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Abstract

Off-policy evaluation in reinforcement learning
offers the chance of using observational data to im-
prove future outcomes in domains such as health-
care and education, but safe deployment in high
stakes settings requires ways of assessing its va-
lidity. Traditional measures such as confidence
intervals may be insufficient due to noise, limited
data and confounding. In this paper we develop
a method that could serve as a hybrid human-Al
system, to enable human experts to analyze the
validity of policy evaluation estimates. This is
accomplished by highlighting observations in the
data whose removal will have a large effect on
the OPE estimate, and formulating a set of rules
for choosing which ones to present to domain
experts for validation. We develop methods to
compute exactly the influence functions for fitted
Q-evaluation with two different function classes:
kernel-based and linear least squares, as well as
importance sampling methods. Experiments on
medical simulations and real-world intensive care
unit data demonstrate that our method can be used
to identify limitations in the evaluation process
and make evaluation more robust.

1. Introduction

Within reinforcement learning (RL), off-policy evaluation
(OPE) is the task of estimating the value of a given eval-
uation policy, using data collected by interaction with the
environment under a different behavior policy (Sutton &
Barto, 2018; Precup, 2000). OPE is particularly valuable
when interaction and experimentation with the environment
is expensive, risky, or unethical—for example, in healthcare
or with self-driving cars. However, despite recent interest
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and progress, state-of-the-art OPE methods still often fail
to differentiate between obviously good and obviously bad
policies, e.g. in healthcare (Gottesman et al., 2018).

Most of the OPE literature focuses on sub-problems such
as improving asymptotic sample efficiency or bounding the
error on OPE estimators for the value of a policy. How-
ever, while these bounds are theoretically sound, they are
often too conservative to be useful in practice (though see
e.g. Thomas et al. (2019) for an exception). This is not
surprising, as there is a theoretical limit to the statistical
information contained in a given dataset, no matter which
estimation technique is used. Furthermore, many of the com-
mon assumptions underlying these theoretical guarantees
are usually not met in practice: observational healthcare
data, for example, often contains many unobserved con-
founders (Gottesman et al., 2019a).

Given the limitations of OPE, we argue that in high stakes
scenarios domain experts should be integrated into the eval-
uation process in order to provide useful actionable results.
For example, senior clinicians may be able to provide in-
sights that reduce our uncertainty of our value estimates.
In this light, the explicit integration of expert knowledge
into the OPE pipeline is a natural way for researchers to
receive feedback and continually update their policies un-
til one can make a responsible decision about whether to
pursue gathering prospective data.

The question is then what information can humans provide
that might help assess and potentially improve our confi-
dence in an OPE estimate? In this work, we consider how
human input could improve our confidence in the recently
proposed OPE estimator, fitted Q-evaluation (FQE) (Le
et al., 2019), as well as importance sampling (IS) methods.
We develop an efficient approach to identify the most in-
fluential transitions in a batch of observational data, that is,
transitions whose removal would have large effects on the
OPE estimate. By presenting these influential transitions
to a domain expert and verifying that they are indeed rep-
resentative of the data, we can increase our confidence that
our estimated evaluation policy value is not dependent on
outliers, confounded observations, or measurement errors.
The main contributions of this work are:
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e Conceptual: We develop a framework for using influ-
ence functions to interpret OPE, and discuss the types
of questions which can be shared with domain experts
to use their expertise in debugging OPE.

e Technical: We develop computationally efficient algo-
rithms to compute the exact influence functions for sev-
eral IS estimators as well as two broad function classes
for FQE: kernel-based functions and linear functions.

e Empirical: We demonstrate the potential benefits of in-
fluence analysis for interpreting OPE on a cancer simu-
lator, and present results of analysis together with prac-
ticing clinicians of OPE for management of acute hy-
potension from a real intensive care unit (ICU) dataset.

2. Related work

The OPE problem in RL has been studied extensively.
Works fall into two main categories: importance sampling
(e.g. Precup (2000); Jiang & Li (2015)) and model-based
(often referred to as the direct method), which can be fur-
ther subdivided into modeling the environment dynamics
(e.g. Hanna et al. (2017); Gottesman et al. (2019b)), and
directly modeling the value function (e.g. Le et al. (2019)).
Some of these works provide bounds on the estimation er-
rors (e.g. Thomas et al. (2015); Dann et al. (2018)). We
emphasize, however, that for most real-world applications
these bounds are either too conservative to be useful or rely
on assumptions which are usually violated.

