
Automatic Reparameterisation of Probabilistic Programs

A. Derivation of the Condition Number of the
Posterior for a Simple Model

Centred Parameterisation

θ ∼ N (0, 1) µ ∼ N (θ, σµ)

yn ∼ N (µ, σ) for all n ∈ 1 . . . N

Non-centred Parameterisation

θ ∼ N (0, 1) µ̃ ∼ N (0, 1)

yn ∼ N (θ + σµµ̃, σ) for all n ∈ 1 . . . N

As the Gaussian distribution is self-conjugate, the posterior
distribution (given x) in each case (centred or non-centred)
is also a Gaussian distribution, whose shape is entirely spec-
ified by a covariance matrix V . To quantify the quality of
each parameterisation, we investigate the condition number
κ of the posterior covariance matrix in each case under the
best diagonal preconditioner.

We do this in three steps:

1. We derive the covariance matrices VCP and VNCP, such
that p(µ, θ | y) = N (µ, θ |mCP, VCP) and p(µ̃, θ |
y) = N (µ̃, θ |mNCP, VNCP) (Equation 1 and Equa-
tion 2).

2. We find the best diagonal preconditioners D∗CP

and D∗NCP: for P = CP, NCP, that is D∗P =

arg minD(λ
(2)
P /λ

(1)
P), where λ

(1)
P and λ

(2)
P are the

eigenvalues of U = DTVPD (Equation 3 and Equa-
tion 4).

3. We compare the condition numbers κcp(q) =

λ
(2)
cp /λ

(1)
cp and κncp(q) = λ

(2)
ncp/λ

(1)
ncp, where λ(i)(n)cp

are the eigenvalues of U∗ = (D∗)TV D∗

A.1. Deriving VCP and VNCP: Centred Parameterisation

p(µ, θ | y)

∝ p(µ, θ,y)

∝ N (µ | θ, σµ)N (θ | 0, 1)

N∏
n=1

N (yn | µ, σ)

∝ exp

(
−1

2

(
(µ− θ)2

σ2
µ

+ θ2 +

N∑
n=1

(yn − µ)2

σ2

))

∝ exp

(
−1

2

(
µ2

(
1

σ2
µ

+
N

σ2

)
+ θ2

(
1

σ2
µ

+ 1

)

−2µθ

(
1

σ2
µ

)
+ µ

(
−2

σ2

N∑
n=1

yn

)))

At the same time, for A = V −1NCP , we have:

N (µ, θ |mCP, VCP)

∝ exp

(
−1

2

((
µ

θ

)
−m

)T
A

((
µ

θ

)
−m

))

∝ exp

(
−1

2

(
µ2A11

+ θ2A22

+ µθ(2A12)

+ µ(−2A11m1 − 2A12m2)

+ µ2A11θ(−2A22m2 − 2A12m1)
))

Thus, for q = N/σ2, we get: A =

(
1
σ2
µ

+ q − 1
σ2
µ

− 1
σ2
µ

1
σ2
µ

+ 1

)
And therefore:

VCP =
1

σ2
µq + q + 1

(
1 + σ2

µ 1
1 qσ2

µ + 1

)
(1)

A.2. Deriving VCP and VNCP: Non-centred
Parameterisation

Like in the previous subsection, we have:

p(ε, θ | y) ∝ p(ε, θ,y)

∝ N (ε | 0, 1)N (θ | 0, 1)

N∏
n=1

N (yn | σµε+ θ, σ)

∝ exp

(
−1

2

(
(ε2 + θ2 +

N∑
n=1

(yn − σµε− θ)2

σ2

))

∝ exp

(
−1

2

(
ε2

(
1 +

Nσ2
µ

σ2

)
+ θ2

(
1 +

N

σ2

)
+ εθ

(
2Nσµ
σ2

)
+ ε

(
−2σµ

∑
yn

σ2

)
+ θ

(
−2
∑
yn

σ2

)))

Similarly to before, we derive A =

(
σ2
µq + 1 σµq
σµq q + 1

)
,

and therefore:

VNCP =
1

σ2
µq + q + 1

(
q + 1 −σµq
−σµq σ2

µq + 1

)
(2)

Automatic Reparameterisation of Probabilistic Programs

A.3. The best diagonal preconditioner

Consider a diagonal preconditioner D =

(
d 0
0 1

)
. The

best diagonal preconditioner D∗ of V is such that:

D∗ = arg min
D

(λ2/λ1) where λ1, λ2 are the eigenvalues of U = DTV D

Firstly, in terms of the covariance matrix in the centred case,
we have:

U = DTVCPD

=

(
d 0
0 1

)(
1

σ2
µq+q+1

(
1 + σ2

µ 1
1 qσ2

µ + 1

))(
d 0
0 1

)
= 1

σ2
µq+q+1

(
(1 + σ2

µ)d2 d
d qσ2

µ + 1

)

The solutions of det(U − λI) = 0 are the solutions of:

((1+σ2
µ)d2−λ(σ2

µq+q+1))(qσ2
µ+1−λ(σ2

µq+q+1)) = d2

which, after simplification, becomes:

(σ2
µq + q + 1)λ2 − (σ2

µq + 1 + d2(σ2
µ + 1))λ+ d2σ2

µ = 0

We want to find d that minimises λ2/λ1. Let u = d2. We
are looking for u, such that ∂

∂u
λ2

λ1
= 0, in order to find

d∗CP = arg min
d

(λ2/λ1). By expanding and simplifying we

get:

2
∂

∂u
(σ2
µq + 1 + u(σ2

µ + 1)) = (σ2
µq + 1 + u(σ2

µ + 1))/u

And thus:

d∗CP =
√
u =

√
σ2
µq + 1

σ2
µ + 1

(3)

We obtain the best diagonal preconditioner D∗NCP =(
d∗NCP 0

0 1

)
in a similar manner, finally getting:

d∗NCP =
√
u =

√
σ2
µq + 1

q + 1
(4)

A.4. The Condition Numbers κCP and κNCP

Finally, we substitute d∗CP and d∗NCP in the respective eigen-
value equations to derive the condition number in each case:

κCP = λ
(CP)
2 /λ

(CP)
1

=
σ2
µq+1+

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(v+1)

σ2
µq+1−

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(v+1)
(5)

κNCP = λ
(NCP)
2 /λ

(NCP)
1

=
σ2
µq+1+

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(q+1)

σ2
µq+1−

√
(σ2
µq+1)2−σ2

µ(σ
2
µq+q+1)(σ2

µq+1)/(q+1)

(6)

B. Interceptors
Interceptors can be used as a powerful abstractions in a
probabilistic programming systems, as discussed previously
by Moore & Gorinova (2018), and shown by both Pyro
and Edward2. In particular, we can use interceptors to
automatically reparameterise a model, as well as to specify
variational families. In this section, we show Edward2
pseudo-code for the interceptors used to implement iHMC
and VIP-HMC.

B.1. Make log joint

The following code is an outline of Edward2’s impllementa-
tion of a function that evaluates the log density log p(x) at
some given x:

def make_log_joint_fn(model):
def log_joint_fn(**kwargs):
log_prob = 0

def log_prob_interceptor(
rv_constructor, **rv_kwargs):

Overrides a random variable’s value
and accumulates its log prob.
rv_name = rv_kwargs.get("name")
rv_kwargs["value"]=kwargs.get(rv_name)

rv = rv_constructor(**rv_kwargs)
log_prob = log_prob + \

rv.distribution.log_prob(rv.value)
return rv

with ed.interception(
log_prob_interceptor): model()

return log_prob
return log_joint_fn

By executing the model function in the context of
lprob_interceptor, we override each sample statement
(a call to a random variable constructor rv_constructor),
to generate a variable that takes on the value provided in
the arguments of log_joint_fn. As a side effect, we also
accumulate the result of evaluating each variable’s prior den-
sity at the provided value, which, by the chain rule, gives us
the log joint density.

B.2. Non-centred Parameterisation Interceptor

By intercepting every construction of a normal variable (or,
more generally, of location-scale family variables), we can

Automatic Reparameterisation of Probabilistic Programs

create a standard normal variable instead, and scale and shift
appropriately.

def ncp_interceptor(rv_constr,
**rv_kwargs):

Assumes rv_constr is in the
location-scale family
name = rv_kwargs["name"] + "_std"
rv_std = \

ed.interceptable6(rv_constr)(
loc=0, scale=1)

return rv_kwargs["loc"] + \
rv_kwargs["scale"] * rv_std

Running a model that declares the random variables θ in
the context of ncp_interceptor will declare a new set of
standard normal random variables θ(std). Nesting this in
the context of the log_prob_interceptor from ?? will
then evaluate the log joint density log p(θ(std)).

