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Abstract

We develop a novel method, called PoWER-BERT,
for improving the inference time of the pop-
ular BERT model, while maintaining the accu-
racy. It works by: a) exploiting redundancy
pertaining to word-vectors (intermediate trans-
former block outputs) and eliminating the re-
dundant vectors. b) determining which word-
vectors to eliminate by developing a strategy for
measuring their significance, based on the self-
attention mechanism. c) learning how many
word-vectors to eliminate by augmenting the
BERT model and the loss function. Experiments
on the standard GLUE benchmark shows that
PoWER-BERT achieves up to 4.5x reduction in
inference time over BERT with < 1% loss in
accuracy. We show that PoWER-BERT offers
significantly better trade-off between accuracy
and inference time compared to prior methods.
We demonstrate that our method attains up to
6.8x reduction in inference time with < 1%
loss in accuracy when applied over ALBERT, a
highly compressed version of BERT. The code
for PoWER-BERT is publicly available at https:
//github.com/IBM/PoWER-BERT.

1. Introduction
The BERT model (Devlin et al., 2019) has gained popular-
ity as an effective approach for natural language process-
ing. It has achieved significant success on standard bench-
marks such as GLUE (Wang et al., 2019a) and SQuAD
(Rajpurkar et al., 2016), dealing with sentiment classifica-
tion, question-answering, natural language inference and
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language acceptability tasks. The model has been used in
applications ranging from text summarization (Liu & La-
pata, 2019) to biomedical/insight text mining (Palakodety
et al., 2020; Lee et al., 2019).

The BERT model consists of an embedding layer, a chain
of transformer blocks and an output layer. The input words
are first embedded as vectors, which are then processed by
the pipeline of transformer blocks and the final prediction
is derived at the output layer (see Figure 1). The model
is known to be compute intensive, resulting in high infras-
tructure demands and latency, whereas low latency is vital
for a good customer experience. Therefore, it is crucial to
design methods that reduce the computational demands of
BERT in order to successfully meet the latency and resource
requirements of a production environment.

Consequently, recent studies have focused on optimizing
two fundamental metrics: model size and inference time.
The recently proposed ALBERT (Lan et al., 2019) achieves
significant compression over BERT by sharing parameters
across the transformer blocks and decomposing the embed-
ding layer. However, there is almost no impact on the in-
ference time, since the amount of computation remains the
same during inference (even though training is faster).

Other studies have aimed for optimizing both the met-
rics simultaneously. Here, a natural strategy is to re-
duce the number of transformer blocks and the idea has
been employed by DistilBERT (Sanh et al., 2019b) and
BERT-PKD (Sun et al., 2019b) within the knowledge distil-
lation paradigm. An alternative approach is to shrink the in-
dividual transformer blocks. Each transformer block com-
prises of multiple self-attention heads and the Head-Prune
strategy (Michel et al., 2019b) removes a fraction of the
heads by measuring their significance. In order to achieve
considerable reduction in the two metrics, commensurate
number of transformer blocks/heads have to be pruned, and
the process leads to noticeable loss in accuracy. The above
approaches operate by removing the redundant model pa-
rameters using strategies such as parameter sharing and
transformer block/attention-head removal.

https://github.com/IBM/PoWER-BERT
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Figure 1: Illustration of PoWER-BERT scheme over BERTBASE that has L = 12 transformer blocks and hidden size H = 768. The words
are first embedded as vectors of length H = 768. The numbers show output sizes for each transformer block for input sequence of
length N = 128. The numbers on the top and the bottom correspond to BERTBASE and PoWER-BERT, respectively. In this example, the
first transformer block eliminates 48 and retains 80 word-vectors, whereas the second eliminates 7 more and retains 73 word-vectors.
The hidden size remains at 768.

Our Objective and Approach. We target the metric of
inference time for a wide range of classification tasks. The
objective is to achieve significant reduction on the metric,
while maintaining the accuracy, and derive improved trade-
off between the two.