While there has been considerable recent progress in in-
terpretable machine learning and machine learning with
humans in the loop (e.g. Tamuz et al. (2011); Lage et al.
(2018)), to our knowledge, there has been little work that
considers human interaction in the context of OPE. Oberst
& Sontag (2019) proposed framing the OPE problem as
a structural causal model, which enabled them to identify
trajectories where the predicted counterfactual trajectories
under an evaluation policy differs substantially from the
observed data collected under the behavior policy. However,
that work does not give guidance on what part of the tra-
jectory might require closer scrutiny, nor can it use human
input for additional refinement.

Finally, the notion of influence that we use throughout this
work has a long history in statistics as a technique for evalu-
ating the robustness of estimators (Cook & Weisberg, 1980).
Recently, an approximate version of influence for complex
black-box models was presented in Koh & Liang (2017),
and they demonstrated how influence functions can make
machine learning methods more interpretable. In the context
of optimal control and RL, influence functions were first
introduced by Munos & Moore (2002) to aid in online opti-
mization of policies. However, their definition of influence

as a change in the value function caused by perturbations of
the reward at a specific state is quite different from ours.

3. Background

Notation A Markov Decision Process (MDP) is a tuple
(X, A, Pr, Pr, Py,7), where X, A and ~ are the state
space, action space, and the discount factor, respectively.
The next state transition and reward distributions are given
by Pr(:|z,a) and Pg(-|z, a) respectively, and Py(x) is the
initial state distribution. The state and action spaces could be
either discrete or continuous, and the transition and reward
functions may be either stochastic or deterministic.

A dataset is composed of a set of NV observed transitions
D = {(z(™,a™ () 2N | and we use 7(™) to de-
note a single transition. The subset Dy C D denotes initial
transitions from which P, can be estimated. Note that al-
though we treat all data points as observed transitions, in
most practical applications data is collected in the form of
trajectories rather than individual transitions.

A policy is a function 7 : (X, A) — [0,1] that gives
the probability of taking each action at a given state
(2 _qca m(alx) = 1). The value of a policy is the expected
return collected by following the policy, v™ := E[gr|a; ~
7|, where expectations are taken with respect to the MDP
and gr = ZZ;O ~try denotes the total trajectory return
(sum of discounted rewards). The state-action value func-
tion ¢™(x, a) is the expected return for taking action a at
state z, and afterwards following 7 in selecting future ac-
tions. The goal of off-policy evaluation is to estimate the
value of an evaluation policy, 7., using data collected under
a different behavior policy, 7. In this work, we are only
interested in estimating v™° and ¢™¢, and will therefore drop
the superscript for brevity. We will also limit ourselves to
deterministic evaluation policies.

For the purpose of kernel-based value function approxima-
tion, we define a distance metric, d((z(?,a®), (z(),a(9)))
over X’ x A. In this work, for discrete action spaces, we will
assume d((z?,a®), (1), a())) = co when a? # a0,
but this is not required for any of the derivations.

Fitted Q-Evaluation Fitted Q-Evaluation (Le et al.,
2019) models the g-function of 7. and can be thought of
as dynamic programming on an observational dataset to
compute the value of a given evaluation policy. It is simi-
lar to the more well-known fitted Q-iteration method (FQI)
(Ernst et al., 2005), except it is performed offline on ob-
servational data, and the target is used for evaluation of a
given policy rather than for optimization. FQE performs a
sequence of supervised learning steps where the inputs are
state-action pairs, and the targets at each iteration are given
by yi(z,a) = 1+ Gi—1(2', me(2')), where §;—1(z,a) is
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the estimator (from a function class ) that best estimates
yi—1(x, a). For more information, see Le et al. (2019).

Importance sampling A popular class of OPE estimators
consists of IS methods. These methods estimate the value of
a policy by taking a sample average of trajectories returns,
properly weighted to account for the difference between
7, and .. The standard IS estimator is unbiased but has
high variance, and there are many variants of this estimator
which trade of bias and variance. For more information
see (Precup, 2000; Jiang & Li, 2015; Thomas & Brunskill,
2016).

