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Abstract
Over the last decade, there has been significant
progress in the field of machine learning for de
novo drug design, particularly in generative mod-
eling of novel chemical structures. However, cur-
rent generative approaches exhibit a significant
challenge: they do not ensure that the proposed
molecular structures can be feasibly synthesized
nor do they provide the synthesis routes of the
proposed small molecules, thereby seriously lim-
iting their practical applicability. In this work,
we propose a novel reinforcement learning (RL)
setup for de novo drug design: Policy Gradient
for Forward Synthesis (PGFS), that addresses this
challenge by embedding the concept of synthetic
accessibility directly into the de novo drug design
system. In this setup, the agent learns to navi-
gate through the immense synthetically accessible
chemical space by subjecting initial commercially
available molecules to valid chemical reactions at
every time step of the iterative virtual synthesis
process. The proposed environment for drug dis-
covery provides a highly challenging test-bed for
RL algorithms owing to the large state space and
high-dimensional continuous action space with hi-
erarchical actions. PGFS achieves state-of-the-art
performance in generating structures with high
QED and clogP. Moreover, we validate PGFS
in an in-silico proof-of-concept associated with
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three HIV targets. Finally, we describe how the
end-to-end training conceptualized in this study
represents an important paradigm in radically ex-
panding the synthesizable chemical space and au-
tomating the drug discovery process.

1. Introduction
In the last decade, the role of machine learning and artificial
intelligence techniques in chemical sciences and drug dis-
covery has substantially increased (Schneider (2018); Butler
et al. (2018); Goh et al. (2017)). Deep generative models
such as GANs and VAEs have emerged as promising new
techniques to design novel molecules with desirable proper-
ties (Sanchez-Lengeling & Aspuru-Guzik (2018); Assouel
et al. (2018); Elton et al. (2019)). Generative models using
either string-based (e.g., Segler et al. (2017)) or graph-based
representations (e.g., Jin et al. (2018)) are able to output
chemically valid molecules in a manner that can be biased
towards properties like drug-likeness.

However, the majority of de novo drug design methodolo-
gies do not explicitly account for synthetic feasibility, and
thus cannot ensure whether the generated molecules can
be produced in the physical world. Synthetic complexity
scores (Ertl & Schuffenhauer (2009); Coley et al. (2018b))
can be introduced into the scoring function to complement
generative models. However, like any other data-driven
predictive model, these heuristics are prone to exploitation
by the generator, i.e, certain generated molecules with high
accessibility scores will still be impossible or challenging to
produce (Gao & Coley (2020)). Even though there is great
work that has been done in the field of computer aided syn-
thesis planning (Szymkuc et al. (2016); Segler et al. (2018);
Coley et al. (2018a; 2019b)), relying on these programs
creates a disjoint search pipeline that necessitates a separate
algorithm for molecule generation and never guarantees that
the generative model learns anything about synthesizability.

Directly embedding synthetic knowledge into de novo
drug design would allow us to constrain the search to
synthetically-accessible routes and theoretically guarantee
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Figure 1. Illustrative comparison of de novo drug design method-
ologies including: (a) genetic algorithms (Brown et al. (2004);
Jensen (2019)); (b) deep generative models ( Simonovsky & Ko-
modakis (2018); Gómez-Bombarelli et al. (2018); Winter et al.
(2019); Jin et al. (2018); Popova et al. (2018); Olivecrona et al.
(2017)); (c) RL-based graph modifications ( You et al. (2018a);
Zhou et al. (2018)); and (d) RL-based forward synthesis as pro-
posed in our methodology Policy Gradient for Forward Synthesis
(PGFS).

that any molecule proposed by the algorithm can be easily
produced. To accomplish this, we present a forward synthe-
sis model powered by reinforcement learning (RL) entitled
Policy Gradient for Forward Synthesis (PGFS) that treats
the generation of a molecular structure as a sequential de-
cision process of selecting reactant molecules and reaction
transformations in a linear synthetic sequence. The agent
learns to select the best set of reactants and reactions to
maximize the task-specific desired properties of the product
molecule, i.e., where the choice of reactants is considered
an action, and a product molecule is a state of the system
obtained through a trajectory composed of the chosen chem-
ical reactions. The primary contribution of this work is the
development of a RL framework able to cope with the vast
discrete action space of multi-step virtual chemical synthesis
and bias molecular generation towards chemical structures
that maximize a black-box objective function, generating a
full synthetic route in the process. We define the problem of
de novo drug design via forward synthesis as a Markov deci-
sion process in chemical reaction space, and we propose to
search in a continuous action space using a relevant feature
space for reactants rather than a discrete space to facilitate
the learning of the agent. Training is guided by rewards
which correspond to the predicted properties of the result-
ing molecule relative to the desired properties. We show
that our algorithm achieves state-of-the-art performance on
standard metrics like quantitative estimate of drug-likeness
(QED) (Bickerton et al. (2012)) and penalized octanol-water
partition as defined by You et al. (2018b). Furthermore,
as a proof-of-concept, our algorithm generated molecules
with higher predicted activity against three HIV-related bi-
ological targets relative to existing benchmarks. The HIV

targets activity datasets used, predictive QSAR models
and prediction scripts can be found at this url: https:
//github.com/99andBeyond/Apollo1060

2. Related Work
To highlight the improvements we are proposing in this
work, we focus the discussion on de novo drug design
methodologies that can perform single- and multi-objective
optimization of chemical structures.