In contrast to the prior approaches, we keep the model pa-
rameters intact. Instead, we identify and exploit a differ-
ent type of redundancy that pertains to the the intermedi-
ate vectors computed along the transformer block pipeline,
which we henceforth denote as word-vectors. We demon-
strate that, due to the self-attention mechanism, there is dif-
fusion of information: as the word-vectors pass through
the transformer block pipeline, they start carrying simi-
lar information, resulting in redundancy. Consequently,
a significant fraction of the word-vectors can be elimi-
nated in a progressive manner as we move from the first
to the last transformer block. The removal of the word-
vectors reduces the computational load and results in im-
proved inference time. Based on the above ideas, we
develop a novel scheme called PoWER-BERT (Progressive
Word-vector Elimination for inference time Reduction of
BERT). Figure 1 presents an illustration.

Main Contributions. Our main contributions are sum-
marized below.

• We develop a novel scheme called PoWER-BERT for
improving BERT inference time. It is based on exploit-
ing a new type of redundancy within the BERT model
pertaining to the word-vectors. As part of the scheme,
we design strategies for determining how many and
which word-vectors to eliminate at each transformer
block.

• We present an experimental evaluation on a wide
spectrum of classification/regression tasks from the
popular GLUE benchmark. The results show that
PoWER-BERT achieves up to 4.5x reduction in infer-
ence time over BERTBASE with < 1% loss in accuracy.

• We perform a comprehensive comparison with the
state-of-the-art inference time reduction methods and
demonstrate that PoWER-BERT offers significantly bet-
ter trade-off between inference time and accuracy.

• We show that our scheme can also be used to accel-
erate ALBERT, a highly compressed variant of BERT,
yielding up to 6.8x reduction in inference time. The
code for PoWER-BERT is publicly available at https:
//github.com/IBM/PoWER-BERT.

Related Work. In general, different methods for deep
neural network compression have been developed such as
pruning network connections (Han et al., 2015; Molchanov
et al., 2017), pruning filters/channels from the convolution
layers (He et al., 2017; Molchanov et al., 2016), weight
quantization (Gong et al., 2014), knowledge distillation
from teacher to student model (Hinton et al., 2015; Sau &
Balasubramanian, 2016) and singular value decomposition
of weight matrices (Denil et al., 2013; Kim et al., 2015).

Some of these general techniques have been explored for
BERT: weight quantization (Shen et al., 2019; Zafrir et al.,
2019), structured weight pruning (Wang et al., 2019b) and
dimensionality reduction (Lan et al., 2019; Wang et al.,
2019b). Although these techniques offer significant model
size reduction, they do not result in proportional inference
time gains and some of them require specific hardware to
execute. Another line of work has exploited pruning entries
of the attention matrices (Zhao et al., 2019; Correia et al.,
2019; Peters et al., 2019; Martins & Astudillo, 2016). How-
ever, the goal of these work is to improve translation accu-
racy, they do not result in either model size or inference
time reduction. The BERT model allows for compression
via other methods: sharing of transformer block param-
eters (Lan et al., 2019), removing transformer blocks via
distillation (Sanh et al., 2019b; Sun et al., 2019b; Liu et al.,
2019), and pruning attention heads (Michel et al., 2019b;
McCarley, 2019).

Most of these prior approaches are based on removing re-
dundant parameters. PoWER-BERT is an orthogonal tech-
nique that retains all the parameters, and eliminates only
the redundant word-vectors. Consequently, the scheme can
be applied over and used to accelerate inference of com-
pressed models. Our experimental evaluation demonstrates
the phenomenon by applying the scheme over ALBERT.

In terms of inference time, removing a transformer block
can be considered equivalent to eliminating all its output

https://github.com/IBM/PoWER-BERT
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word-vectors. However, transformer block elimination is
a coarse-grained mechanism that removes the block in to-
tality. To achieve considerable gain on inference time,
a commensurate number of transformer blocks need to
pruned, leading to accuracy loss. In contrast, word-vector
elimination is a fine-grained method that keeps the trans-
former blocks intact and eliminates only a fraction of word-
vectors. Consequently, as demonstrated in our experimen-
tal study, word-vector elimination leads to improved infer-
ence time gains.

2. Background
In this section, we present an overview of the BERT model
focusing on the aspects that are essential to our discussion.
Throughout the paper, we consider the BERTBASE version
with L = 12 transformer blocks, A = 12 self-attention
heads per transformer block and hidden size H = 768.
The techniques can be readily applied to other versions.

