Interpretable Off-Policy Evaluation in Reinforcement Learning
by Highlighting Influential Transitions — Appendix

1. Derivations for Kernel-Based FQE
1.1. Proof of Proposition 1

Proposition 1. For all transitions in the dataset, the values
for corresponding state-action pairs are given by
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where (jgl and G ; are the estimated policy values at
(2'D 7o (2'D)) and (2P, aD), respectively, for the ob-
served transition 1

Proof. We first prove 1 by induction. We start by noting that
for a given observed transition, ¢, averaging over all observa-
tions j such that A;; holds can be written as NL Zj Ay,

> K N”) >_; M;;. Similarly, averaging over all j such
that Ay holds can be written as 3 _; M;;. Therefore, if
u(x,a) is some function over the sttate—action space and
u is a vector containing the quantity u; = u(z®, a() for
every (9, a(?), then the nearest-neighbors estimation of
u(z'@, 7 (2'@)) is given by [M'u];.

Given the formulation above, for t = 1, @;7 estimates the

reward at (z/), 7(2'®)), and can be written as:
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completing the proof of 1. To estimate §,, we write §; ; =
i 2 jea,, (1Y) +74d;_, ;) or in matrix notation.
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1.2. Computational complexity.

Computation of a single influence value, I, 4,7 requires sum-
mation over all transitions k that satisty A ;. Denote the
number of such neighbors by N, I, We expect N i tobe

small and not scale with the size of the dataset, and also I~7 i
is inversely proportional to N, Thus, if we only compute
the influence of transitions such that NV ;-‘, “"}“X =N J* o
where v, 1S the maximum possible value, we are guaran-
teed not to miss any transitions with influence larger than
our threshold I,. Since N . does not scale with the size of
the data, computation of a smgle individual influence can
effectively be done in constant time. Performing influence
analysis on a full dataset requires computing the influences
of all transitions on all initial transitions, and therefore takes
O(N|D{|) time.

In our matrix formulation, the FQE evaluation itself is bot-
tlenecked by computing the matrix ®, which includes com-
putation of powers of M’. Because M’ is a sparse matrix
(each row ¢ only has IV; nonzero elements), the matrix mul-
tiplication itself can be done in O(N?) rather than O(N?)
time, and the entire evaluation is done in O(N?T) time. Im-
portantly, the influence analysis analyzing all transitions has
lower complexity than the OPE, and should not significantly
increase the computational cost of the evaluation pipeline.

'Note that N7, which counts all k that satisfy A, is subtly
different from the quantity N/ introduced in section 5.1, which
counts all k that satisfy Aj/.
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2. Derivations Linear Least-Squares FQE
Proposition 2. The the linear least square solution of fitted

Q evaluation is (¥ T¥ — U T W )1 W T

Proof. The least-square solution of parameter vector w can
be found by minimizing the following square error of the
Bellman equation for all (z, a) in the dataset:

2
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Plugging in §(x, a) = ¥ (x, a) " w, the square error is
(¥(z,0) "W —r(z,a) — 'y@bﬂ(a:')Tw)Q (7

By definition of ¥ and ¥, the mean square error over the
N samples is:
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The least square solution is:
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Proof. By the list squares solution of FQE, w_;
equals (¥1,®_; — 'y\Il:j\Ilp’,j)_llIler,i. Since
\Iljjr_j = ¥'r — T(Z)'cpj, we have that w_; =
(C_;) "' (¥Tr —rWg;). Then
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because
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This indicate C_; equals C plus two rank-1 matrices. For-
tunately, we can store C~! when we compute w and §. The
following result named Sherman—Morrison formula allow
us to compute C:; from C~! in an efficient way. For any
invertible matrix A € R%*4 and vector u, v € R%:
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3. Influence computation of importance
sampling methods

The standard importance sampling (IS) estimator is given
by

N
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where the summation is over all N trajectories in the dataset,

and the importance sampling weight wy.; is given by
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This relation is nothing more then the fact that removing
the j** sample from an average over N samples, T =
+ 3" 2™, changes the average by 2 (z — 2)).
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Using the same derivation we can compute the influence of
the per-decision importance sampling estimator (PDIS) and
doubly-robust importance sampling estimator (DR):

PDIS For the PDIS estimator, given by
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the total influence of trajectory j is given by
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DR For the DR estimator (Jiang & Li, 2015), given by
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where v and ¢ are independent estimates of the value func-
tion, the total influence of trajectory j is given by
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3.1. Influence of weighted IS estimators

For weighted estimators such as weighted importance sam-
pling (WIS) given by

Wrs = vy Zwo"%g%"% (26)
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the influence calculation is slightly different, and requires
caching the sum of weights of all trajectories in the data.
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In the last expression, W = Zn 1 Wp.p 18 the cached sum

of weights.

