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1 Choice of Parameters

During training, for the bootstrapping phase of first 3,000 time steps, the agent randomly chooses any valid reaction
template 7" and any valid reactant R(?). After the bootstrapping phase, a Gaussian noise of mean 0 and standard
deviation 0.1 is added to the action outputted by the 7 network. No noise is added during the inference phase.

While updating the critic network, we multiply the normal random noise vector with policy noise of 0.2 and then clip it
in the range -0.2 to 0.2. This clipped policy noise is added to the action at the next time step a’ computed by the target
actor networks f and m. The actor networks (f and 7 networks), target critic and target actor networks are updated
once every two updates to the critic network.

The representation of molecules plays a very important role in the overall performance of PGFS. We have experimented
with three feature representations: ECFP, MACCS and custom features from MolDSet (RLV2), and observed that ECFP
as state features and RLV2 as action features are the best representations. We used the following features in RLV2:
MaxEStateIndex, MinEStateIndex, MinAbsEStateIndex, QED, MolWt, FpDensityMorgan1, BalabanJ, PEOE-VSA10,
PEOE-VSA1l1, PEOE-VSA6, PEOE-VSA7, PEOE-VSAS8, PEOE-VSA9, SMR-VSA7, SlogP-VSA3, SlogP-VSAS,
EState-VSA2, EState-VSA3, EState-VSA4, EState-VSAS, EState-VSAG6, FractionCSP3, MolLogP, Kappa2, PEOE-
VSA2, SMR-VSAS, SMR-VSAG6, EState-VSA7, Chidv, SMR-VSAI10, SlogP-VSA4, SlogP-VSA6, EState-VSAS,
EState-VSA9, VSA-EState9.

Figures show the f network loss, policy loss, value loss and the average (inference) reward on a set of randomly
chosen 100 initial reactants as the training progresses; for all possible combinations of state and action feature
representations; for shaped-QED and shaped-HIV-CCRS rewards respectively.

2 Examples of Proposed Compounds And Their Synthetic Paths, Additional Information
On Reaction Templates, Building Blocks and Results

Figures ] [5] [6} [7] depict synthetic routes and structures of the compounds proposed by PGFS with maximum QED,
penalized clogP, HIV-integrase and HIV-RT scores respectively. Figure [3|demonstrates the proposed CCRS5 structure
alongside the most similar one in the training set utilized to build the CCR5 QSAR model. Figure [8| demonstrates
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Figure 1: Plots of (a) inference reward; (b) f network loss; (c) policy loss; (d) value loss; for shaped-QED reward. We
can observe that ECFP as state features and RLV2 as action features (pink curve: ECFP-RLV?2) performed best in terms
of inference reward



inference reward

F_net Loss

—rlv2-maccs —rlv2-maccs
—rlv2-riv2 — maccs-riv2 — ecfp-riv2 —riv2-riv2 — maccs-riv2 — ecfp-riv2
—maccs-ecfp  —ecfp-ecip — ecfp-maccs —maccs-ecfp  — ecfp-ecip — ecfp-maccs
—rlv2-ecfp — rlv2-ecfp
0.4
4
0.3
0.2 : P 3
0.1
2
0
-0.1 1
. Step
0.2 0
0 200k 400k 600k 800k 1M 0 200k 400k 600k 800k 1M
() (b)
Policy Loss Value Loss
—rlv2-maccs — rlv2-maccs
—rlv2-riv2 — maccs-tiv2 — ecfp-riv2 — tlv2-rlv2 — maccs-tiv2 — ecfp-riv2
— maccs-ecfp — ecfp-ecfp — ecfp-maccs — maccs-ecfp — ecfp-ecfp — ecfp-maccs
—rlv2-ecfp —rlv2-ecfp
1 0.5 ‘
0.5 0.4
0
0.3
-0.5
0.2
-1
15 0.1
-2 0
0 200k = 400k 600k ' 800k 1M 0 200k 400k 600k 800k 1M
(c) (@)

Figure 2: Plots of (a) inference reward; (b) f network loss; (c) policy loss; (d) value loss; for shaped-hiv-ccr5 reward.
We can observe that ECFP as state features and RLV?2 as action features (yellow curve: ECFP-RLV2) performed best in
terms of inference reward
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Figure 3: Structure of the compound proposed using PGFS with the highest predicted activity against CCR5 compared
to the structure from the corresponding QSAR modeling training set with the highest Tanimoto Similarity ([1]]) using
Morgan fingerprints with the radius of 2 as implemented in RDKit. The predicted pIC50 value is shown below the
proposed structure and experimental pIC50 value is shown below the training set structure.
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Figure 4: Proposed synthetic route and structure of the compound with the highest score (from the Table 2) obtained
during the PGFS training using the QED score as a reward.

performance comparison between Random Search and PGFS using HIV-Int and HIV-RT rewards similar to the Figure 4
of the main text.