The inputs in the dataset get tokenized and augmented with
a CLS token at the beginning. A suitable maximum length
N is chosen, and shorter input sequences get padded to
achieve an uniform length of N .

Given an input of length N , each word first gets embed-
ded as a vector of length H = 768. The word-vectors are
then processed by the chain of transformer blocks using
a self-attention mechanism that captures information from
the other word-vectors. At the output layer, the final pre-
diction is derived from the vector corresponding to the CLS
token and the other word-vectors are ignored. PoWER-BERT
utilizes the self-attention mechanism to measure the signif-
icance of the word-vectors. This mechanism is described
below.

Self-Attention Mechanism. Each transformer block
comprises of a self-attention module consisting of 12 at-
tention heads and a feed-forward network. Each head
h ∈ [1, 12] is associated with three weight matrices Wh

q,
Wh

k and Wh
v, called the query, the key and the value ma-

trices.

Let M be the matrix of size N × 768 input to the trans-
former block. Each head h computes an attention matrix:

Ah = softmax[(M×Wh
q)× (M×Wh

k)
T ]

with softmax applied row-wise. The attention matrix Ah

is of size N × N , wherein each row sums to 1. The head
computes matrices Vh = M ×Wh

v and Zh = Ah ×Vh.
The transformer block concatenates the Zh matrices over
all the heads and derives its output after further processing.
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Figure 2: Cosine similarity for BERT transformer blocks on the
SST-2 dataset. The jth bar represents cosine similarity for the jth

transformer block, averaged over all pairs of word-vectors and all
inputs.

3. PoWER-BERT Scheme
3.1. Motivation

BERT derives the final prediction from the word-vector cor-
responding to the CLS token. We conducted experiments
to determine whether it is critical to derive the final predic-
tion from the CLS token during inference. The results over
different datasets showed that other word positions can be
used as well, with minimal variations in accuracy. For in-
stance, on the SST-2 dataset from our experimental study,
the mean drop in accuracy across the different positions
was only 1.2% with a standard deviation of 0.23% (com-
pared to baseline accuracy of 92.43%). We observed that
the fundamental reason was diffusion of information.

Diffusion of Information. As the word-vectors pass
through the transformer block pipeline, they start progres-
sively carrying similar information due to the self-attention
mechanism. We demonstrate the phenomenon through co-
sine similarity measurements. Let j ∈ [1, 12] be a trans-
former block. For each input, compute the cosine similar-
ity between each of the

(
N
2

)
pairs of word-vectors output by

the transformer block, where N is the input length. Com-
pute the average over all pairs and all inputs in the dataset.
As an illustration, Figure 2 shows the results for the SST-
2 dataset. We observe that the similarity increases with
the transformer block index, implying diffusion of informa-
tion. The diffusion leads to redundancy of the word-vectors
and the model is able to derive the final prediction from any
word-vector at the output layer.

The core intuition behind PoWER-BERT is that the re-
dundancy of the word-vectors cannot possibly manifest
abruptly at the last layer, rather must build progressively
through the transformer block pipeline. Consequently, we
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should be able to eliminate word-vectors in a progressive
manner across all the transformer blocks.

PoWER-BERT Components. The PoWER-BERT

scheme involves two critical, inter-related tasks. First,
we identify a retention configuration: a monotonically
decreasing sequence (`1, `2, . . . , `12) that specifies the
number of word-vectors `j to retain at transformer
block j. For example, in Figure 1, the configuration is
(80, 73, 70, 50, 50, 40, 33, 27, 20, 15, 13, 3). Secondly, we
do word-vector selection, i.e., for a given input, determine
which `j word-vectors to retain at each transformer block
j. We first address the task of word-vector selection.

3.2. Word-vector Selection

Assume that we are given a retention configuration
(`1, `2, . . . , `12). Consider a transformer block j ∈ [1, 12].
The input to the transformer block is a collection of `j−1
word-vectors arranged in the form of a matrix of size
`j−1 × 768 (taking `0 = N ). Our aim is to select `j word-
vectors to retain and we consider two kinds of strategies.