4. OPE diagnostics using influence functions
4.1. Definition of the influence

We aim to make OPE interpretable and easy to debug by
identifying transitions in the data which are highly influ-
ential on the estimated policy value. We define the total
influence of transition 7/) as the change in the value esti-
mate if 7(7) was removed:

Li=i_;—0, (1)

where 9_; is the value estimate using the same dataset after
removal of 7(/). In general, for any function of the data
f(D) we will use f(D_;) = f_; to denote the value of f
computed for the dataset after removal of 7).

Another quantity of interest is the change in the estimated
value of q(z(¥), a(?) as a result of removing 7), which we
call the individual influence:

Ly =g, a%) = g(@®,al). ®)

The total influence of 7(/) can be computed by averaging
its individual influences over the set D of all initial state-
action transitions in which a = 7. (x):
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As we are interested in the robustness of our evaluation, we
can normalize the absolute value of the influence of 7() by
the estimated value of the policy to provide a more intuitive
notion of overall importance:
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4.2. Diagnosing OPE estimation

With the above definitions of influence functions, we now
formulate and discuss guidelines for diagnosing the OPE
process for potential problems.

No influential transitions: OPE appears reliable. As a
first diagnostic, we check that none of the transitions influ-
ence the OPE estimate by more than a specified influence
threshold fc, i.e. for all 7 we have fj < fc. In such a case
we would output that, to the extent that low influences sug-
gests the OPE is stable, the evaluation appears reliable. That
said, we emphasize that our proposed method for evaluating
OPE methods is not exhaustive, and there could be many
other ways in which OPE could fail.

Influential transitions: a human can help. When there
are several influential transitions in the data (defined as tran-
sitions whose influence is larger than Ic), we present them
to domain experts to determine whether they are represen-
tative, that is, taking action a in state x is likely to result
in transition to z’. If the domain experts can validate all
influential transitions, we can still have some confidence
in the validity of the OPE. If any influential transitions are
flagged as unrepresentative or artefacts, we have several
options: (1) Declare the OPE as unreliable; (2) Remove the
suspect influential transitions from the data and recompute
the OPE; (3) Caveat the OPE results as valid only for a
subset of initial states that do not rely on that problematic
transition.

In situations where there is a large number of influential
transitions, manual review by experts may be infeasible. As
such, it is necessary to present as few transitions as possible
while still presenting enough to ensure that any potential
artefacts in the data and/or the OPE process are accounted
for. In practice, we find it is common to observe a sequence
of influential transitions where removing any single transi-
tion has the same effect as removing the entire sequence.
An example of this is shown schematically in Figure 1. An
entire sequence marked in blue and red leads to a region
of high reward, and so all transitions in that sequence will
have high influence. The whole influential sequence appears
very different from the rest of the data, and a domain expert
might flag it as an outlier to be removed. However, we can
present the expert with only the red transition and capture
the influence of the blue transitions as well, reducing the
number of suspect examples to be manually reviewed.

Influential transitions: policy is unevaluatable. When
an influential transition, 7 ), has no nearest neighbors to
(2’9, 7. (2'9))), we can determine that the evaluation pol-
icy cannot be evaluated, even without review by a domain
expert. This claim is a result of the fact that such a situation
represents reliance of the OPE on transitions for which there
is no overlap between the actions observed in the data and
the evaluation policy. However, while the evaluation policy
is not evaluatable, the influential “dead-end” transitions may
still inform experts of what data is required for evaluation
to be feasible.



Interpretable Off-Policy Evaluation by Highlighting Influential Transitions

High

r(y

o

//

n\-
_—
v\*%%m\*

Figure 1. Schematic of an influential sequence. All transitions
in the sequence leading to a high reward have high influence,
but flagging just the red transition for inspection will capture the
influence of the blue ones as well.

