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Abstract
Probabilistic programming has emerged as a pow-
erful paradigm in statistics, applied science, and
machine learning: by decoupling modelling from
inference, it promises to allow modellers to di-
rectly reason about the processes generating data.
However, the performance of inference algo-
rithms can be dramatically affected by the parame-
terisation used to express a model, requiring users
to transform their programs in non-intuitive ways.
We argue for automating these transformations,
and demonstrate that mechanisms available in re-
cent modelling frameworks can implement non-
centring and related reparameterisations. This
enables new inference algorithms, and we pro-
pose two: a simple approach using interleaved
sampling and a novel variational formulation that
searches over a continuous space of parameteri-
sations. We show that these approaches enable
robust inference across a range of models, and
can yield more efficient samplers than the best
fixed parameterisation.

1. Introduction
Reparameterising a probabilistic model means expressing
it in terms of new variables defined by a bijective transfor-
mation of the original variables of interest. The reparam-
eterised model expresses the same statistical assumptions
as the original, but can have drastically different posterior
geometry, with significant implications for both variational
and sampling-based inference algorithms.

Non-centring is a particularly common form of reparam-
eterisation in Bayesian hierarchical models. Consider a
random variable z ∼ N (µ, σ); we say this is in centred
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parameterisation (CP). If we instead work with an auxil-
iary, standard normal variable z̃ ∼ N (0, 1), and obtain z
by applying the transformation z = µ + σz̃, we say the
variable z̃ is in its non-centred parameterisation (NCP). Al-
though the centred parameterisation is often more intuitive,
non-centring can dramatically improve the performance of
inference (Betancourt & Girolami, 2015). Neal’s funnel
(Figure 1a) provides a simple example: most Markov chain
Monte Carlo (MCMC) algorithms have trouble sampling
from the funnel due to the strong non-linear dependence be-
tween latent variables. Non-centring the model removes this
dependence, converting the funnel into a spherical Gaussian
distribution.

Bayesian practitioners are often advised to manually non-
centre their models (Stan Development Team et al., 2016);
however, this breaks the separation between modelling and
inference and requires expressing the model in a potentially
less intuitive form. Moreover, it requires the user to un-
derstand the concept of non-centring and to know a priori
where in the model it might be appropriate. Because the best
parameterisation for a given model may vary across datasets,
even experts may need to find the optimal parameterisation
by trial and error, burdening modellers and slowing down
the model development loop (Blei, 2014).

We propose that non-centring and similar reparameterisa-
tions be handled automatically by probabilistic program-
ming systems. We demonstrate how such program trans-
formations may be implemented using the effect handling
mechanisms present in several modern deep probabilistic
programming frameworks, and consider two inference algo-
rithms enabled by automatic reparameterisation: interleaved
Hamiltonian Monte Carlo (iHMC), which alternates HMC
steps between centred and non-centred parameterisations,
and a novel algorithm we call Variationally Inferred Parame-
terisation (VIP), which searches over a continuous space of
reparameterisations that includes non-centring as a special
case.1 We compare these strategies to a fixed centred and
non-centred parameterisation across a range of well-known
hierarchical models. Our results suggest that both VIP and
iHMC can enable for more automated robust inference, of-
ten performing at least as well as the best fixed parame-

1Code for these algorithms and experiments is available at
https://github.com/mgorinova/autoreparam.

https://github.com/mgorinova/autoreparam
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(a) Centred (left) and non-centred (right) parame-
terisation.

NealsFunnel(z, x) :

z ∼ N (0, 3)

x ∼ N (0, exp(z/2))

(b) Model that generates variables
z and x.

z = 0

lpz = log pN (z | 0, 3)

x = 0

lpx = log pN (x | 0, exp(z/2))

(c) The model in the context of
log_prob_at_0.

Figure 1. Neal’s funnel (Neal, 2003): z ∼ N(0, 3); x ∼ N(0, ez/2).

terisation and sometimes better, without requiring a priori
knowledge of the optimal parameterisation. Both strategies
have the potential to free modellers from thinking about
manual reparameterisation, accelerate the modelling cycle,
and improve the robustness of inference in next-generation
modelling frameworks.