Static and Dynamic Strategies. Static strategies fix `j
positions and retain the word-vectors at the same positions
across all the input sequences in the dataset. A natural static
strategy is to retain the first (or head) `j word-vectors. The
intuition is that the input sequences are of varying lengths
and an uniform length of N is achieved by adding PAD to-
kens that carry little information. The strategy aims to re-
move as many PAD tokens on the average as possible, even
though actual word-vectors may also get eliminated. A
related method is to fix `j positions at random and retain
word-vectors only at those positions across the dataset. We
denote these strategies as Head-WS and Rand-WS, respec-
tively (head/random word-vector selection).

In contrast to the static strategies, the dynamic strategies
select the positions on a per-input basis. While the word-
vectors tend to carry similar information at the final trans-
former blocks, in the earlier transformer blocks, they have
different levels of influence over the final prediction. The
positions of the significant word-vectors vary across the
dataset. Hence, it is a better idea to select the positions
for each input independently, as confirmed by our experi-
mental evaluation.

We develop a scoring mechanism for estimating the signif-
icance of the word-vectors satisfying the following crite-
rion: the score of a word-vector must be positively cor-
related with its influence on the final classification out-
put (namely, word-vectors of higher influence get higher
score). We accomplish the task by utilizing the self-
attention mechanism and design a dynamic strategy, de-
noted as Attn-WS.
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Figure 3: Figure shows significance score computation for word-
vector w using the computed self-attention matrix.

Attention-based Scoring. Consider a transformer block
j . In the PoWER-BERT setting, the input matrix M is
of size `j−1 × 768 and the attention matrices are of size
`j−1 × `j−1. Consider an attention head h ∈ [1, 12]. For
a word w′, the row Zh[w

′, :] computed by the head h can
be written as

∑
w Ah[w

′, w] ·Vh[w, :]. In other words, the
row Zh[w

′, :] is the weighted average of the rows of Vh,
taking the attention values as weights. Intuitively, we inter-
pret the entry Ah[w

′, w] as the attention received by word
w′ from w on head h.

Our scoring function is based on the intuition that the sig-
nificance of a word-vector w can be estimated from the
attention imposed by w on the other word-vectors. For a
word-vector w and a head h, we define the significance
score of w for h as Sigh(w) =

∑
w′ Ah[w

′, w]. The over-
all significance score of w is then defined as the aggregate
over the heads: Sig(w) =

∑
h Sigh(w). Thus, the signif-

icance score is the total amount of attention imposed by w
on the other words. See Figure 3 for an illustration.

We conducted a study to validate the scoring function. We
utilized mutual information to analyze the effect of elimi-
nating a single word-vector. The study showed that higher
the score of the eliminated word-vector, lower the agree-
ment with the baseline model. Thus, the scoring function
satisfies the criterion we had aimed for: the score of a word-
vector is positively correlated with its influence on the final
prediction. A detailed description of the study is deferred
to the supplementary material.

Word-vector Extraction. Given the scoring mechanism,
we perform word-vector selection by inserting an extract
layer between the self-attention module and the feed for-
ward network. The layer computes the scores and retains
the top `j word-vectors. See Figure 4 for an illustration.
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Figure 4: Word-vector selection over the first two transformer
blocks. Here, N = 6, `1 = 4 and `2 = 2. The first trans-
former block eliminates two word-vectors w2 and w4 with least
significance scores; the second transformer block further elimi-
nates word-vectors w1 and w5.

3.3. Retention Configuration

We next address the task of determining the retention con-
figuration. Analyzing all the possible configurations is un-
tenable due to the exponential search space. Instead, we de-
sign a strategy that learns the retention configuration. Intu-
itively, we wish to retain the word-vectors with the topmost
significance scores and the objective is to learn how many
to retain. The topmost word-vectors may appear in arbi-
trary positions across different inputs in the dataset. There-
fore, we sort them according to their significance scores.
We shall learn the extent to which the sorted positions
must be retained. We accomplish the task by introducing
soft-extract layers and modifying the loss function.

Soft-extract Layer. The extract layer either selects or
eliminates a word-vector (based on scores). In contrast, the
soft-extract layer would retain all the word-vectors, but
to varying degrees as determined by their significance.

Consider a transformer block j and let w1, w2, . . . , wN

be the sequence of word-vectors input to the transformer
block. The significance score of wi is given by Sig(wi).
Sort the word-vectors in the decreasing order of their
scores. For a word-vector wi, let Sigpos(wi) denote the
position ofwi in the sorted order; we refer to it as the sorted
position of wi.