It should be noted that the applicability of the diagnostics
methods discussed above may change depending on whether
the FQE function class is parametric or nonparametric. All
function classes lend themselves to highlighting of highly
influential transitions. However, the notion of stringing to-
gether sequences of neighbors, or looking for red flags in
the form of influential transitions with no neighbors to their
(2, me(x")) state action pairs only makes sense for nonpara-
metric models. In the case of parametric models, the notion
of neighbors is less important as the influence of removing
a transition manifests as a change to the learned parame-
ters which affects the value estimates for the entire domain
simultaneously. In contrast, for nonparametric methods,
removing a transition locally changes the value of neigh-
boring transitions and propagates through the entire domain
through the sequential nature of the environment. While we
derive efficient ways to compute the influence for both para-
metric and nonparametric function classes, in the empirical
section of this paper we present results for nonparametric
kernel-based estimators to demonstrate all diagnostics.

4.3. Influence analysis for importance sampling

The approach of using influence analysis to to asses the
validity of the OPE can be naturally extended to IS methods,
with a few small changes. Most IS methods use entire tra-
jectories rather than individual transitions as their basic data
input, and therefore for IS we would compute the influence
of trajectories rather than transitions. This also implies that
we cannot identify obvious unevaluateble datasets as de-
scribed in the previous section. Last, it should be noted that
for IS the influence is determined not only by the return of
a trajectory, but is also strongly determined by the weights,
which may grow exponentially with the horizon.

5. Efficient computation of influence functions

A key technical challenge in performing the proposed influ-
ence analysis in OPE is computing the influences efficiently.
The brute-force approach of removing a transition and re-
computing the OPE estimate is clearly infeasible for all
but tiny problems, as it requires refitting N models. The

computation of influences in RL is also significantly more
challenging than in static one-step prediction tasks, as a
change in the value of one state has a ripple effect on all
other states that are possible to reach from it. We describe
computationally efficient methods to compute the influence
functions in two classes of FQE: kernel-based, and linear
least squares, as well as several popular IS estimators. Un-
like previous works (e.g. (Koh & Liang, 2017)) that approx-
imate the influence function for a broad class of black-box
functions, we provide closed-form, analytic solutions for the
exact influence function for a broad range of OPE methods.

5.1. Kernel-Based FQE

In kernel based FQE, the function class we choose for es-
timating the value function of 7. at a point in state-action
space is based on similar observations within that space. For
simplicity, in the main body of this work we estimate the
value function as an average of all its neighbors within a
ball of radius R, i.e.

§x,0) = > d(=,al) 5)

(z,a) i

where the summation is performed over all (z(*), a(?) such
that d((zV,aV), (z,a)) < R and N, ,) is the number
of such points. Extension to general kernel functions is
straightforward. We introduce a matrix formulation for
performing FQE which allows for efficient computation of
the influence functions.

Matrix formulation of nearest-neighbors based FQE.
We define A;; as the event that the starting state-action
of 7) is a neighbor of the starting state-action of ("),
ie. d((z,a®), (29, a1)) < R. Similarly, we define
A as the event that the starting state-action of ) is a
neighbor of the next-state and corresponding 7. action of
7@ e, d((2'D, 7(2'@)), (), a0))) < R. We also de-
fine the counts for numbers of nei%?bors of transitions as
N; = 3200 I(Ay;) and Ny = Y73 I(Ay;), where I(e)
is the indicator function.

Jj=1

To perform nearest-neighbors FQE using matrix multiplica-
tions, we first construct two nearest-neighbors matrices: one
for the neighbors of all state-action pairs, and one for the
neighbors of all state-action pairs with pairs of next-states
and subsequent actions under 7. Formally:

I(Ayr5)
N,

M;; = (6)

The N x N matrices M and M’ can be easily computed
from the data, and are used to compute the value function
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for all state-action pairs using the following proposition, the
proof of which is given in Appendix 1.1.

Proposition 1. For all transitions in the dataset, the values
for corresponding state-action pairs are given by

t
(12 = (Z 'yt/lM’t’> r= <I>;r (7

t'=1
t
G =M (Z (vM')" ‘1> r=&,r. (8)
t'=1

where §, ; and Gy, are the estimated policy values at

(2'D 7, (2')) and (D, a™), respectively, for (9.

In future derivations, we will drop the time dependence of ®
and q on ¢. This is justified when there are well defined ends
of trajectories with no nearest neighbors (or equivalently,
trajectories end in an absorbing state), and the number of
iterations in the FQE is larger than the longest trajectory.