2.1. Genetic Algorithms

Genetic algorithms (GA) have been used for many decades
to generate and optimize novel chemical structures. The ma-
jority of published GA approaches (Brown et al. (2004);
Jensen (2019)) use graph-based representations of the
molecule and apply specific graph sub-fragments crossover
operations to produce offsprings followed by mutation oper-
ations in the form of random atom, fragment and bond type
replacements. More recently, string-based representations
of molecules were also proposed in the GA optimization
setting (Krenn et al. (2019); Nigam et al. (2019)). Existing
implementations of GA for de novo generation can only
account for synthetic feasibility through the introduction of
a heuristic scoring functions (Ertl & Schuffenhauer (2009);
Coley et al. (2018b)) as part of the reward function. As
a result, they need a separate model for retrosynthesis or
manual evaluation by an expert upon identifying a structure
with desired properties.

2.2. Deep Generative Models

Many recent studies highlight applications of deep gener-
ative systems in multi-objective optimization of chemical
structures (Gómez-Bombarelli et al. (2018); Winter et al.
(2019)). Other recent publications describe improvements in
learning by utilizing RL (Olivecrona et al. (2017); Popova
et al. (2018); Guimaraes et al. (2017)). While these ap-
proaches have provided valuable techniques for optimiz-
ing various types of molecular properties in single- and
multi-objective settings, they exhibit the same challenges in
synthetic feasibility as genetic algorithms.

2.3. RL-Based Graph Modification Models

You et al. (2018b) and Zhou et al. (2018) recently pro-
posed reinforcement learning based algorithms to iteratively
modify a molecule by adding and removing atoms, bonds
or molecular subgraphs. In such setups, the constructed
molecule Mt, represents the state at time step t. The state
at time step 0 can be a single atom like carbon or it can be
completely null. The agent is trained to pick actions that
would optimize the properties of the generated molecules.
While these methods have achieved promising results, they
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do not guarantee synthetic feasibility.

2.4. Forward Synthesis Models

The generation of molecules using forward synthesis is the
most straightforward way to deal with the problem of syn-
thetic accessibility. Generalized reaction transformations
define how one molecular subgraph can be produced from
another and can be encoded by expert chemists (Hartenfeller
et al. (2012); Szymkuc et al. (2016)) or algorithmically ex-
tracted from reaction data (Law et al. (2009)). Libraries
of these “templates” can be used to enumerate hypotheti-
cal product molecules accessible from libraries of available
starting materials. In fact, de novo drug design via for-
ward synthesis isn’t a new concept, and has been used for
decades to generate chemical libraries for virtual screen-
ing (Walters (2018)). Templates can be used in a goal-
directed optimization setting without relying on complete
enumeration. Vinkers et al. (2003) describe an iterative
evolutionary optimization approach called SYNOPSIS to
produce chemical structures with optimal properties using
reaction-based transformations. Patel et al. (2009) explored
the enumeration and optimization of structures by taking
advantage of the reaction vectors concept. More recently,
many approaches focused on reaction-based enumeration
of analogs of known drugs and lead compounds have been
proposed (Hartenfeller et al. (2012); Button et al. (2019)).
Although promising results were reported when using a
reaction-based enumeration approach that was followed by
an active learning module (Konze et al. (2019)), mere enu-
meration severely limits the capacity of the model to explore
the chemical space efficiently.

Recently, Bradshaw et al. (2019) and Korovina et al. (2019)
have proposed approaches to de novo drug design that use
reaction prediction algorithms to constrain the search to
synthetically-accessible structures. Bradshaw et al. (2019)
use a variational auto-encoder to embed reactant structures
and optimize the molecular properties of the resulting prod-
uct from the single-step reaction by biasing reactant selec-
tion. Korovina et al. (2019) propose an algorithmically
simpler approach, whereby random selection of reactants
and conditions are used to stochastically generate candidate
structures, and then subject the structures to property evalua-
tion. This workflow produces molecules through multi-step
chemical synthesis, but the selection of reactants cannot be
biased towards the optimization objective. We combine the
unique strengths of both frameworks (biased generation and
multi-step capabilities) in our approach; in doing so, we
make use of a novel RL framework.