Figure [O(a)| shows the distribution of available reaction templates for compounds in the Enamine building blocks dataset
used in this study. Figure shows how many second reactants are available for reaction templates in the set used in
this study.

3 Additional information on the QSAR-modeling

3.1 Training and Cross-validation procedure

The QSAR-based validation pipeline used in this study is similar to that reported by [8]. We have used the LightGBM
implementation ([4]) of the Gradient Boosting Decision Tree (GBDT) as an algorithm to train a supervised regression
model on measured pICsq (-log19ICsg, where the ICs is the concentration of a molecule that produces a half-maximum
inhibitory response) values associated with 3 HIV-related targets reported in the ChEMBL database (see QSAR data
collection and curation). All the parameters of LightGBMRegressor were kept default, except for the ‘max-bin’,
’learning-rate’ and ‘min-split-gain’ which were set to 15, 0.05 and 0.0001, respectively, to decrease the complexity of
the model and training times. Training was done with early stopping on the validation set with ’early-stopping-rounds’
= 20, so each model has a different number of estimators. We used 199 molecular descriptors available in RDKit
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Figure 5: Proposed synthetic route and structure of the compound with the highest score (from the Table 2 of the
manuscript) obtained during the PGFS training using the penalized clogP score as a reward.
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Figure 6: Proposed synthetic route and structure of the compound with the highest score (from the Table 2 of the
manuscript) obtained during the PGFS training using predicted activity score (pIC50) against HIV-Integrase as a reward.

Table 1: Cross-validation performance values for the trained QSAR models. Presented metrics and values: R? -
coefficient of determination, Ridj - adjusted coefficient of determination ([9]]), MAE - mean absolute error, Range
- range of the response values (pIC50) in the dataset. Values in the avg. column were calculated by averaging the
performance of the 25 models (five-fold cross validation repeated five times) on their unique random validation sets.
Values in the agg. column were calculated by combining all out-of-fold predictions: Each compound instance was
predicted as the average prediction of only five models that were built while the instance was not present in the training
set of these models during the five-fold cross validation repeated five times. These prediction values were compared
with the ground truth. The formulas for calculating the metrics as well as measured vs. predicted plots are presented in

the Appendix Section - 3.2

Dataset R, R? MAE Range
agg avg. agg avg. agg avg.
CCR5 | 0.72 | 0.64£0.03 | 0.72 | 0.69 £0.03 | 0.51 | 0.54 £0.02 | 4.04-10.30
HIV-Int | 0.68 | 0.45£0.07 | 0.69 | 0.654+0.04 | 0.45 | 0.48+=0.03 | 4.00-8.15
HIV-RT | 0.53 | 0.40 £0.06 | 0.55 | 0.52+£0.05 | 0.51 | 0.53 +£0.03 | 4.00-8.66
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Figure 7: Proposed synthetic route and structure of the compound with the highest score (from the Table 2 of the
manuscript) obtained during the PGFS training using predicted activity score (pIC50) against HIV-RT as a reward.

([S) as an initial set of features prior to feature selection. The training procedure was performed using a five-fold
cross-validation (5-fold CV) procedure repeated five times. To reduce the complexity of the produced models during
the five-fold cross validation, after the initial set was split into training and validation sets and features were scaled
using the training set of that fold random features from every pair of highly correlated features (Pearson’s correlation
coefficient higher than 0.9) were removed. Then recursive feature elimination procedure was conducted using a five-fold
cross-validation on the training set of the current fold and feature importances from LightGBMRegressor (sklearn
API). The minimal required set of features with the highest adjusted determination coefficient (measured on 5-fold
CV of the current training set) R? 4; were selected to build a final model of this fold which was evaluated on its
validation set. The resulting final 25 models (5-fold CV repeated 5 times) for each HIV-target were used as an ensemble
to predict pICsg of the produced compounds. Each model is associated with its own unique but overlapping set of
selected features. The selected set of features for each model is reported in the github repository in the corresponding
"list_of_selected_features_names.txt" files. The development of multiple models for each given target makes it more
difficult for the RL framework to exploit adversarial attacks on the predictor and increases the overall robustness of the
predictive model. The applicability domain (AD) ([[L1]) of the ensemble of predictors was estimated using a feature
space distance-based ([[7,[10]) approach. The feature sets for the AD calculation were selected as features that were
used by all the 25 models in the ensemble for each target. These features are the most important for the ensemble
prediction because they were selected via an independent feature selection procedure every time at every fold of the
CV procedure. According to our definition of AD in this study, a compound is considered to be inside of the AD of
the predictive ensemble if its average distance D; in the normalized feature space to its K closest neighbors from the
training set is equal or less than the sum of the mean of that value estimated for each point of the training set D; and
corresponding standard deviation S multiplied by Z (1.5 in this study).