2. Related Work
The value of non-centring is well-known to MCMC prac-
titioners and researchers (Stan Development Team et al.,
2016; Betancourt & Girolami, 2015), and can also lead
to better variational fits in hierarchical models (Yao et al.,
2018). However, the literature largely treats this as a mod-
elling choice; Yao et al. (2018) propose that “there is no
general rule to determine whether non-centred parameterisa-
tion is better than the centred one.” We are not aware of prior
work that treats non-centring directly as a computational
phenomenon to be exploited by inference systems.

Non-centred parameterisation of probabilistic models can be
seen as analogous to the reparameterisation trick in stochas-
tic optimisation (Kingma & Welling, 2013); both involve
expressing a variable in terms of a diffeomorphic transfor-
mation from a "standardised" variable. In the context of
probabilistic inference, these are complementary tools: the
reparameterisation trick yields low-variance stochastic gradi-
ents of variational objectives, whereas non-centring changes
the geometry of the posterior itself, leading to qualitatively
different variational fits and MCMC trajectories.

In the context of Gibbs sampling, Papaspiliopoulos et al.
(2007) introduce a family of partially non-centred parame-
terisations similar to those we use in VIP (described below)
and show that it improves mixing in a spatial GLMM. Our
current work can be viewed as an general-purpose exten-
sion of this work that mechanically reparameterises user-
provided models and automates the choice of parameter-
isation. Similarly, Yu & Meng (2011) proposed a Gibbs
sampling scheme that interleaves steps in centred and non-
centred parameterisations; our interleaved HMC algorithm
can be viewed as an automated, gradient-based descendent

of their scheme.

Recently, there has been work on accelerating MCMC infer-
ence through learned reparameterisation: Parno & Marzouk
(2018) and Hoffman et al. (2019) run samplers in the image
of a bijective map fitted to transform the target distribu-
tion approximately to an isotropic Gaussian. These may be
viewed as ‘black-box’ methods that rely on learning the tar-
get geometry, potentially using highly expressive neural vari-
ational models, while we use probabilistic-program transfor-
mations to apply ‘white-box’ reparameterisations similar to
those a modeller could in principle implement themselves.
Because they exploit model structure, white-box approaches
can correct pathologies such as those of Neal’s funnel (Fig-
ure 1a) directly, reliably, and at much lower cost (in parame-
ters and inference overhead) than black-box models. White-
and black-box reparameterisations are not mutually exclu-
sive, and may have complementary advantages; combining
them is a likely fruitful direction for improving inference in
structured models.

Previous work in probabilistic programming has been ex-
ploring other ‘white-box’ approaches to perform or optimise
inference. For example, Hakaru (Narayanan et al., 2016;
Zinkov & Shan, 2017) and PSI (Gehr et al., 2016; 2020)
use program transformations to perform symbolic inference,
while Gen (Cusumano-Towner et al., 2019) and SlicStan
(Gorinova et al., 2019) can statically analyse the model
structure to compile to a more efficient inference strategy.
To the best of our knowledge, the approach presented in this
paper is the first to apply variational inference as a dynamic
pre-processing step, which optimises the program based on
both the program structure and observed data.

3. Understanding the Effect of
Reparameterisation

Non-centring reparameterisation is not always optimal; its
usefulness depends on properties of both the model and
the observed data. In this section, we develop intuition by
working with a simple hierarchical model for which we
can derive the posterior analytically. Consider a simple
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realisation of a model discussed by Betancourt & Girolami
(2015, (2)), where for a vector of N datapoints y, and some
given constants σ and σµ, we have:

θ ∼ N (0, 1) µ ∼ N (θ, σµ)

yn ∼ N (µ, σ) for all n ∈ 1 . . . N

In the non-centred model, y is defined in terms of µ̃ and θ,
where µ̃ is a standard Gaussian variable:

θ ∼ N (0, 1) µ̃ ∼ N (0, 1)

yn ∼ N (θ + σµµ̃, σ) for all n ∈ 1 . . . N

Figure 2a and Figure 2b show the graphical models for the
two parameterisations. In the non-centred case, the direct
dependency between θ and µ is substituted by a conditional
dependency given the data y, which creates an “explaining
away” effect. Intuitively, this means that the stronger the
evidence y is (large N , and small variance), the stronger the
dependency between θ and µ̃ becomes, creating a poorly-
conditioned posterior that may slow inference.