2.5. Benchmarking De Novo Drug Design

It is difficult to properly evaluate approaches for de novo
drug design without conducting the actual synthesis of the

proposed compounds and evaluating their properties in lab-
oratory experiments. Yet, several simple benchmarks have
been adopted in recent publications. Metrics like the Frech-
enet ChemNet distance (Preuer et al. (2018)) aim to measure
the similarity of the distributions of the generated structures
relative to the training set. Objective-directed benchmarks
evaluate the ability to conduct efficient single- and multi-
objective optimization for the proposed structures. The most
widely used objective functions are QED (Bickerton et al.
(2012)), a quantitative estimate of drug-likeness, and penal-
ized clogP as defined by You et al. (2018b), an estimate of
the octanol-water partition coefficient that penalizes large
aliphatic cycles and molecules with large synthetic acces-
sibility scores (Ertl & Schuffenhauer (2009)). While these
metrics enable the comparison of systems with respect to
their ability to optimize simple reward functions associated
with the proposed structures, they bear little resemblance
to what would be used in a real drug discovery project. Re-
cently, two efforts in creating benchmarking platforms have
been described in the corresponding publications: MOSES
(Polykovskiy et al. (2018)) and GuacaMol (Brown et al.
(2019)). While MOSES focuses on the distribution of prop-
erties of the generated structures, GuacaMol aims to estab-
lish a list of goal-directed drug de novo design benchmarks
based on the similarity to a particular compound, compound
rediscovery and search for active compounds containing
different core structures (scaffold hopping). In a recent re-
view describing the current state of the field (Coley et al.
(2019a)) of autonomous discovery, the authors state that
the community needs to focus on proposing benchmarks
that will better incorporate the complexity of the real-world
drug discovery process such as ligand and structure based
modeling.

3. Methods
3.1. Reinforcement Learning

To explore the large chemical space efficiently and maintain
the ability to generate diverse compounds, we propose to
consider a molecule as a sequence of unimolecular or bi-
molecular reactions applied to an initial molecule. PGFS
learns to select the best set of commercially available re-
actants and reaction templates that maximize the rewards
associated with the properties of the product molecule. This
guarantees that the only molecules being considered are
synthesizable and also provides the recipe for synthesis.
The state of the system at each step corresponds to a prod-
uct molecule and the rewards are computed according to
the properties of the product. Furthermore, our method
decomposes actions of synthetic steps in two sub-actions.
A reaction template is first selected and is followed by the
selection of a reactant compatible with it. This hierarchical
decomposition considerably reduces the size of the action
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space in each of the time steps in contrast to simultaneously
picking a reactant and reaction type.

However, this formulation still poses challenges for current
state-of-the-art RL algorithms like PPO (Schulman et al.
(2017)) and ACKTR (Wu et al. (2017)) owing to the large
action space. In fact, there are tens of thousands of possible
reactants for each given molecule and reaction template. As
a result, we propose to adapt algorithms corresponding to
continuous action spaces and map continuous embeddings
to discrete molecular structures by looking up the nearest
molecules in this representation space via a k-nearest neigh-
bor (k-NN) algorithm. Deterministic policy gradient (Silver
et al. (2014)) is one of the popular RL algorithms for con-
tinous action space. Deep deterministic policy gradient
(DDPG) (Lillicrap et al. (2015)), Distributed distributional
DDPG (D4PG) (Barth-Maron et al. (2018)) and Twin de-
layed DDPG (TD3) (Fujimoto et al. (2018)) constitute the
consequent improvements done over DPG. Soft actor critic
(SAC, Haarnoja et al. (2018)) also deals with continuous
action spaces with entropy regularization. In this work, we
leverage a TD3 algorithm along with the k-NN approach
from Dulac-Arnold et al. (2015). There are three key dif-
ferences with this work: (1) our actor module includes two
learnable networks (instead of just one) to compute two
levels of actions; (2) we do not use a critic network in the
forward propagation, and include the k-NN computation as
part of the environment. Thus, the continuous output of the
actor module reflects the true actions–not a proto-action to
be discretized to obtain the actual action; and (3) we lever-
age the TD3 algorithm which has been shown to be better
than DPG (used in Dulac-Arnold et al. (2015)) on several
RL tasks.