WDR For the weighted doubly robust estimator (WDR)
(Thomas & Brunskill, 2016) the influence calculation is
conceptually similar, but the fact that the sum of weights
which normalizes the estimator is time dependant makes it a
little more tedious and requires caching a number of values
which scales with the horizon, 7T'. The estimator is given by
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If we switch the order of summation and treat the three terms

in the sum independently, we can think of the estimator as
being composed of 37" terms:

where we define W;

"
R = Z v (Z i (29)
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For a given ¢, let’s look at the resulting difference in the first
term if trajectory j is removed from the data:
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Equation 30 for the second and third terms in Equation
29 (note the time offset in the definition of C;) we see that
the influence of the WDR is given by
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4. Preprocessing and experimental details for
MIMIC-III acute hypotension dataset

In this section, we describe the preprocessing we performed
on the raw MIMIC-III database to convert it into a dataset
amenable to modeling with RL. This preprocessing pro-
cedure was done in close consultation with the intensivist
collaborator on our team.

4.1. Cohort Selection

We use MIMIC-III v1.4 (Johnson et al., 2016), which con-
tains information from about 60,000 intensive care unit
(ICU) admissions to Beth Israel Deaconess Medical Cen-
ter. We filter the initial database on the following features:
admissions where data was collected using the Metavision
clinical information system; admissions to a medical ICU

(MICU); adults (age > 18 years); initial ICU stays for hos-
pital admissions with multiple ICU stays; ICU stays with a
total length of stay of at least 24 hours; and ICU stays where
there are 7 or more mean arterial pressure (MAP) values
of 65mmHg or less, indicating probable acute hypotension.
For long ICU stays, we limit to only using information
captured during the inital 48 hours after admission, as our
intensivist advised that care for hypotension during later
periods of an ICU stay often look very different. After this
filtering, we have a final cohort consisting of 1733 distinct
ICU admissions. For computational convenience, we fur-
ther down-sample this cohort, and use 20% (346) ICU stays
to use to learn a policy, and another 20% (346) ICU stays
to evaluate the policy via FQE and our proposed influence
analysis.

4.2. Clinical Variables Considered

Given our final cohort of patients admitted to the ICU, we
next discuss the different clinical variables that we extract
that are relevant to our task of acute hypotension manage-
ment.

The two first-line treatments are intravenous (IV) fluid bolus
therapy, and vasopressor therapy. We construct fluid bolus
variables in the following way:

1. We filter all fluid administration events to only in-
clude NaCl 0.9%, lactated ringers, or blood transfu-
sions (packed red blood cells, fresh frozen plasma, or
platelets).

2. Since a fluid bolus should be a nontrivial amount of
fluid administered over a brief period of time, we fur-
ther filter to only fluid administrations with a volume
of at least 250mL and over a period of 60 minutes or
shorter.

Each fluid bolus has an associated volume, and a starting
time (since a bolus is given quickly / near-instantaneously,
we ignore the end-time of the administration). To construct
vasopressors, we first normalize vasopressor infusion rates
across different drug types as follows, using the same nor-
malization as in Komorowski et al. (2018):

1. Norepinephrine: this is our “base” drug, as it’s the
most commonly administered. We will normalize all
other drugs in terms of this drug. Units for vasopressor
rates are in mcg per kg body weight per minute for all
drugs except vasopressin.

2. Vasopressin: the original units are in units/min. We
first clip any values above 0.2 units/min, and then mul-
tiply the final rates by 5.

3. Phenylephrine: we multiply the original rate by 0.45.
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4. Dopamine: we multiply the original rate by 0.01.