As the Gaussian distribution is self-conjugate, the posterior
in each case (centred or non-centred) is also a Gaussian
distribution, and we can analytically inspect its covariance
matrix V . To quantify the quality of the parameterisation
in each case, we investigate the condition number κ of
the posterior covariance matrix under the optimal diagonal
preconditioner. This models the common practice (imple-
mented in tools such as PyMC3 and Stan and followed in
our experiments) of sampling using a fitted diagonal precon-
ditioner.

Figure 2c shows the condition numbers κCP and κNCP for
each parameterisation as a function of q = N/σ2; the full
derivation is in Appendix A. This figure confirms the intu-
ition that the non-centred parameterisation is better suited
for situation when the evidence is weak, while strong evi-
dence calls for centred parameterisation. In this example we
can exactly determine the optimal parameterisation, since
the model has only one variable that can be reparameterised
and the posterior has a closed form. In more realistic set-
tings, even experts cannot predict the optimal parameterisa-
tion for hierarchical models with many variables and groups
of data, and the wrong choice can lead to poor conditioning,
heavy tails or other pathological geometry.

4. Reparameterising Probabilistic Programs
An advantage of probabilistic programming is that the pro-
gram itself provides a structured model representation, and
we can explore model reparameterisation through the lens
of program transformations. In this paper, we focus on
transforming generative probabilistic programs where the
program represents a sampling process describing how the

data was generated from some unknown latent variables.
Most probabilistic programming languages (PPLs) provide
some mechanism for transforming a generative process into
an inference program; our automatic reparameterisation
approach is applicable to PPLs that transform generative
programs using effect handling. This includes modern deep
PPLs such as Pyro (Uber AI Labs, 2017) and Edward2 (Tran
et al., 2018).

4.1. Effect Handling-based Probabilistic Programming

Consider a generative program, where running the program
forward generates samples from the prior over latent vari-
ables and data. Effect handling-based PPLs treat generating
a random variable within such a model as an effectful opera-
tion (an operation that is understood as having side effects)
and provide ways for resolving this operation in the form
of effect handlers, to allow for inference. For example, we
often need to transform a statement that generates a random
variable to a statement that evaluates some (log) density
or mass function. We can implement this using an effect
handler:

log_prob_at_0 =

handler {v ∼D(a1, . . . , aN ) 7→
v = 0; lpv = log pD(v | a1, . . . , aN )}2

The handler log_prob_at_0 handles statements of the
form v ∼ D(a1, . . . , aN ). Such statements normally
mean “sample a random variable from the distribution
D(a1, . . . , aN ) and record its value in v”. However, when
executed in the context of log_prob_at_0 (we write
with log_prob_at_0 handle model), statements that
contain random-variable constructions are handled by set-
ting the value of the variable v to 0, then evaluating the log
density (or mass) function of D(a1, . . . , aN ) at v = 0 and
recording its value in a new (program) variable lpv .

For example, consider the function implementing Neal’s fun-
nel in Figure 1b. When executed without any context, this
function generates two random variables, z and x. When
executed in the context of the log_prob_at_0 handler, it
does not generate random variables, but it instead evaluates
log pN (z | 0, 3) and log pN (x | 0, exp(z/2)) (Figure 1c).

This approach can be extended to produce a function
that corresponds to the log joint density (or mass) func-
tion of the latent variables of the model. In §§ B.1,
we give the pseudo-code implementation of a function
make_log_joint, which takes a model M(z | x) — that
generates latent variables z and generates and observes data
x — and returns the function f(z) = log p(z,x). This is

2Algebraic effects and handlers typically involve passing a
continuation within the handler. We make the continuation implicit
to stay close to Edward2’s implementation.



Automatic Reparameterisation of Probabilistic Programs

θ µ

yn

n = 1, ..., N

(a) Centred.

θ µ̃

yn

n = 1, ..., N

(b) Non-centred. (c) The condition number as a function of the data’s strength.

Figure 2. Effects of reparameterising a simple model with known posterior.

a core operation, as it transforms a generative model into
a function proportional to the posterior distribution, which
can be repeatedly evaluated and automatically differentiated
to perform inference.