3.2. Overview

The pipeline is setup in such a way that at every time step t,
a reactant R(2)

t is selected to react with the existing molecule
R(1)

t to yield the product R(1)
t+1 which is the molecule for

the next time step. R(1)
t is considered as the current state

st and our agent chooses an action at that is further used
in computing R(2)

t . The product R(1)
t+1 (which is considered

as the next state st+1) is determined by the environment
based on the two reactants (R(1)

t and R(2)
t ). At the very

initial time step, we randomly sample the initial molecule
R(1)

0 from the list of all commercially available reactants.
To overcome the limitation of large discrete action space
where there are over a hundred thousand possible second re-
actants, we introduce an intermediate action which reduces
the space of reactants considered by choosing a reaction tem-
plate. Reaction templates, encoded in the SMARTS (James
et al. (2000)) language, define allowable chemical transfor-
mations according to subgraph matching rules. They can be
applied deterministically to sets of reactant molecules to pro-

pose hypothetical product molecules using cheminformatics
tools like RDKit (Landrum (2016)). One of the reactants is
the state st while the other reactant is later selected. Since
the required substructure of R(2)

t that can participate in the
reaction and of the state st is determined by the choice of
the reaction template, the action space comprising the space
of all R(2)s becomes constrained to those reactants which
contain this particular substructure. We also enforce the ad-
ditional constraint of having this substructure present only
once in the structure. If multiple products are still possible
the first product returned by RDKit’s RunReactants function
is selected. Even with the previous constraints, there can be
tens of thousands of reactants at each step, which represents
a challenge for traditional RL algorithms. Thus, we formu-
late a novel Markov Decision Process (MDP) involving a
continuous action space.

The agent comprises three learnable networks f , ⇡ and Q.
In terms of the actor-critic framework, our actor module ⇧
comprises f and ⇡ networks and the critic is composed of
the Q network that estimates the Q-value of the state-action
pair. At any time step t, the input to the actor module is
the state st (R(1)

t ) and the output is the action at which is
a tensor defined in the feature representation space of all
initial reactants R(2). The f network predicts the best re-
action template Tt given the current state st (R(1)

t ). Using
the best reaction template Tt and (R(1)

t ) as inputs, the ⇡
network computes the action at. The environment takes the
state st, best reaction template Tt, and action at as inputs
and computes the reward rt, next state st+1 and a boolean
to determine whether the episode has ended. It first chooses
k reactants from the set R(2) corresponding to the k-closest
embeddings to the action a using the k nearest neighbours
technique in which we pre-compute feature representations
for all reactants. Each of these k actions are then passed
through a reaction predictor to obtain the corresponding
k products. The rewards associated with the products are
computed using a scoring function. The reward and product
corresponding to the maximum reward are returned. The
state st, best template Tt, action at, next state st+1, reward
rt are stored in the replay memory buffer. The episode ter-
minates when either the maximum number of reaction steps
is reached or when the next state has no valid templates. In
our experiments, we have 15 unimolecular and 82 bimolec-
ular reaction templates. The unimolecular templates do not
require selection of an R(2), and hence for such cases we
directly obtain the product using R(1)

t and the selected Tt.

During initial phases of the training, it is important to note
that the template chosen by the f network might be invalid.
To overcome this issue and to ensure the gradient propaga-
tion through the f network, we first multiply the template T
with the template mask Tmask and then use Gumbel softmax
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Figure 2. PGFS environment and agent. The environment takes
in the state s (R(1)), the reaction template T , the action a (a
tensor in the space of feature representations of reactants) and
outputs the next state s0 (R(1) for next time step) and reward r.
{ak} is the set of top-k reactants closest to the action a, obtained
using the k-nearest neighbours algorithm. The reaction predictor
computes k products (next states) corresponding to the k reactants
when they react with R(1). The scoring function computes k
rewards corresponding to the k next states. Finally, the next state
corresponding to the maximum reward is chosen. The agent is
composed of actor and critic modules. The actor predicts the action
a given the state input R(1) and the critic evaluates this action.

to obtain the best template:

T = T � Tmask

T = GumbelSoftmax(T, ⌧)

where, ⌧ is the temperature parameter that is decayed at
every time step by multiplying with a decay parameter until
the ⌧ reaches a minimum threshold of 0.1.

3.2.1. TRAINING PARADIGM

The learning agent can be trained using any policy gradient
algorithm applicable for continuous action spaces. Thus, we
call our algorithm "Policy Gradient for Forward Synthesis
(PGFS)". DDPG (Lillicrap et al. (2015)) is one of the first
deep RL algorithms for continuous action spaces. After
sampling a random minibatch of N transitions from the
buffer, the actor and critic modules are updated as follows:
The critic (Q-network) is updated using the one-step TD
update rule as:

yi = ri + �Q0(si+1,⇧
0(si+1))

where, Q0 and ⇧0 are the target critic and actor networks
respectively, i.e, they are a copy of the original networks but
they do not update their parameters during gradient updates.
yi is the one-step TD target, ri is the immediate reward and
si constitutes the state at the time step t. si+1 forms the
state at next time step. The critic loss is then:

L =
1

N

X

i

(yi �Q(si, ai))
2

and the parameters of the Q network are updated via back
propagation of the critic loss. The goal of the actor module
is to maximize the overall return (weighted average of future
rewards) achieved over the given initial distribution of states
by following the actions determined by the actor module.
The Q network can be seen as an approximation to this
overall return. Thus, the actor should predict actions that
maximize the Q(s, a) values predicted by Q network i.e,
maxQ(s,⇧(s)), or min�Q(s,⇧(s)). Thus, �Q(s,⇧(s))
constitutes the actor loss. Consequently, the parameters of
the actor module (of f and ⇡ networks) are updated towards
reducing that loss.