5. Epinephrine: this drug is on the same scale as nore-
pinephrine and is not rescaled.

As vasopressors are given as a continuous infusion, they
consist of both a treatment start time and stop time, as
well as potentially many times in the middle where the
rates are changed. More than a single vasopressor may be
administered at once, as well.

We also use 11 other clinical variables as part of the state
space in our application: serum creatinine, FiO,, lactate,
urine output, ALT, AST, diastolic/systolic blood pressure,
mean arterial pressure (MAP; the main blood pressure vari-
able of interest), PO4, and the Glasgow Coma Score (GCS).

4.3. Selecting Action Times

Given a final cohort, clinical variables, and treatment vari-
ables, we still must determine how to discretize time and
choose at which specific time points actions should be cho-
sen. To arrive at a final set of “action” times for a specific
ICU stay, we use the following heuristic-based algorithm:

1. We start by including all times a treatment is started,
stopped, or modified.

2. Next, we remove consecutive treatment times if there
are no MAP measurements between treatments. We do
this because without at least one MAP measurement
in between treatments, we would not be able to assess
what effect the treatment had on blood pressure. This
leaves us with a set of time points when treatments
were started or modified.

3. At many time points, the clinician consciously chooses
not to take an action. Unfortunately, this informa-
tion is not generally recorded (although, on occasion,
may exist in clinical notes). As a proxy, we consecu-
tively add to our existing set of “action times” any time
point at which an abnormally low MAP is observed
(< 60mmHg) and there are no other “action times”
within a 1 hour window either before or after. This
captures the relatively fine-granularity with which a
physician may choose not to treat despite some degree
of hypotension.

4. Last, we add additional time points to fill in any large
gaps where no “action times” exist. We do this by
adding time points between existing “action times” un-
til there are no longer any gaps greater than 4 hours
between actions. This makes some clinical sense, as pa-
tients in the ICU are being monitored relatively closely,
but if they are more stable, their treatment decisions
will be made on a coarser time scale.

Now that we have a set of action times for each trajectory,
we can count up the total number of transitions in our train-
ing and evaluation datasets (both of which consist of 346
trajectories). The training trajectories contain a total of 6777
transitions, while there are 6863 total transitions in the eval-
uation data. Trajectories vary in length from a minimum
of 7 transitions to a maximum of 49, with 16, 18, and 23
transitions comprising the 25%, 50%, and 75% quantiles,
respectively.

4.4. Action Space Construction

Given treatment timings, doses, and manually identified
“action times” at which we want to assess what type of
clinical decision was made, we can now construct our action
space. We choose to operate in a discrete action space,
which means we need to decide how to bin each of the
continuous-valued treatment amounts.

Binning of IV fluids is more natural and easier, as fluid
boluses are generally given in discrete amounts. The
most common bolus sizes are 500mL and 1000mL, so
we bin fluid bolus volumes into the following 4 bins,
which correspond to “none”/“low”/“medium”/*high” (in
mL): {0,[250,500), [500, 1000), [L000, o]}, although in
practice very few boluses of more than 2L are ever given.
Given this binning scheme, we can simply add up the total
amount of fluids administered during any adjacent action
times to determine which discrete fluid amount we should
code the action as.

Binning of vasopressors is slightly more complex. These
drugs are dosed at a specific rate, and there may be many
rate changes made between action times, or sometimes
there are several vasopressors being given at once. We
chose to first add up the cumulative amount of (normal-
ized) vasopressor drug administered between action times,
and then normalize this amount by the size of the time
window between action times to account for the irregu-
lar spacing. Finally, we also bin vasopressors into 4 dis-
crete bins corresponding to “none”/“low”/“medium”/*high”
amounts: {0, (0,8.1),[8.1,21.58),[21.58,cc]}. The rele-
vant units here are total mcg of drug given each hour, per
kg body weight. Since the distribution of values for vaso-
pressors is not as naturally discrete, we chose our bin sizes
using the 33.3% and 66.7% quantiles of dose amounts.

In the end, we have an action space with 16 possible dis-
crete actions, considering all combinations of each of the 4
vasopressor amounts and fluid bolus amounts.