More generally, effectful operations are operations that can
have side effects, e.g. writing to a file. The program-
ming languages literature formalises cases where impure
behaviour arises from a set of effectful operations in terms
of algebraic effects and their handlers (Plotkin & Power,
2001; Plotkin & Pretnar, 2009; Pretnar, 2015). A concrete
implementation for an effectful operation is given in the
form of effect handlers, which (similarly to exception han-
dlers) are responsible for resolving the operation. Effect
handlers can be used as a powerful abstraction in probabilis-
tic programming, and have been incorporated into recent
frameworks such as Pyro and Edward2 (Moore & Gorinova,
2018).

4.2. Model Reparameterisation Using Effect Handlers

Once equipped with an effect handling-based PPL, we can
easily construct handlers to perform many model transfor-
mations, including model reparameterisation.

Non-centring Handler. ncp = handler {
v ∼ N (µ, σ), v /∈ data 7→ ṽ ∼ N (0, 1); v = µ+σṽ}

A non-centring handler can be used to non-centre all stan-
dardisable 3 latent variables in a model. The handler simply
applies to statements of the form v ∼ N (µ, σ), where v is
not a data variable, and transforms them to ṽ ∼ N (0, 1),
v = µ + σṽ. When nested within a log_prob handler
(like the one from §§ 4.1), log_prob handles the trans-
formed standard normal statement ṽ ∼ N (0, 1). Thus,
make_log_joint applied to a model in the ncp context

3We focus on Gaussian variables, but non-centring is broadly
applicable, e.g. to the location-scale family and random variables
that can be expressed as a bijective transformation z = fθ(z̃) of a
“standardised” variable z̃.

returns the log joint function of the transformed variables z̃
rather than the original variables z.

For example, make_log_joint(NealsFunnel(z, x)) gives:

log p(z, x) = logN (z | 0, 3) + logN (x | 0, exp(z/2))

make_log_joint(with ncp handle NealsFunnel(z, x))

corresponds to the function:

log p(z̃, x̃) = logN (z̃ | 0, 1) + logN (x̃ | 0, 1)

where z = 3z̃ and x = exp(z/2)x̃.

This approach can easily be extended to other parameter-
isations, including partially centred parameterisations (as
shown later in §§ 5.2), non-centring and whitening multi-
variate Gaussians, and transforming constrained variables
to have unbounded support.

Edward2 Implementation. We implement reparameter-
isation handlers in Edward2, a deep PPL embedded in
Python and TensorFlow (Tran et al., 2018). A model
in Edward2 is a Python function that generates random
variables. In the core of Edward2 is a special case of
effect handling called interception. To obtain the joint
density of a model, the language provides the function
make_log_joint_fn(model)4, which uses a log_prob
interceptor (handler) as previously described.

We extend the usage of interception to treat sample state-
ments in one parameterisation as sample statements in an-
other parameterisation (similarly to the ncp handler above):
def noncentre(rv_fn, **d):

# Assumes a location-scale family.

rv_fn = ed.interceptable5(rv_fn)
rv_std = rv_fn(loc=0, scale=1)
return d["loc"] + d["scale"] * rv_std

4Corresponds to make_log_joint(model) in our example.
5Wrapping the constructor with ed.interceptable en-

sures that we can nest this interceptor in the context of other
interceptors.
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We use the interceptor by executing a model of interest
within the interceptor’s context (using Python’s context man-
agers). This overrides each random variable’s constructor
to construct a variable with location 0 and scale 1, and scale
and shift that variable appropriately:

with ed.interception(noncentre):
neals_funnel()

We present and explain in more detail all interceptors used
for this work in Appendix B.

5. Automatic Model Reparameterisation
We introduce two inference strategies that exploit automatic
reparameterisation: interleaved Hamiltonian Monte Carlo
(iHMC), and the Variationally Inferred Parameterisation
(VIP).