However, the convergence of returns observed is slow be-
cause of the reasons highlighted by Fujimoto et al. (2018).
Accordingly, we use the approach from (Fujimoto et al.,
2018) for faster training.

Firstly, we smooth the target policy (akin to regularization
strategy) by adding a small amount of clipped random noises
to the action.

ã = a+ ✏; ✏ ⇠ clip(N(0, �̄),�c, c)

We use a double Q-learning strategy comprising two critics,
but only consider the minimum of two critics for computing
the TD target:

y = r + � min
i=1,2

Qi(s
0,⇧(s0))

Further, we make delayed updates (typically, once every
two critic updates) to the actor module and target networks.

To speed up the convergence of the f network, we also
minimize the cross entropy between the output of the f
network and the corresponding template T obtained for the
reactant R(1).

Firstly, we smooth the target policy (akin to regularization
strategy) by adding a small amount of clipped random noises
to the action.

ã = a+ ✏; ✏ ⇠ clip(N(0, �̄),�c, c)

We use a double Q-learning strategy comprising two critics,
but only consider the minimum of two critics for computing
the TD target:

y = r + � min
i=1,2

Qi(s
0,⇧(s0))

Further, we make delayed updates (typically, once every
two critic updates) to the actor module and target networks.

To speed up the convergence of the f network, we also
minimize the cross entropy between the output of the f
network and the corresponding template T obtained for the
reactant R(1).
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Algorithm 1 PGFS
0: procedure ACTOR(R(1))
0: T  f(R(1))
0: T  T � Tmask

0: T  GumbelSoftmax(T, ⌧)
0: a ⇡(R(1), T )
0: return T, a

0: procedure CRITIC(R(1), T , a)
0: return Q(R(1), T, a)

0: procedure ENV.STEP(R(1), T, a)
0: R(2)  GetValidReactants(T )
0: A kNN(a,R(2))

0: R
(1)
t+1  ForwardReaction(R(1), T,A)

0: Rewards ScoringFunction(R(1)
t+1)

0: rt, R
(1)
t+1, done argmaxRewards

0: return R(1)
t+1, rt, done

0: procedure BACKWARD(buffer minibatch)
0: Ti+1, ai+1  Actor-target(R(1)

i+1)
0: yi  ri + � minj=1,2 Critic-

target({R(1)
i+1, Ti+1}, ai+1)

0: min L(✓Q) = 1
N

P
i |yi� Critic({R(1)

i , Ti}, ai)|2

0: minL(✓f,⇡) = �
P

i Critic(R(1)
i , Actor(R(1)

i ))

0: minL(✓f ) = �
P

i(T
(1)
i , log(f(R(1)

i )))

0: procedure MAIN(f , ⇡, Q)
0: for episode = 1, M do
0: sample R(1)

0

0: for t = 0, N do
0: Tt, at  Actor(R(1)

t )
0: R(1)

t+1, rt, done env.step(R(1)
t , Tt, at)

0: store (R(1)
t , Tt, at, R

(1)
t+1, rt, done) in buffer

0: sample a random minibatch from buffer
0: Backward(minibatch)

=0

4. Experiments
4.1. Predictive Modeling

To test the applicability of PGFS in an in-silico proof-of-
concept for de novo drug design, we develop predictive
models against three biological targets related to the human
immunodeficiency virus (HIV) - as scoring functions. The
biological activity data available in the public domain al-
lowed us to develop ligand-based machine learning models
using the concept of quantitative structure-activity relation-
ship modeling (QSAR).

HIV Targets i) The first target in this study, C-C
chemokine receptor type 5 (CCR5), is a receptor located on
the surface of the host immune cells. Along with C-X-C

chemokine receptor type 4 (CXCR4), this receptor is used
by HIV to recognize target cells. Hence, antagonists of
this receptor allows HIV entry inhibition (Arts & Hazuda
(2012)).

ii) The second target is HIV integrase that catalyzes HIV
viral DNA processing and strand transfer. Inhibitors of that
enzyme target the strand transfer reaction, thus allowing for
HIV integration inhibition.

iii) The last selected target is HIV Reverse transcriptase
(HIV-RT) which was the first enzyme used as biological
target in antiretroviral drug discovery. It is an enzyme with
multiple functions that are necessary to convert the single
strand of the viral RNA to a double stranded DNA.