Influence function computation. Removal of a transi-
tion 7() from the dataset can affect g; in two ways. First,
¢; is a mean over all of its neighbors, indexed by k, of
k) 4+, Thus if (z1),al?)) is one of the M, neighbors
of (2(V, al)), removing it from the dataset will change the
value of ¢; by H=U 7))
M -1
does not pose a problem in the denominator, as given
that ¢ # j and every transition is a neighbor of itself, if
(z),al9)) is a neighbor of (z(V, "), then M;* > 2.

. The special case of Migl =1

The second way in which removing 7(/) influences g
is through its effect on intermediary transitions. Re-
moval of 70/) changes the estimated value of ¢}, of
all (2'®) 7, (2'(®))) that (1), a9)) is a neighbor of by
g —(r+7d})
M -1
difference in ¢, due to removal of 7U). A change in the
value of ¢y, is identical in its effect on the value estimation
to changing 7(*), a change which is mediated to §; through
@, In the special case that (), a(9)) is the only neighbor
of (z/®), 7, (2/(¥))), the value estimate g, changes from g;
to zero.

. Multiplying this difference by ~ yields the

Combining the two ways in which removal of 7() changes
the estimated value ¢; yields the individual influence:

i — (D) 4 g
gi — (rY +1¢;
H(Aij)—( — ) + 310, ©

Li; = 1
MZ] k::Ak/j
where we define
(G g
e Gl ) R VT B
].(7’;.) — T®ik kajl—l kj (10)

Y@k q; M;/c;l =1

Computational complexity. The matrix formulation of
kernel based FQE allows us to compute an individual in-
fluence in constant time, making influence analysis of the
entire dataset possible in O(N|Dg|) time. Furthermore, the
sparsity of M and M’ allows the FQE itself to be done in
O(N?T). See Appendix 1.2 for a full discussion.

5.2. Linear Least Squares FQE

In linear least squares FQE, the policy value function §(x, a)
is approximated by a linear function §(x,a) = ¥ (z,a) 'w
where ¥ (x, a) is a D-dimensional feature vector for a state-
action pair. Let & € RY*P be the sample matrix of ¢(x, a).
Define vector ¥ (z) = v (z, m.(x)) and let ¥, € RV*P
be the sample matrix of ¢ (z’). The least-squares solution
of wis (T W —~¥ ¥ )~ 1 "r (See Appendix 2 for full
derivation).

Let w_; be the solution of linear least squares FQE after
removing 7)) and W_;,r_;,and ¥, _; be the correspond-
ing matrices and vectors without the 7). Then, w_ j=
(T, W _; —y® T W, ;)"'®T r_; The key challenge
of computing the influence function is computing w_; in
an efficient manner that avoids recomputing a costly matrix
inverse for each j. Let C_; = (\Il—_rj\ILj - V\Iﬂ_—j\Ilp,,j)
and C = (U TW — ¥ "¥,). We compute w_; as follows:

Clyp C
B, «+ C !+ 2 (11)
J 1 7'1/);071'(/)]‘
B.v.w! .B.
(C_)) B~ Yi¥x ;B (12)

1+ B,
w_j « (C_;)" (\Iﬁr - r<i>¢j) (13)

The proof of correctness is in Proposition 3 in Appendix 2.
The individual influence function is then simply:

Lij = $(s",a®) T (w_j —w). (14)
Computational complexity. The bottleneck of comput-
ing w_; is the matrix multiplication of D x D matrices
which takes at most O(D?). All the other matrix multiplica-
tions involving size N, e.g. ¥ 'r, do not depend on j and
could be cached from the original OPE. Thus, the overall
complexity for computing I; ; for all i and j is O(ND?3).
Assuming N > D, the complexity of the original OPE

algorithm is O(IN D?), where the bottleneck is computing
ARV

5.3. Importance Sampling

IS methods are essentially weighted averages over returns of
trajectories, and therefore computing the total influence of a
trajectory in a dataset can easily be performed in constant
time, as long as certain values a cached. For example, the
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influence of the j'" trajectory for standard IS is
1 . N
I = v (0 - wihef), (15)

where IV is the number of trajectories, and w((f% and g§? ) are
the IS weight and return of the j'” trajectory, respectively.
In Appendix 3 we present the derivation of the influence for
IS, WIS, PDIS, DR and WDR estimators.