5.1. Interleaved Hamiltonian Monte Carlo

Automatic reparameterisation opens up the possibility of al-
gorithms that exploit multiple parameterisations of a single
model. We consider interleaved Hamiltonian Monte Carlo
(iHMC), which uses two HMC steps to produce each sample
from the target distribution: the first step is made in CP, us-
ing the original model latent variables, while the second step
is made in NCP, using the auxiliary standardised variables.
Interleaving MCMC kernels across parameterisations has
been explored in previous work on Gibbs sampling (Yu &
Meng, 2011; Kastner & Frühwirth-Schnatter, 2014), which
demonstrated that CP and NCP steps can be combined to
achieve more robust and performant samplers. Our con-
tribution is to make the interleaving automatic and model-
agnostic: instead of requiring the user to write multiple
versions of their model and a custom inference algorithm,
we implement iHMC as a black-box inference algorithm for
centred Edward2 models.

Algorithm 1 outlines iHMC. It takes a single centred model
Mcp(z | x) that defines latent variables z and generates
data x. It uses the function make_ncp to automatically
obtain a non-centred version of the model, Mncp(z̃ | x),
which defines auxiliary variables z̃ and function f , such that
z = f(z̃).

5.2. Variationally Inferred Parameterisation

The best parameterisation for a given model may mix cen-
tred and non-centred representations for different variables.
To efficiently search the space of reparameterisations, we
propose the variationally inferred parameterisation (VIP) al-
gorithm, which selects a parameterisation by gradient-based
optimisation of a differentiable variational objective. VIP
can be used as a pre-processing step to another inference
algorithm; as it only changes the parameterisation of the

model, MCMC methods applied to the learned parameteri-
sation maintain their asymptotic guarantees.

Consider a model with latent variables z. We introduce
parameterisation parameters λ = (λi) ∈ [0, 1] for each
variable zi, and transform zi ∼ N (zi | µi, σi) by defining
z̃i ∼ N (λiµi, σ

λi
i ) and zi = µi + σ1−λi

i (z̃i − λiµi). This
defines a continuous relaxation that includes NCP as the
special case λ = 0 and CP as λ = 1. More generally, it
supports a combinatorially large class of per-variable and
partial centrings.

Example. Recall the example model from Section 3,
which defines the joint density p(θ, µ,y) = N (θ | 0, 1)×
N (µ | θ, σµ) × N (y | µ, σ). Using the parameterisation
above to reparameterise µ, we get:

p(θ, µ̂,y) = N (θ | 0, 1)×N (µ̂ | λθ, σλµ)

×N (y | θ + σ1−λ
µ (µ̂− λθ), σ)

Similarly to before, we analytically derive an expression for
the posterior under different values of λ. Figure 4 shows
the condition number κ(λ) of the diagonally preconditioned
posterior, for different values of q = N/σ2 with fixed prior
scale σµ = 1. As expected, when the data is weak (q =
0.01), setting the parameterisation parameter λ to be close
to 0 (NCP), results in a better conditioned posterior than
setting it close to 1 (CP), and conversely for strong data
(q = 100). More interestingly, in intermediate cases (q = 1)
the optimal value for λ is truly between 0 and 1, yielding a
modest but real improvement over the extreme points.

Optimisation. For a general model with latent variables z
and data x, we aim to choose the parameterisation λ under
which the posterior p(z̃ | x; λ) is “most like” an indepen-
dent normal distribution. A natural objective to minimise
is KL(q(z̃;θ) || p(z̃ | x;λ)), where q(z̃;θ) = N (z̃ |
µ, diag(σ)) is an independent normal model with varia-
tional parameters θ = (µ,σ). Minimising this divergence
corresponds to maximising a variational lower bound, the
ELBO (Bishop, 2006):

L(θ,λ) = Eq(z̃;θ) (log p(x, z̃;λ)− log q(z̃;θ))

Note that the auxiliary parameters λ are not statistically
identifiable: the marginal likelihood log p(x;λ) = log p(x)
is constant with respect to λ. However, the computational
properties of the reparameterised models differ, and the
variational bound will prefer models for which the pos-
terior is close in KL to a diagonal normal. Our key hy-
pothesis (which the results in Figure 6 seem to support) is
that diagonal-normal approximability is a good proxy for
MCMC sampling efficiency.