Quantitative Structure Activity Relationships The
goal of QSAR studies is to discover functional relationship
between the structure of the chemical compound and its
activity relative to a biological target of interest (Cherkasov
et al. (2014)). Widely accepted guidelines for building
QSAR models were developed in the related publications
(Tropsha (2010); Cherkasov et al. (2014); Muratov et al.
(2020)) describing training data curation, testing models
performance, usage of the Applicability Domain (AD) and
more. We trained our QSAR models to predict the com-
pounds’ pIC50 (-log10IC50 where the IC50 is the molar con-
centration of a compound that produces a half-maximum in-
hibitory response) values associated with three HIV-related
targets reported in the ChEMBL database. The description
of the data curation, QSAR training procedures, definition
of AD and predictive performance of the models developed
in this study can be found in Section-3 of the Appendix.

4.2. Data and Representations
ECFP4-Like Morgan Fingerprints We utilize Morgan
circular molecular fingerprint bit vector of size 1024 and
radius 2 as implemented in RDKit (Landrum (2016)) with
default invariants that use connectivity information similar
to those used for the ECFP fingerprints (Rogers & Hahn
(2010)). Generally, Morgan fingerprints utilize the graph
topology, and thus can be viewed as a learning-free graph
representation. Moreover, some recent studies (Liu et al.
(2019)) demonstrate its performance is competitive to the
state-of-the-art Graph Neural Network.

MACCS Public Keys We leveraged 166 public MACCS
keys as implemented in RDKit. MACCS keys constitute
a very simple binary feature vector where each bin cor-
responds to the presence (1) or to the absence (0) of the
pre-defined molecular sub-fragment.

Molecular Descriptors Set (MolDSet) The set of nor-
malized molecular continuous descriptors are selected
from the 199 descriptors available in RDKit (Landrum
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Figure 3. Performance comparison of Random Search (RS) vs.
PGFS using the validation set of initial reactants (R1s) and corre-
sponding rewards. (a) and (b): box plots of the QED and penalized
clogP scores per step of the iterative five-step virtual synthesis.
The first step (Reaction Step = 0) in each box plot shows the scores
of the initial reactants (R1s). (c) and (d): distributions of the
maximum QED and penalized clogP scores over five-step itera-
tions. A few outliers with penalized clogP lower than -10 with
both methods were clipped out when plotting (b) and (d).

(2016)).The set consists of 35 descriptors that were picked
as most important during the feature selection process dur-
ing HIV-related QSAR modeling presented in this paper.
The resulting set of 35 features consists of descriptors such
as maximum, minimum and other e-state indices (Kier
et al. (1999)), molecular weight, Balaban’s J index (Bal-
aban (1982)) among others. The full list of descriptors used
in this set is reported in Section-1 of the Appendix.

We have experimented with several feature representations
and observed that MolDSet works best as input features
to the k-NN module (and thus as the output of the actor
module) and ECFP works best as input to the f , ⇡ and Q
networks. The results reported in this paper use only these
two features. Further analysis is provided in Section-1 of
the Appendix.

Reaction Templates And Reactants The structures of
reactants used in this study originate from the Enamine
Building Block catalogue1 Global Stock. Only 150, 560
unique (with stereo) building blocks that matched at least
one reaction template as a first or second reactants were
used in this study. The full list of SMILES of the building
blocks can be found in the github repository of this work.

1https://enamine.net/building-blocks

The set of reaction templates used in this study was taken
from Button et al. (2019). Several templates were addi-
tionally manually curated to resolve occasional errors such
as broken aromaticity and stereochemistry problems upon
using them with RDKit RunReactants function (version
2019.03.1). We note that only stereocenters specified in the
initial reactants are kept in the products and stereocenters
that would be formed during the reaction are left without
specification. This is one of the limitations of using reaction
templates that cannot accurately predict stereoselectivity.
Since the reaction template selection is based on the reac-
tant that will be used as the first one in the reaction, the
49 bimolecular templates were transformed into 98. For
example, the “Michael addition” template also consists of
the “Michael addition as R2”. The 15 unimolecular tem-
plates are also used. We additionally filter out reaction
templates that have fewer than 50 available second reactants
for them, resulting in a final set of 97 templates. Additional
statistics and examples of reaction templates are provided
in Section-2 of the Appendix.

Datasets For QSAR Modeling The datasets for all three
HIV targets were downloaded from ChEMBL ((Gaulton
et al., 2017)) corresponding to the following target IDs: HIV-
RT - CheMBL247, HIV-Integrase - CheMBL3471, CCR5 -
CheMBL274. The full datasets used for QSAR modeling
are provided in the github repository. The data curation
procedure is described in Section-3 of the Appendix.