6. Illustration of influence functions in a
sequential setting

We now demonstrate and give intuition for how the influ-
ence behaves in an RL setting. For the demonstrations and
experiments presented throughout the rest of the paper we
use the kernel-based FQE method.

Several factors determine the influence of a transition. For
transitions to be influential they must have actions which
are possible under the evaluation policy and form links in
sequences which result in returns different than the expected
value. Furthermore, transitions will be more influential the
less neighbors they have.

To demonstrate this intuition we present in Figure 2 trajec-
tories from a 2D continuous navigational domain '. The
agent starts at the origin and takes noisy steps of length 1 at
45° to the axes. The reward for a given transition is a func-
tion of the state and has the shape of a Gaussian centered
along the approximate path of the agent, represented as the
background heat map in Figure 2 (top), where observed tran-
sitions are drawn as black line segments. Because distances
for the FQE are computed in the state-action space, in this
example all actions in the data are the same to allow for
distances to be visualized in 2D.

To illustrate how influence is larger for transitions with few
neighbors, we removed most of the transitions in two re-
gions (denoted II and III), and compared the distribution of
influences in these regions with influences in a data dense
region (denoted I). Figure 2 (bottom) shows the distribu-
tion over 200 experiments (in each experiment, new data is
generated) of the influences of transitions in the different
regions. The influence is much higher for transitions in
sparse regions with few neighbors, as can be seen by com-
paring the distributions in regions I and II. This is a desired
property, as in analysis of the OPE process, we’d like to be
able to present domain experts with transitions that have
few neighbors where the sampling variance of a particular
transition could have large effect on evaluation.

In region II1, despite the fact that the observations examined

!Code for reproducing the results in this paper can be found at
https://github.com/dtak/interpretable_ope_public.git
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Figure 2. Conceptual demonstration on a 2D domain. For tran-
sitions in the data to have high influence, they must agree with the
evaluation policy and lead to rewarding regions in the state-action
space. Additionally, the influence of transitions decreases with the
number of their close neighbors.

also have very few neighbors, their influence is extremely
low, as they don’t lead to any regions where rewards are
gained by the agent.

7. Experiments
7.1. Medical cancer simulator

To demonstrate the different ways in which influence anal-
ysis can allow domain experts to either increase our con-
fidence in the validity of OPE or identify instances where
they are invalid, we first present results on a simulator of
cancer dynamics. The 4 dimensional states of the simulator
approximate the dynamics of tumor growth, with actions
consisting administration of chemotherapy at each timestep
representing one month. See Ribba et al. (2012) for details.

In Figure 3 we present four cases in which we attempt to
evaluate the policy of treating a patient for 15 months and
then discontinuing chemotherapy until the end of treatment
at 30 months. Each subplot in Figure 3 shows two of the
four state variables as a function of time, under different
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Figure 3. Influence analysis for simulated cancer data. Analy-
sis of synthetic cancer simulations demonstrates how influence
analysis can differentiate between different diagnostics of the OPE
process.

conditions which might make evaluation more difficult, such
as difference in behavior policy or stochasticity in the envi-
ronment. The heavy black line represents the expectation of
each state dimension at each time-step under the evaluation
policy, while the grey lines represent observed transitions
under the behavior policy which is e-greedy with respect to
the evaluation policy. In all figures, we highlight in red all
influential transitions our method would have highlighted
for review by domain experts (I, = 0.05).

Case 1: OPE seems reliable. Figure 3(a) represents a typ-
ical example where the OPE can easily be trusted. Despite
the large difference between the evaluation and behavior
policy (e = 0.3), enough trajectories have been observed in
the data to allow for proper evaluation, and no transition is
flagged as being too influential. The value estimation error
in this example is less than 1% and our method correctly
labels this dataset as reliable.