To search for a good model reparameterisation, we optimise
L(θ,λ) using stochastic gradients to simultaneously fit the
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Algorithm 1: Interleaved Hamiltonian Monte Carlo

Arguments: data x; a centred model Mcp(z | x)
Returns: S samples z(1), . . . z(S) from p(z | x)
1: Mncp(z̃ | x), f = make_ncp(Mcp(z | x))
2: log pcp = make_log_joint(Mcp(z | x))
3: log pncp = make_log_joint(Mncp(z̃ | x))
4:
5: z0 = init()
6: for s ∈ [1, . . . , S] do
7: z′ = hmc_step(log pcp, z

(s−1))
8: z′′ = hmc_step(log pncp, f

−1(z′))

9: z(s) = f(z′′)

10: return z(1), . . . , z(S)

Algorithm 2: Variationally Inferred Parameterisation

Arguments: data x; a centred model Mcp(z | x)
Returns: S samples z(1), . . . z(S) from p(z | x)
1: Mvip(z̃ | x;λ), f = make_vip(Mcp(z | x))
2: log p(x, z̃) = make_log_joint(Mvip(z̃ | x;λ))
3:
4: Q(z̃;θ) = make_variational(Mvip(z̃ | x;λ))
5: log q(z̃;θ) = make_log_joint(q(z̃;θ))
6:
7: L(θ,λ) = Eq(log p(x, z̃;λ))− Eq(log q(z̃;θ))
8: θ∗,λ∗ = argmaxL(θ,λ)
9: log p(x, z̃) = make_log_joint(Mvip(z̃ | x;λ∗))

10: z(1), . . . , z(S) = hmc(log p)

11: return f(z(1)), . . . , f(z(S))

(a) Different parameterisations λ of the funnel, with mean-field normal variational fit q(z̃)(overlayed in white).

(b) Alternative view as implicit variational distributions q∗λ(z) (overlayed in white) on the original space.

Figure 3. Neal’s funnel: z ∼ N(0, 3); x ∼ N(0, ez/2), with mean-field normal variational fit overlayed.

Figure 4. The condition number κ(λ) for varying q = N/σ2 and
σµ = 1 in the simple model from Section 3.

variational distribution q to the posterior p and optimise
the shape of that posterior. Figure 3a provides a visual ex-
ample: an independent normal variational distribution is a
poor fit to the pathological geometry of a centred Neal’s
funnel, but non-centring leads to a well-conditioned poste-
rior, where the variational distribution is a perfect fit. In
general settings where the reparameterised model is not ex-
actly Gaussian, sampling-based inference can be used to
refine the posterior; we apply VIP as a preprocessing step
for HMC (summarised in Algorithm 2). Both the reparame-
terisation and the construction of the variational model q are
implemented as automatic program transformations using
Edward2’s interceptors.

An alternate interpretation of VIP is that it expands a vari-
ational family to a more expressive family capable of rep-
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resenting prior dependence. Letting z = fλ(z̃) represent
the partial centring transformation, an independent normal
family q(z̃) on the transformed model corresponds to an
implicit posterior q∗λ(z) = q

(
z̃ = f−1λ (z)

)
|det Jf−1

λ
(z)|

on the original model variables. Under this interpretation, λ
are variational parameters that serve to add freedom to the
variational family, allowing it to interpolate from indepen-
dent normal (at λi = 1, Figure 3b left) to a representation
that captures the exact prior dependence structure of the
model (at λi = 0, Figure 3b right).

6. Experiments
We evaluate the usefulness of our approach as a robust and
fully automatic alternative to manual reparameterisation.
We compare our methods to HMC ran on fully centred or
fully non-centred models, one of which often gives catas-
trophically bad results. Our results show not only that VIP
improves robustness by avoiding catastrophic reparame-
terisations, but also that it sometimes finds a parameteri-
sation that is better than both the fully centred and fully
non-centred alternatives.