4.3. Experimental Settings

Model Setup Hyper parameter tuning was performed and
the following set of parameters were used in all the experi-
ments reported in this paper. The f network uses four fully
connected layers with 256, 128, 128 neurons in the hidden
layers. The ⇡ network uses four fully connected layers with
256, 256, 167 neurons in the hidden layers. All the hidden
layers use ReLU activation whereas the final layer uses tanh
activation. Similarly, the Q network also uses four fully con-
nected layers with 256, 64, 16 neurons in the hidden layers,
with ReLU activation for all the hidden layers and linear
activation for the final layer. We use the Adam optimizer
to train all the networks with a learning rate of 1e-4 for
the f and ⇡ networks and 3e-4 for the Q network. Further,
we used a discount factor � = 0.99, mini batch size = 32,
and soft update weight for target networks, ⌧ = 0.005. We
have only used k = 1 (in the k-NN module) during both
the training and inference phases of our algorithm for fair
comparison.

Baseline Setup The specific baseline in this study, Ran-
dom Search (RS) starts with a random initial reactant (R(1))
followed by the selection of a random reaction template
T , and then the random selection of a compatible reactant
R(2). The product of the reaction is used as the R(1) in the
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next reaction. This process is repeated until the maximum
allowed number of synthesis steps is reached or until the
product doesn’t have any reactive centers left. In this study,
we define the maximum number of synthesis steps allowed
in an episode to be five. The random search continues until
the stop criterion such as search time or number of reac-
tions is reached. The total number of allowed reaction steps
used during random search to produce results in Table 1 and
Table 2 is 400,000.

4.4. Results and Analysis

Table 1. Performance comparison of the maximum achieved value
with different scoring functions. The reported HIV-related QSAR-
based scoring functions RT, INT and CCR5 correspond to struc-
tures inside of the AD of the predictive ensemble. If a structure
with maximum value is outside of the AD, its value is reported in
brackets. The compounds with the highest scores are presented
in Appendix Section 2. The QED and penalized clogP values for
JT-VAE, GCPN and MSO are taken from Jin et al. (2018), You
et al. (2018a), Winter et al. (2019) respectively. The experiments
performed to evaluate the models on HIV rewards are detailed in
the appendix. Values corresponding to the initial set of building
blocks are reported as ENAMINEBB.

Method QED clogP RT INT CCR5

ENAMINEBB 0.948 5.51 7.49 6.71 8.63
RS 0.948 8.86 7.65 7.25 8.79 (8.86)

GCPN 0.948 7.98 7.42(7.45) 6.45 8.20(8.62)
JT-VAE 0.925 5.30 7.58 7.25 8.15 (8.23)
MSO 0.948 26.10 7.76 7.28 8.68 (8.77)
PGFS 0.948 27.22 7.89 7.55 9.05

4.4.1. BASELINE COMPARISON

PGFS performance on QED and penalized clogP rewards

vs. Random Search(RS) - The validation set constitutes
randomly chosen 2,000 R(1)s initial reactants from the set
of 150,560 available reactants. First, we carry out random
search (RS) by randomly choosing reaction templates and
second reactants (for bimolecular reactions) at every time
step. Then, we use the trained models from PGFS (trained
on QED for 200,000 time steps and on penalized clogP
for 390,000 time steps) in the inference mode and calcu-
late QED and penalized clogP of the products, using the
validation set. We observe that our algorithm performs sig-
nificantly better than the random baseline. We can observe
a clear distribution shift of each score given the same initial
compounds which confirms that the training was successful.

PGFS performance on HIV rewards vs. Random

Search(RS) Next, we implement both these algorithms on
HIV rewards and make a similar observation from Figure 4
that the rewards associated with the structures obtained us-
ing our method (PGFS) are substantially better than the RS
method. Furthermore, we filter out compounds that do not
satisfy the AD criteria of the QSAR model from both sets

and still clearly observe the distribution shift towards high
scoring compounds in case of PGFS using CCR5 reward
in Figure 4(c). Similar shifts can be observed when using
HIV-RT and HIV-Int rewards (Appendix Section 2, Figure
8). PGFS was trained on HIV-CCR5 for 310,000 time steps,
HIV-INT for 120,000 time steps, HIV-RT for 210,000 time
steps. All these models were pre-trained on the QED task
for 100,000 time steps.

4.4.2. QUANTITATIVE PERFORMANCE BENCHMARK

Table 1 compares our proposed model performance against
various models on different scoring functions (Winter et al.
(2019); You et al. (2018a); Jin et al. (2018)). Our proposed
framework has produced compounds with the highest max-
imum scores compared to all other approaches on every
defined task. PGFS achieved a maximum QED score re-
ported in the de novo generative design studies. However,
although our system cannot just return initial building block
without any reactions applied to it, we can see that a set of
initial building blocks (ENAMINEBB) already contains the
compounds with the highest QED of 0.948. Random search
was also successful in producing a maximum QED scoring
compound. We also notice a significantly higher maximum
penalized clogP value compared to the existing approaches,
especially GCPN and JT-VAE. This is due to the fact that
molecular size correlates with the heuristic penalized clogP
score if the molecule contains hydrophobic moieties and
that our method does not have restrictions (besides number
of reaction steps) associated with the size of the produced
structures in contrast to other methods; achievable values of
the penalized clogP score strongly depend on the number of
steps the reaction-based system is allowed to take.