Case 2: Unevaluatable. Figure 3(b) is similar in experi-
mental conditions to (a) (¢ = 0.3 and deterministic transi-

Influence Distribution

a0 Is
ws

70 FDIS

60
50
40
30
20

10

-020 -015 -010 -005 000 005
Normalized Influence

(a) Influence Distribution

200

5.01
Uz.s-m & 10
ool . : . ) ——

0 10 20 a0 0 10 20 30
Time Time
(b) IS
200
5.0 N
© 2.5-% O 100
00 o | —
0 10 20 30 0 10 20 30
Time Time
(c) WIS
200
5.0 o
© 2.5-& © 100
0ol . e ——,
0 10 20 30 0 10 20 30
Time Time
(d) PDIS

Figure 4. IS influence analysis for simulated cancer data. For
the same dataset, different estimators have different influence dis-
tributions, and for each estimator different trajectories have high
influence.

tions), but with less collected data, so that the observations
needed to properly estimate the dynamics are not in the data.
This can be seen by the lack of overlap between the observed
transitions and the expected trajectory, and results in a 38%
value estimation error. In real life we will not know what
the expected trajectory under the evaluation policy looks
like, and therefore will not be able to make the comparison
and detect the lack of overlap between transitions under
the evaluation and behavior policies. However, our method
highlights a very influential sequence which terminates at a
dead-end, and thus will correctly flag this dataset as not suf-
ficient for evaluation. Our method in this case is confident
enough to dismiss the results of evaluation without need for
domain experts, but can still inform experts on what type of
data is lacking in order for evaluation to be feasible.
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Case 3: Humans might help. In Figures 3(c-d), ¢ = 0.3,
but the dynamics have different levels of stochasticity. The
less stochastic dynamics in 3(c) allow for relatively accu-
rate evaluation (8% error) but our method identifies several
influential transitions which must be presented to a domain
expert. These transitions lie on the expected trajectory, and
thus a clinician would verify that they represent a typical re-
sponse of a patient to treatment. This is an example in which
our method would allow a domain expert to verify the va-
lidity of the evaluation by examining the flagged influential
transitions.

Conversely, in 3(d) some extreme outliers lead to a large
estimation error (23% error). The influential transitions
identified by our method are exactly those which start close
to the expected trajectory but deviate significantly from the
expected dynamics. A domain expert presented with the
these transitions would easily be able to note that the OPE
heavily relies on atypical patients and rightly dismiss the
validity of evaluation.

To summarize, we demonstrated that analysis of influences
can both validate or invalidate the evaluation without need
for domain experts, and in intermediate cases present do-
main experts with the correct queries required to gain confi-
dence in the evaluation results or dismiss them.

Influence analysis for IS - Influence is a method specific
quantity. In Figure 4 we present influence analysis re-
sults for the cancer environment, with different importance
sampling methods. Unlike the FQE experiment where we
performed influence analysis of the same estimator for dif-
ferent datasets, here we analyze the same dataset for three
different OPE estimaors - IS, WIS and PDIS. In Figure 4 (a)
we plot the distribution of the influence of all trajectories
in the data, and see that the distributions are qualitatively
different for each estimator. Furthermore, in 4 (b-d) we
highlight the 5 most influential trajectories for each estima-
tor, and see that they are different for each estimator. The
key point we wish to highlight is that influence analysis
identifies features of the interaction between a dataset and
an estimator, and not of the data alone. This makes sense,
as different OPE methods are robust or sensitive to different
types of noise or artefacts in the data.

7.2. Analysis of real ICU data - MIMIC III

To show how influence analysis can help debug OPE for a
challenging healthcare task, we consider the management
of acutely hypotensive patients in the ICU. Hypotension is
associated with high morbidity and mortality (Jones et al.,
2006), but management of these patients is not standard-
ized as ICU patients are heterogeneous. Within critical care,
there is scant high-quality evidence from randomized con-
trolled trials to inform treatment guidelines (de Grooth et al.,

2018; Girbes & de Grooth, 2019), which provides an oppor-
tunity for RL to help learn better treatment strategies. In
collaboration with an intensivist, we use influence analysis
to identify potential artefacts when performing OPE on a
clinical dataset of acutely hypotensive patients.

Data and evaluation policy. Our data source is a subset
of the publicly available MIMIC-III dataset (Johnson et al.,
2016). See Appendix 4 for full details of the data prepro-
cessing. Our final dataset consists of 346 patient trajectories
(6777 transitions) for learning a policy and another 346 tra-
jectories (6863 transitions) for evaluation of the policy via
OPE and influence analysis.