6.1. Models and Datasets

We evaluate our proposed approaches by using Hamiltonian
Monte Carlo to sample from the posterior of hierarchical
Bayesian models on several datasets:

Eight schools (Rubin, 1981): estimating the treatment ef-
fects θi of a course taught at each of i = 1 . . . 8 schools,
given test scores yi and standard errors σi:

µ ∼ N (0, 5) log τ ∼ N (0, 5)

θi ∼ N (µ, τ) yi ∼ N (θi, σi)

Radon (Gelman & Hill, 2006): hierarchical linear regres-
sion, in which the radon level ri in a home i in county c is
modelled as a function of the (unobserved) county-level ef-
fect mc, the county uranium reading uc, and xi, the number
of floors in the home:

µ, a, b ∼ N (0, 1) mc ∼ N (µ+ auc, 1)

log ri ∼ N (mc[i] + bxi, σ)

German credit (Dua & Graff, 2017): logistic regression;
hierarchical prior on coefficient scales:

log τ0 ∼ N (0, 10) log τi ∼ N (log τ0, 1)

βi ∼ N (0, τi) y ∼ Bernoulli(σ(βXT ))

Election ’88 (Gelman & Hill, 2006): logistic model of
1988 US presidential election outcomes by county, given
demographic covariates xi and state-level effects αs:

βd ∼ N (0, 100) µ ∼ N (0, 100) log τ ∼ N (0, 10)

αs ∼ N (µ, τ) yi ∼ Bernoulli(σ(αs[i] + βTxi))

Electric Company (Gelman & Hill, 2006): paired causal
analysis of the effect of viewing an educational TV show on
each of 192 classforms over G = 4 grades. The classrooms
were divided into P = 96 pairs, and one class in each pair
was treated (xi = 1) at random:

µg ∼ N (0, 1) ap ∼ N (µg[p], 1) bg ∼ N (0, 100)

log σg ∼ N (0, 1) yi ∼ N (ap[i] + bg[i]xi, σg[i])

6.2. Algorithms and Experimental Details

For each model and dataset, we compare our methods, in-
terleaved HMC (iHMC) and VIP-HMC, with baselines of
running HMC on either fully centred (CP-HMC) or fully
non-centred (NCP-HMC) models. We initialise each HMC
chain with samples from an independent Gaussian varia-
tional posterior, and use the posterior scales as a diagonal
preconditioner; for VIP-HMC this variational optimisation
also includes the parameterisation parameters λ. All varia-
tional optimisations were run for the same number of steps,
so they were a fixed cost across all methods except iHMC
(which depends on preconditioners for both the centred
and non-centred transition kernels). The HMC step size
and number of leapfrog steps were tuned following the
procedures described in Appendix C, which also contains
additional details of the experimental setup.

We report the average effective sample size per 1000 gra-
dient evaluations (ESS/∇), with standard errors computed
from 200 chains. We use gradient evaluations, rather than
wallclock time, as they are the dominant operation in both
HMC and VI and are easier to measure reliably; in practice,
the wallclock times we observed per gradient evaluation did
not differ significantly between methods. This is not surpris-
ing, since the (minimal) overhead of interception is incurred
only once at graph-building time. This metric is a direct
evaluation of the sampler; we do not count the gradient steps
taken during the initial variational optimization.

In addition to effective sample size, we also directly exam-
ined the convergence of posterior moments for each method.
This yielded similar qualitative conclusions to the results
we report here; more analysis can be found in Appendix D.

6.3. Results

Figures 5 and 6 show the results of the experiments. In most
cases, either the centred or non-centred parameterisation
works well, while the other does not. An exception is the
German credit dataset, where both CP-HMC and NCP-HMC
give a small ESS: 1.2±0.2 or 1.3±0.2 ESS/∇ respectively.

iHMC. Across the datasets in both figures, we see that
iHMC is a robust alternative to CP-HMC and NCP-HMC.
Its performance is always within a factor of two of the
best of CP-HMC and NCP-HMC, and sometimes better. In
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Figure 5. Effective sample size and 95% confidence intervals for the radon model across US states.

Figure 6. Effective sample size (w/ 95% intervals) and the optimised ELBO across several models.

addition to being robust, iHMC can sometimes navigate
the posterior more efficiently than either of CP-HMC and
NCP-HMC can: in the case of German credit, it performs
better than both (3.0± 0.2 ESS/∇).

VIP. Performance of VIP-HMC is typically as good as the
better of CP-HMC and NCP-HMC, and sometimes better.
On the German credit dataset, it achieves 5.6± 0.6 ESS/∇,
more than three times the rate of CP-HMC and NCP-HMC,
and significantly better than iHMC. Figure 6 shows the cor-
respondence between the optimised mean-field ELBO and
the effective sampling rate. We see that parameterizations
with higher ELBOs tend to yield better samplers, which sup-
ports the ELBO as a reasonable predictor of the conditioning
of a model.