Thus, QED and penalized clogP scores are insufficient to
compare approaches designed to be used in real drug dis-
covery setting. However, Figure 3 clearly demonstrates
that PGFS training procedure was successful in biasing
structures of virtually synthesised compounds towards high
values of these scoring functions. In the proof of concept
where the task is defined as a single-objective maximiza-
tion of the predicted half maximal inhibitory concentration
(pIC50) of the HIV-related targets, PGFS achieves the high-
est scores when compared to de novo drug design methods
and random search in the maximum reward achieved (Table
- 1) and mean of the top-100 highest rewards (Table - 2)
comparisons, given the settings of this study.

Proof-Of-Concept Figure 5 demonstrates one of the pro-
posed compounds with the highest predicted inhibitory activ-
ity (pIC50) against the CCR5 HIV target. As recommended
by Walters & Murcko (2020), we also provide side by side
comparison of the proposed structure with the most similar
one in the training set utilized to build the QSAR model in
the Appendix Section-2
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Table 2. Mean ±1std of the top-100 produced molecules with highest predicted HIV scores for every method used and Enamine’s building
blocks. Only unique compounds were used after the stereo information was stripped to calculate the values presented in this table. *GCPN
and MSO runs only produced 90 and 28 compounds inside the Applicability Domain (AD) of the CCR5 QSAR model, respectively.

NO AD AD

Scoring RT INT CCR5 RT INT CCR5

ENAMINEBB 6.87± 0.11 6.32± 0.12 7.10± 0.27 6.87± 0.11 6.32± 0.12 6.89± 0.32
RS 7.39± 0.10 6.87± 0.13 8.65± 0.06 7.31± 0.11 6.87± 0.13 8.56± 0.08

GCPN 7.07± 0.10 6.18± 0.09 7.99± 0.12 6.90± 0.13 6.16± 0.09 6.95* ± 0.05
JT-VAE 7.20± 0.12 6.75± 0.14 7.60± 0.16 7.20± 0.12 6.75± 0.14 7.44± 0.17
MSO 7.46± 0.12 6.85± 0.10 8.23± 0.24 7.36± 0.15 6.84± 0.10 7.92* ± 0.61
PGFS 7.81 ± 0.03 7.16 ± 0.09 8.96 ± 0.04 7.63 ± 0.09 7.15 ± 0.08 8.93 ± 0.05

(a) (b) (c)

Figure 4. Performance comparison between Random Search (blue) and PGFS (orange) using CCR5 QSAR-based score as a reward (a):
box plot of the QSAR-based CCR5 score per step of the iterative 5-step virtual synthesis. The first step (Reaction Step =0) in the box plot
shows the scores of the fixed 2000 initial reactants (R1s). (b): distribution of the maximum QSAR-based rewards over 5-step iterations
without the Applicability Domain (AD) filtering. (c): distributions of the maximum QSAR-based rewards over 5-step iterations after
compounds that do not satisfy AD criteria of the corresponding QSAR model were filtered out from both sets.

Figure 5. Structure of the compound generated by PGFS with the
highest predicted activity against CCR5 and synthesis path used
by the model. Predicted pIC50 values against CCR5 target are
depicted under each structure at every reaction step.

5. Conclusion and Future Work
In this work, we introduce the first application of RL for
forward synthesis in de novo drug design, PGFS, to navi-
gate in the space of synthesizable small molecules. We use
hierarchically organized actions where the second action is
computed in a continuous space that is then transformed into
the best valid reactant by the environment. PGFS achieves
state-of-the art performance on QED and penalized clogP
tasks. We also demonstrate the superiority of our approach
in an in-silico scenario that mimics the drug discovery pro-
cess. PGFS shows stable learning across all the tasks used

in this study and shows significant enrichment in high scor-
ing generated compounds when compared with existing
benchmarks.

In future work, we propose to use a second policy gradient
that solely updates the f network based on the value of its
corresponding critic to efficiently learn to select transforma-
tion templates (unimolecular reactions) and to stop when
the expected maximum reward in an episode is attained.
Furthermore, one can use any RL algorithm for continuous
action space like SAC (Haarnoja et al. (2018)) or a hybrid
of a traditional planning and RL algorithm (V. et al. (2018);
Anthony et al. (2017)). These future developments could
potentially enable a better exploration of the chemical space.
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