Our state space consists of 29 relevant clinical variables,
summarizing current physiological condition and past ac-
tions. The two main treatments for hypotension are admin-
istration of an intravenous (IV) fluid bolus or initiation of
vasopressors. We bin doses of each treatment into 4 cat-
egories for “none”, ”low”, “medium” and "high”, so that
the full action space consists of 16 discrete actions. Each
reward is a function of the next blood pressure (MAP) and
takes values in [—1, 0]. As an evaluation policy, we use the
most common action of a state’s 50 nearest neighbors. This
is setup is equivalent to constructing a decision assistance
tool for clinicians by recommending the common practice
action for patients, and using OPE combined with influence
analysis to estimate the efficacy of such a tool. See Ap-
pendix 4 for more details on how we setup the RL problem
formulation, and for the kernel function used to compute
nearest-neighbors.

Presenting queries to a practicing intensivist. Running
influence analysis flags 6 influential (I = 0.05). We show
2 of these transitions in Figure 5 and the rest in Appendix
5. While this analysis highlights individual transitions, our
results figures display additional context before and after
the suspect transition to help the clinician understand what
might be going on.

In Figure 5, each column shows a transition flagged by influ-
ence analysis. The top two rows show actions taken (actual
treatments in the top row and binned actions in the second
row). The remaining three rows show the most important
state variables that inform the clinicians’ decisions: blood
pressure (MAP), urine output, and level of consciousness
(GCS). For these three variables, the abnormal range is
shaded in red, where the blood pressure shading is darker
highlighting its direct relationship with the reward. Vertical
grey lines represent timesteps, and the highlighted influen-
tial transition is shaded in grey.

Outcome: Identifying and removing an influential,
buggy measurement. The two transitions in Figure 5
highlight potential problems in the dataset that have a large
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Figure 5. Influence analysis on our real-world dataset discovered six transitions in the evaluation dataset that were especially influential on
our OPE. We display two of them in this figure, see Appendix 5 for the remaining four.

influence. In the first transition (left), a large drop in blood
pressure is observed at the starting time of this transition,
potentially indicating a dangerous hypotensive state. Supris-
ingly, the patient received no treatment, and this unusual
transition has a 29% influence on the OPE estimate. Given
additional context just before and after the transition, show-
ing otherwise stable MAP and GCS (patient was conscious
and alert) as well as a normal urine output, the intensivist
determined the single low MAP value was likely either
a measurement error or a clinically insignificant transient
episode of hypotension. After correcting the outlier MAP
measurement to its most recent normal value (80mmHg) and
then rerunning FQE and the influence analysis, the transition
no longer has high influence and was not flagged.

Outcome: Identifying and correcting a temporal mis-
alignment. The second highlighted transition (right) fea-
tures a sudden drop in GCS and worsening MAP values,
indicating a sudden deterioration of the patient’s state, but
treatment is not administered until the next timestep. The
intensivist attributed this finding to a time stamp recording
error. Again, influence analysis identified an inconsistency
in the original data which had undue impact on evaluation.
After correcting the inconsistency by shifting the two fluid
treatments back by one timestep each, we found that the
transition no longer had high influence and was not flagged.

8. Discussion

A key aim of this paper is to formulate a framework for using
domain expertise to help in evaluating the trustworthiness of
OPE methods for noisy and confounded observational data.
The motivation for this research direction is the intersec-
tion of two realities: for messy real-world applications, the
data itself might never be enough; and domain experts will
always need to be involved in the integration of decision
support tools, so we should incorporate their expertise into
the evaluation process. We showcased influence analysis
as one way of performing this task for value-based and IS
OPE, but emphasize that such measures can and should be
incorporated into other methods as well. For example, when
modeling the dynamics in model-based OPE, the results can
be tested for their agreement with expert intuition.

We stress that research to integrate human input into OPE
methods to increase their reliability complements, and does
not replace, the approaches for estimating error bounds and
uncertainties over the errors of OPE estimates. The fact
that traditional theoretical error bounds rely so heavily on
assumptions which are generally impossible to verify from
the data alone highlights the need for other techniques for
gauging to what extent these assumptions hold.
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