The soft-extract layer involves N learnable parame-
ters, denoted rj [1], . . . , rj [N ], called retention parameters.
The parameters are constrained to be in the range [0, 1]. In-
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Figure 5: soft-extract layer. First transformer block is shown,
taking N = 4. In this example, the sorted sequence of the word-
vectors is w3, w4, w1, w2; the most significant word-vector w3

gets multiplied by r1[1] and the least significant word-vector w2

by r1[4].

tuitively, the parameter rj [k] represents the extent to which
the kth sorted position is retained.

The soft-extract layer is added in between the self-
attention module and the feed forward network, and per-
forms the following transformation. Let Ein denote the
matrix of size N × 768 output by the self-attention layer.
For i ∈ [1, N ], the row Ein[i, :] yields the word-vector wi.
The layer multiplies the word-vector by the retention pa-
rameter corresponding to its sorted position:

Eout[i, :] = rj [Sig
pos(wi)] ·Ein[i, :].

The modified matrix Eout[i, :] is input to the feed-forward
network. The transformation ensures that all the word-
vectors in the kth sorted position get multiplied by the same
parameter rj [k]. Figure 5 presents an illustration.

Loss Function. We define the mass at transformer block
j to be the extent to which the sorted positions are retained,
i.e.,

mass(j; r) =

N∑
k=1

rj [k]

Our aim is to minimize the aggregate mass over all the
transformer blocks with minimal loss in accuracy. Intu-
itively, the aggregate mass may be viewed as a budget on
the total number of positions retained; mass(j; r) is the
breakup across the transformer blocks.

We modify the loss function by incorporating an L1 regu-
larizer over the aggregate mass. As demonstrated earlier,
the transformer blocks have varying influence on the clas-
sification output. We scale the mass of each transformer
block by its index. Let Θ denote the parameters of the
baseline BERT model and L(·) be the loss function (such as
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cross entropy loss or mean-squared error) as defined in the
original task. We define the new objective function as:

min
Θ,r

L(Θ, r) + λ ·
L∑

j=1

j ·mass(j; r)


s.t. rj [k] ∈ [0, 1] ∀(j ∈ [1, L], k ∈ [1, N ]),

where L is the number of transformer blocks. While
L(Θ, r) controls the accuracy, the regularizer term controls
the aggregate mass. The hyper-parameter λ tunes the trade-
off.

The retention parameters are initialized as rj [k] = 1, mean-
ing all the sorted positions are fully retained to start with.
We train the model to learn the retention parameters. The
learned parameter rj [k] provides the extent to which the
word-vectors at the kth sorted position must be retained.
We obtain the retention configuration from the mass of
the above parameters: for each transformer block j, set
`j = ceil(mass(j)). In the rare case where the config-
uration is non-monotonic, we assign `j = min{`j , `j−1}.

3.4. Training PoWER-BERT

Given a dataset, the scheme involves three training steps:
1. Fine-tuning: Start with the pre-trained BERT model

and fine-tune it on the given dataset.

2. Configuration-search: Construct an auxiliary model
by inserting the soft-extract layers in the fine
tuned model, and modifying its loss function. The
regularizer parameter λ is tuned to derive the de-
sired trade-off between accuracy and inference time.
The model consists of parameters of the original
BERTmodel and the newly introduced soft-extract
layer. We use a higher learning rate for the latter. We
train the model and derive the retention configuration.

3. Re-training: Substitute the soft-extract layer by
extract layers. The number of word-vectors to re-
tain at each transformer block is determined by the
retention configuration computed in the previous step.
The word-vectors to be retained are selected based on
their significance scores. We re-train the model.

In our experiments, all the three steps required only 2 −
3 epochs. Inference is performed using the re-trained
PoWER-BERT model. The CLS token is never eliminated
and it is used to derive the final prediction.

4. Experimental Evaluation
4.1. Setup

Datasets. We evaluate our approach on a wide spectrum
of classification/regression tasks pertaining to 9 datasets

Table 1: Dataset statistics: NLI and QA refers to Natural Lan-
guage Inference and Question Answering tasks respectively. Note
that STS-B is a regression task, therefore doesn’t have classes.

