the penultimate layer of MobileNetv2
for optimizing the one-class objective of DeepSVDD. The
width multiplier for MobileNetv2 was set to be 1.0. Table 12
lists all the hyper-parameters.

E.4. Time Series Datasets

To keep the focus only on comparing DROCC against the
baseline formulations for OOD detection, we use a single
layer LSTM for all the experiments on Epileptic Seizure
Detection, and the Audio Commands dataset. The hidden
state from the last time step is used for optimizing the one
class objective of DeepSVDD. For DROCC we add a fully
connected layer over the last hidden state to get the binary
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classification scores. Table 13 lists all the hyper-parameters
for reproducibility.

E.5. LFOC Experiments on Audio Commands

For the Low-FPR classification task, we use keywords from
the Audio Commands dataset along with some synthesized
near-negatives. The training set consists of 1000 examples
of the keyword and 2000 randomly sampled examples from
the remaining classes in the dataset. The validation and
test set consist of 600 examples of the keyword, the same
number of words from other classes of Audio Commands
dataset and an extra synthesized 600 examples of close
negatives of the keyword (see Table 9) A single layer LSTM,
along with a fully connected layer on top on the hidden state
at last time step was used. Similar to experiments with
DeepSVDD, DeepSAD uses the hidden state of the final
timestep as the representation in the one-class objective. An
important aspect of training DeepSAD is the pretraining of
the network as the encoder in an autoencoder. We also tuned
this pretraining to ensure the best results.