We show some of the parameterisations that VIP finds in
Figure 7. VIP’s behaviour appears reasonable: for most
datasets we looked at, VIP finds the “correct” global pa-
rameterisation: most parameterisation parameters are set to
either 0 or 1 (Figure 7, left). In the cases where a global
parameterisation is not optimal (e.g. radon MO, radon PA
and, most notably, German credit), VIP finds a mixed pa-
rameterisation, combining centred, non-centred, and par-
tially centred variables (Figure 7, centre and right). These
examples demonstrate the significance of the effect that
automatic reparameterisation can have on the quality of in-
ference: manually finding an adequate parameterisation in
the German credit case would, at best, require unreasonable
amount of hand tuning, while VIP finds such parameterisa-
tion automatically.

It is interesting to examine the shape of the posterior land-

scape under different parameterisations. Figure 8 shows
typical marginals of the German credit model. In the cen-
tred case, the geometry is funnel-like both in the prior (in
grey) and the posterior (in red). In the non-centred case,
the prior is an independent Gaussian, but the posteriors still
possess significant curvature. The partially centred parame-
terisations chosen by VIP appear to yield more favourable
posterior geometry, where the change in curvature is smaller
than that present in the CP and NCP cases.

A practical lesson from our experiments is that while the
ELBO appears to correlate with sampler quality, they are not
necessarily equally sensitive. A variational model that gives
zero mass to half of the posterior is only log 2 away from
perfect in the ELBO, but the corresponding sampler may be
quite bad. We found it helpful to estimate the ELBO with
a relatively large number (tens to hundreds, we used 256)
of Monte Carlo samples. As with most variational methods,
the VIP optimisation is nonconvex in general, and local
optima are also a concern. We occasionally encountered
local optima during development, though we found VIP to
be generally well-behaved on models for which simpler op-
timisations are well-behaved. In a practical implementation,
one might detect optimization failure by comparing the VIP
ELBO to those obtained from fixed parameterizations; for
modest-sized models, a deep PPL can often run multiple
such optimizations in parallel at minimal cost.

7. Discussion
Our results demonstrate that automated reparameterisation
of probabilistic models is practical, and enables inference
algorithms that can in some cases find parameterisations
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Figure 7. A heat map of VIP parameterisations. Each square rep-
resents the obtained using VIP parameterisation parameter λ as-
sociated with a different latent variable in the models(s) (e.g. top
left corner of German credit corresponds to λlog τ1 ). Light regions
correspond to CP and dark regions to NCP.

Figure 8. Selected prior and posterior marginals under different
parameterisations of the German credit model.

even better than those a human could realistically express.
These techniques allow modellers to focus on expressing
statistical assumptions, leaving computation to the computer.
We view the methods in this paper as exciting proofs of
concept, and hope that they will inspire additional work in
this space.

Like all variational methods, VIP assumes the posterior can
be approximated by a particular functional form; in this
case, independent Gaussians ‘pulled back’ through the non-
centring transform. If this family of posteriors does not con-
tain a reasonable approximation of the true posterior, then
VIP will not be effective at whitening the posterior geometry.
Some cases where this might happen include models where
difficult geometry arises from heavy-tailed components (for
example, x ∼ Cauchy(0, 1); y ∼ Cauchy(x, 1)), or when
the true posterior has structured dependencies that are not
well captured by partial centring (for example, many time-
series). Such cases can likely be handled by optimising over
augmented families of reparameterisations, and designing
such families is an interesting topic for future work.

While we focus on reparameterising hierarchical models nat-
urally written in centred form, the inverse transformation—
detecting and exploiting implicit hierarchical structure in
models expressed as algebraic equations—is an important

area of future work. This may be compatible with recent
trends exploring the use of symbolic algebra systems in PPL
runtimes (Narayanan et al., 2016; Hoffman et al., 2018).
We also see promise in automating reparameterisations of
heavy-tailed and multivariate distributions, and in designing
new inference algorithms to exploit these capabilities.
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