DATASET TASK # CLASSES
INPUT SEQ.

LENGTH (N)

COLA ACCEPTABILITY 2 64
RTE NLI 2 256
QQP SIMILARITY 2 128
MRPC PARAPHRASE 2 128
SST-2 SENTIMENT 2 64
MNLI-M NLI 3 128
MNLI-MM NLI 3 128
QNLI QA/NLI 2 128
STS-B SIMILARITY - 64

IMDB SENTIMENT 2 512
RACE QA 2 512

from the GLUE benchmark (Wang et al., 2019a), and the
IMDB (Maas et al., 2011) and the RACE (Lai et al., 2017))
datasets. The datasets details are shown in Table 1.

Baseline methods. We compare PoWER-BERT with
the state-of-the-art inference time reduction methods:
DistilBERT (Sanh et al., 2019b), BERT-PKD (Sun et al.,
2019b) and Head-Prune (Michel et al., 2019b). They op-
erate by removing the parameters: the first two eliminate
transformer blocks, and the last prunes attention heads.
Publicly available implementations were used for these
methods (Sanh et al., 2019a; Sun et al., 2019a; Michel et al.,
2019a).

Hyper-parameters and Evaluation. Training
PoWER-BERT primarily involves four hyper-parameters,
which we select from the ranges listed below: a) learning
rate for the newly introduced soft-extract layers -
[10−4, 10−2]; b) learning rate for the parameters from
the original BERT model - [2 × 10−5, 6 × 10−5]; c)
regularization parameter λ that controls the trade-off
between accuracy and inference time - [10−4, 10−3]; d)
batch size - {4, 8, 16, 32, 64}. Hyper-parameters specific
to the datasets are provided in the supplementary material.

The hyper-parameters for both PoWER-BERT and the base-
line methods were tuned on the Dev dataset for GLUE and
RACE tasks. For IMDB, we subdivided the training data
into 80% for training and 20% for tuning. The test accu-
racy results for the GLUE datasets were obtained by sub-
mitting the predictions to the evaluation server1, whereas
for IMDB and RACE, the reported results are on the pub-
licly available Test data.

1https://gluebenchmark.com

https://gluebenchmark.com
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Table 2: Comparison between PoWER-BERT and BERTBASE. We limit the accuracy loss for PoWER-BERT to be within 1% by tuning the
regularizer parameter λ. Inference done on a K80 GPU with batch size of 128 (averaged over 100 runs). Matthew’s Correlation reported
for CoLA; F1-score for QQP and MRPC; Spearman Correlation for STS-B; Accuracy for the rest.

METHOD COLA RTE QQP MRPC SST-2 MNLI-M MNLI-MM QNLI STS-B IMDB RACE

TEST ACCURACY
BERTBASE 52.5 68.1 71.2 88.7 93.0 84.6 84.0 91.0 85.8 93.5 66.9
PoWER-BERT 52.3 67.4 70.2 88.1 92.1 83.8 83.1 90.1 85.1 92.5 66.0

INFERENCE TIME (MS)
BERTBASE 898 3993 1833 1798 905 1867 1881 1848 881 9110 20040
PoWER-BERT 201 1189 405 674 374 725 908 916 448 3419 10110

SPEEDUP (4.5X) (3.4X) (4.5X) (2.7X) (2.4X) (2.6X) (2.1X) (2.0X) (2.0X) (2.7X) (2.0X)

Table 3: Comparison between PoWER-BERT and ALBERT. Here PoWER-BERT represents application of our scheme on ALBERT. The
experimental setup is same as in Table 2

METHOD COLA RTE QQP MRPC SST-2 MNLI-M MNLI-MM QNLI STS-B

TEST ACCURACY
ALBERT 42.8 65.6 68.3 89.0 93.7 82.6 82.5 89.2 80.9

PoWER-BERT 43.8 64.6 67.4 88.1 92.7 81.8 81.6 89.1 80.0

INFERENCE TIME (MS)
ALBERT 940 4210 1950 1957 922 1960 1981 1964 956

PoWER-BERT 165 1778 287 813 442 589 922 1049 604

SPEEDUP (5.7X) (2.4X) (6.8X) (2.4X) (2.1X) (3.3X) (2.1X) (1.9X) (1.6X)

Implementation. The code for PoWER-BERT was imple-
mented in Keras and is available at https://github.com/
IBM/PoWER-BERT. The inference time experiments for
PoWER-BERT and the baselines were conducted using Keras
framework on a K80 GPU machine. A batch size of 128
(averaged over 100 runs) was used for all the datasets ex-
cept RACE, for which the batch size was set to 32 (since
each input question has 4 choices of answers).