D; <D+ Zx5S,

In this study, K used in K closest neighbors depends on the QSAR dataset and is calculated as the square root of the
number of compounds in the corresponding dataset. (For CCRS - K=41, HIV-Int - K=27, HIV-RT - K=37)

3.2 Formulas used to calculate performance metrics in Table 1 of the manuscript

R? - coefficient of determination is calculated as:
R BSS_ | RSS . ¥(e)
TSS TSS Sy — 9)?
, where T'SS - Total Sum of Squares, ESS - Explained Sum of Squares, RSS - Residual Sum of Squares. €? - error
term.

R? q; - adjusted coefficient of determination is calculated as :
n—1

R: :141*1%2)*m

adj
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Figure 8: Performance comparison between Random Search and PGFS on two HIV-related QSAR-based scores:
HIV-Int and HIV-RT. (a), (b): box plots of the corresponding QSAR-based scores per step of the iterative 5-step
virtual synthesis. The first step (Reaction Step =0) in each box plot shows the scores of the initial R1s. (c), (d):
distributions of the maximum QSAR-based rewards over 5-step iterations without the AD filtering. (e), (f): distributions
of the maximum QSAR-based rewards over 5-step iterations after compounds that do not satisfy AD criteria of the
corresponding QSAR model were filtered out from both sets.
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Figure 9: (a) Number of available reaction templates for compounds in the Enamine’s building blocks set; (b) Number
of available second reactants (R2s) from the Enamine building blocks set for reaction templates that require R2s
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Figure 10: Cross-validation performance of QSAR modeling. Predicted by QSAR models (Y-axis) vs. Measured
(X-axis) plots of pIC50 values corresponding to HIV targets, from left to right: CCR5(a), HIV-RT(b), HIV-Integrase(c).
Each compound instance was predicted as average prediction of only 5 models that were built while the instance was
not present in the training set during the 5-fold cross validation repeated 5 times.

, where R? - coefficient of determination, n - number of instances in the dataset, p - number of features used. When
calculating cross-validation performance for each separate fold p is number of features used in the final model of that
fold after feature selection; in the "aggregated" statistics p is approximated as the average number of features used by
25 models produced by 5-fold CV repeated five times.

3.3 QSAR data collection and curation

As stated in the manuscript the datasets for QSAR modeling were downloaded from ChEMBL?2S5 database. Only
structures with available pChEMBL values corresponding to pIC50 were selected. Potential duplicates were removed.
Standardization of chemical structures and removal of salts was done using MolVS ([6]). After standardizing entries
with the same Canonical SMILES and different pPChEMBL (pIC50) values were treated as different measurements of the
same compounds, meaning that corresponding pPChEMBL(pIC50) values were averaged and only unique compounds
were used in further modeling. If a standard deviation of different pIC50 measurements of the same compound
exceeded 1.0, the compound was discarded from the dataset. Only compounds with molecular weight (MW) between
100 and 700 were used. Outliers with Z-scores higher than 3.0 calculated using the feature values ‘QED’, ‘MolWt,
‘FpDensityMorgan2’, ‘Balaban]’, ‘MolLogP’ were discarded as well. In total, 1,719 compounds with unique Canonical
SMILES for CCRS, 775 for HIV ingrase and 1,392 for HIV-RT passed all pre-processing and curation procedures. The
final curated datasets used for QSAR modeling are reported in the github repository of this project.



4 Experimental setup for GCPN, JTVAE and MSO

The experiments were performed based on the experimental setting detailed in the respective publications: GCPN
([130), JT-VAE ([13]) and MSO ([12]]). The details of which are given below.

1. GCPN: The setup was run on a 32-core machine with a wall-clock time of 30 hrs, with the hyper parameters,
training code and the dataset provided by the authors in their publicly available repository.

2. JT-VAE: The setup uses the pre-trained weights provided by the authors. For the bayesian optimization (BO),
as suggested by the authors, we train a sparse Gaussian process with 500 inducing points to predict properties
(HIV rewards) of molecules. Then, we use five BO iterations along with expected improvement to get the
new latent vectors. 50 latent vectors are proposed in each run, we obtain the molecules corresponding to them
using the decoder and add them to the training set for the following iteration. Ten such independent runs are
performed and the results are combined.

3. MSO: We use the setup corresponding to the GuacaMol ([2]) benchmark as provided by the authors in their
work. More precisely, for each HIV reward function, a particle swarm with 200 particles was run for 250
iterations and 40 restarts.
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