4.5. State Construction

Given a patient cohort, decision/action times, and discrete
actions, we are now ready to construct a state space. For
simplicity in this initial work, we first start with the 11 clin-
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ical time series variables previously listed. If a variable is
never measured, we use the population median as a place-
holder. If a variable has been measured before, we use the
most recent measurement. The sole exception to this is the
3 blood pressure variables. For the blood pressures, we
instead use the minimum (or worst) value observed since
the last action.

We add to these a number of indicator variables that denote
whether a particular variable was recently measured or not.
Due to the strongly missing-not-at-random nature of clinical
time series, there is often considerable signal in knowing
that certain types of measurements were recently taken,
irrespective of the measurement values (Agniel et al., 2018).
We choose to construct indicator variables denoting whether
or not a urine output was taken since the last action time,
and whether a GCS was recorded since the last action. We
also include state features denoting whether the following
labs/vitals were ever ordered: creatinine, FiO5, lactate, ALT,
AST, PO,. We do not include these indicators for all 11
clinical variables, as most of the vitals are recorded at least
once an hour, and sometimes even more frequently. In total,
8 indicators comprise part of our state space.

Last, we include 10 additional variables that summarize
past treatments administered, if any. We first include 6
indicator variables (3 for each treatment type) denoting
which dose of fluid and vasopressor, if any, was chosen at
the last action time. Last, for each treatment type we include
two final features that summarize past actual amounts of
treatments administered (the total amount of this treatment
administered up until the current time, and the total amount
of this treatment administered within the last 8 actions.

In total, our final state space has 29 dimensions. In future
work we plan to explore richer state representations.

4.6. Reward Function Construction

In this preliminary work, we use a simple reward that is a
piecewise linear function of the MAP in the next state. In
particular, the reward takes on a value of —1 at 40mmHg,
the lowest attainable MAP in the data. It increases lin-
early to -0.15 at 55mmHg, linearly from there to -0.05 at
60mmHg, and achieves a maximum value of 0 at 65mmHg,
a commonly used target for blood pressure in the ICU (Asfar
et al., 2014). However, if a patient has a urine output of
30mL/hour or higher, then any MAP values of 55mmHg or
higher are reset to 0. This attempts to mimic the fact that a
clinician will not be too concerned if a patient is slightly hy-
potensive but otherwise stable, since a modest urine output
indicates that the modest hypotension is not a real problem.

4.7. Choice of Kernel Function

In order to use kernel-based FQE, we need to define a kernel
that defines similarity between states. In consultation with
our intensivist collaborator, we chose a simple weighted
Euclidean distance, where each state variable receives a
different weight based on its estimated importance to the
clinical problem. We show all weights in Table 1.

Since technically we need a kernel over both all possible
states and actions for FQE and influence analysis, we aug-
ment our kernel with extremely large weights so that effec-
tively the kernel only compares pairs (s, a) and (s’, a’) for
a = a’. Other choices should be made for continuous action
spaces.

4.8. Hyperparameters

We use the training set of 6777 trajectories to learn a policy
to then evaluate using FQE and influence analysis. In par-
ticular, we learn a deterministic policy by taking the most
common action within the 50 nearest neighbors of a given
state, with respect to the kernel in Table 1. We use a dis-
count of v = 1 so that all time steps are treated equally, and
use a neighborhood radius of 7 for finding nearest neighbors
in FQE. Lastly, for the influence analysis, we use a thresh-
old of 0.05, or 5%, so that transitions which will affect the
FQE value estimate by more than 5% are flagged for expert
review.

5. Additional Results from MIMIC-III acute
hypotension dataset

In the main body of the paper, we showed two qualitative
results figures showing 2 of the 6 highly influential transi-
tions flagged by influence analysis. In this section, we show
the remaining 4 influential transitions.
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Influence of Flagged Transition: 6%
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Influence of Flagged Transition: 5%
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Figure 2. An additional example identified by our influence analy-
sis as having an especially high effect on the OPE value estimate.
Note that this transition is from the same trajectory as the influen-
tial transition highlighted in Figure 3
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Figure 3. An additional example identified by our influence analy-
sis as having an especially high effect on the OPE value estimate.
Note that this transition is from the same trajectory as the influen-
tial transition highlighted in Figure 2
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Influence of Flagged Transition: 19%
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Figure 4. An additional example identified by our influence analy-
sis as having an especially high effect on the OPE value estimate.
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