Maximum Input Sequence Length. The input se-
quences are of varying length and are padded to get a uni-
form length of N . Prior work use different values of N ,
for instance ALBERT uses N = 512 for all GLUE datasets.
However, only a small fraction of the inputs are of length
close to the maximum. Large values of N would offer easy
pruning opportunities and larger gains for PoWER-BERT. To
make the baselines competitive, we set stringent values of
N : we determined the length N ′ such that at most 1% of
the input sequences are longer than N ′ and fixed N to be
the value from {64, 128, 256, 512} closest to N ′. Table 1
presents the lengths specific to each dataset.

4.2. Evaluations

Comparison to BERT. In the first experiment, we
demonstrate the effectiveness of the word-vector elimi-
nation approach by evaluating the inference time gains
achieved by PoWER-BERT over BERTBASE. We limit the ac-
curacy loss to be within 1% by tuning the regularizer pa-
rameter λ that controls the trade-off between inference time
and accuracy. The results are shown in Table 2. We observe

that PoWER-BERT offers at least 2.0x reduction in inference
time on all the datasets and the improvement can be as high
as 4.5x, as exhibited on the CoLA and the QQP datasets.

We present an illustrative analysis by considering the RTE
dataset. The input sequence length for the dataset is
N = 256. Hence, across the twelve transformer blocks,
BERTBASE needs to process 12 × 256 = 3072 word-
vectors for any input. In contrast, the retention con-
figuration used by PoWER-BERT on this dataset happens
to be (153, 125, 111, 105, 85, 80, 72, 48, 35, 27, 22, 5) sum-
ming to 868. Thus, PoWER-BERT processes an aggregate
of only 868 word-vectors. The self-attention and the feed
forward network modules of the transformer blocks per-
form a fixed amount of computations for each word-vector.
Consequently, the elimination of the word-vectors leads to
reduction in computational load and improved inference
time.

Comparison to Prior Methods. In the next experiment,
we compare PoWER-BERT with the state-of-the-art infer-
ence time reduction methods, by studying the trade-off be-
tween accuracy and inference time. The Pareto curves for
six of the GLUE datasets are shown in Figure 6; others are
provided in the supplementary material. Top-left corners
correspond to the best inference time and accuracy.

For PoWER-BERT, the points on the curves were obtained by
tuning the regularizer parameter λ. For the two transformer
block elimination methods, DistilBERT and BERT-PKD,
we derived three points by retaining 3, 4, and 6 transformer

https://github.com/IBM/PoWER-BERT
https://github.com/IBM/PoWER-BERT
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Figure 6: Comparison to prior methods. Pareto curves showing accuracy vs. inference time trade-off. Top-left corners correspond to
the best inference time and accuracy. Points for PoWER-BERT obtained by tuning the regularizer parameter λ. For DistilBERT and
BERT-PKD, the points correspond to retaining {3, 4, 6} transformer blocks. For Head-Prune, points obtained by varying number of
retained attention-heads. The cross represents BERTBASE performance; dotted line represents its accuracy (for the ease of comparison).
Over the best baseline method, PoWER-BERT offers: accuracy gains as high as 16% on CoLA and 6% on RTE at inference time 305 ms
and 1326 ms, respectively; inference time gains as high as 2.7x on CoLA and 2x on RTE at accuracy 48.2% and 65.5%, respectively.

blocks; these choices were made so as to achieve inference
time gains comparable to PoWER-BERT. Similarly, for the
Head-Prune strategy, the points were obtained by varying
the number of attention-heads retained.

Figure 6 demonstrates that PoWER-BERT exhibits marked
dominance over all the prior methods offering:

• Accuracy gains as high as 16% on CoLA and 6% on
RTE for a given inference time.

• Inference time gains as high as 2.7x on CoLA and
2.0x on RTE for a given accuracy.

The results validate our hypothesis that fine-grained word-
vector elimination yields better trade-off than coarse-
grained transformer block elimination. We also observe
that Head-Prune is not competitive. The reason is that
the method exclusively targets the attention-heads consti-
tuting only 26% of the BERTBASE parameters and further-
more, pruning a large fraction of the heads would obliterate
the critical self-attention mechanism of BERT.

Accelerating ALBERT. As discussed earlier, word-
vector elimination scheme can be applied over compressed
models as well. To demonstrate, we apply PoWER-BERT

Table 4: Comparison of the accuracy of the word-vector selection
methods on the SST-2 Dev set for a fixed retention configuration.

Head-WS Rand-WS Attn-WS

ENTIRE DATASET 85.4% 85.7% 88.3%
INPUT SEQUENCE LENGTH > 16 83.7% 83.4% 87.4%

over ALBERT, one of the best known compression methods
for BERT. The results are shown in Table 3 for the GLUE
datasets. We observe that the PoWER-BERT strategy is able
to accelerate ALBERT inference by 2x factors on most of the
datasets (with < 1% loss in accuracy), with the gain being
as high as 6.8x on the QQP dataset.

Ablation Study. In Section 3.2, we described three
methods for word-vector selection: two static techniques,
Head-WS and Rand-WS, and a dynamic strategy, de-
noted Attn-WS, based on the significance scores de-
rived from the attention mechanism. We demonstrate
the advantage of Attn-WS by taking the SST-2 dataset
as an illustrative example. For all the three meth-
ods, we used the same sample retention configuration of
(64, 32, 16, 16, 16, 16, 16, 16, 16). The accuracy results are
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but this films lacks the passion required to sell the material .

it all feels like a monty python sketch gone horribly wrong .
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Figure 7: Anecdotal Examples. Real-life examples from SST-2
dataset demonstrating progressive word-vector elimination.

shown in Table 4. The first row of the table shows that
Attn-WS offers improved accuracy. We perform a deeper
analysis by filtering inputs based on length. In the given
sample configuration, most transformer blocks retain only
16 word-vectors. Consequently, we selected a threshold of
16 and considered a restricted dataset with inputs longer
than the threshold. The second row shows the accuracy re-
sults.

Recall that Head-WS relies on eliminating as many PAD to-
kens as possible on the average. We find that the strategy
fails on longer inputs, since many important word-vectors
may get eliminated. Similarly, Rand-WS also performs
poorly, since it is oblivious to the importance of the word-
vectors. In contrast, Attn-WS achieves higher accuracy
by carefully selecting word-vectors based on their signif-
icance. The inference time is the same for all the methods,
as the same number of word-vectors get eliminated.

Anecdotal Examples. We present real-life exam-
ples demonstrating word-vector redundancy and our word-
vector selection strategy based on the self-attention mech-
anism (Attn-WS). For this purpose, we experimented with
sentences from the SST-2 sentiment classification dataset
and the results are shown in Figure 7.

Both the sentences have input sequence length N =
12 (tokens). We set the retention configuration as
(7, 7, 7, 7, 4, 4, 4, 4, 2, 2, 2, 2) so that it progressively re-
moves five word-vectors at the first transformer block, and
two more at the fifth and the ninth transformer blocks, each.

In both the examples, the first transformer block eliminates
the word-vectors corresponding to stop words and punctu-
ation. The later transformer blocks may seem to eliminate
more relevant word-vectors. However, their information
is captured by the word-vectors retained at the final trans-
former block, due to the diffusion of information. These

retained word-vectors carry the sentiment of the sentence
and are sufficient for correct prediction. The above study
further reinforces our premise that word-vector redundancy
can be exploited to improve inference time, while maintain-
ing accuracy.

5. Conclusions
We presented PoWER-BERT, a novel method for improving
the inference time of the BERT model by exploiting word-
vectors redundancy. Experiments on the standard GLUE
benchmark show that PoWER-BERT achieves up to 4.5x gain
in inference time over BERTBASE with < 1% loss in accu-
racy. Compared to prior techniques, it offers significantly
better trade-off between accuracy and inference time. We
showed that our scheme can be applied over ALBERT, a
highly compressed variant of BERT. For future work, we
plan to extend PoWER-BERT to wider range of tasks such as
language translation and text summarization.
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