For example, going back to Neal’s funnel, running

with ed.interception(
log_prob_interceptor): neals_funnel()

corresponds to evaluating log p(z, x) = logN (z | 0, 3) +
logN (x | 0, ez/2), while running

with ed.interception(
log_prob_interceptor):

with ed.interception(
ncp_interceptor): neals_funnel()

corresponds to evaluating log p(z(std), x(std)) =
logN (z(std) | 0, 1) + logN (x(std) | 0, 1).

B.3. VIP Interceptor

The VIP interceptor is similar to the NCP interceptor. The
notable difference is that it creates new learnable Tensor-
flow variables, which correspond to the parameterisation
parameters λ:

def vip_interceptor(rv_constr,
**rv_kwargs):

name = rv_kwargs["name"] + "_vip"
rv_loc = rv_kwargs["loc"]
rv_scale = rv_kwargs["scale"]

a = tf.nn.sigmoid(tf.get_variable(
name + "_a_unconstrained",
initializer=tf.zeros_like(rv_loc))

rv_vip = ed.interceptable(rv_constr)(
loc=a*rv_loc, scale=rv_scale**a)

return rv_loc + \
rv_scale**(1-a) * (rv_vip - a*rv_loc)

6Wrapping the constructor in with ed.interceptable en-
sures that we can nest this interceptor in the context of other
interceptors.

B.4. Mean-field Variational Model Interceptor

Finally, we show a mean-field variational familiy intercep-
tor, which we use both to tune the step sizes for HMC
(see Appendix C), and to make use of VIP automatically.
The mfvi_interceptor simply substitutes each sample
statement with sampling from a normal distribution with
parameters specified by some fresh variational parameters
µ and σ:

def vip_interceptor(rv_constructor,
**rv_kwargs):

name = rv_kwargs["name"] + "_q"
mu = tf.get_variable(name + "_mu")
sigma = tf.nn.softmax(

tf.get_variable(
name + "_sigma"))

rv_q = ed.interceptable(ed.Normal)(
loc=mu, scale=sigma, name=name)

return rv_q

C. Details of the Experiments
Algorithms.

• CP-HMC: HMC run on a fully centred model.

• NCP-HMC: HMC run on a fully non-centred model.

• iHMC: interleaved HMC.

• VIP-HMC: HMC run on the a model reparameterised
as given by VIP.

Each run consists of VI pre-processing and HMC inference.

Variational Inference Pre-processing. We use auto-
matic differentiation to compute stochastic gradients of
the ELBO with respect to λ,θ and perform the optimi-
sation using Adam (Kingma & Ba, 2014). We implement
the constraint λi ∈ [0, 1] using a sigmoid transformation;
λi = 1/

(
1 + exp(−λ̃i)

)
for λ̃i ∈ R.

Prior to running HMC, we also run VI to approximate per-
variable initial step sizes (equivalently, a diagonal precon-
ditioning matrix), and to initialise the chains. For each of
CP-HMC and NCP-HMC this is just mean-field VI, and for
VIP-HMC the VI procedure is VIP.

Each VI method is run for 3000 optimisation steps, and
the ELBO is approximated using 256 Monte Carlo samples.
We use the Adam optimiser with initial learning rate α ∈
[0.02, 0.05, 0.1, 0.2, 0.4], decayed to α/5 after 1000 steps
and α/20 after 2000 steps, and returned the result with the
highest ELBO.

Automatic Reparameterisation of Probabilistic Programs

Hamiltonian Monte Carlo Inference. In each case we
run 200 chains for a warm-up period of 2000 steps, fol-
lowed by 10000 steps each, and report the average effective
sample size (ESS) per 1000 gradient evaluations (ESS/∇).
Since ESS is naturally estimated from scalar traces, we first
estimate per-variable effective sample sizes for each model
variable, and take the overall ESS to be the minimum across
all variables.

The HMC step size st was adapted to target an acceptance
probability of 0.75, following a simple update rule

log st+1 = log st + 0.02 · (I[αt − 0.75]− I[0.75− αt])

where αt is the acceptance probability of the proposed state
at step t (Andrieu & Thoms, 2008). The adaptation runs dur-
ing the first 1500 steps of the warm-up period, after which
we allow the chain to mix towards a stationary distribution.

The number of leapfrog steps is chosen using ‘oracle’ tuning:
each sampler is run with logarithmically increasing number
of leapfrog steps in {1, 2, 4, . . . , 128}, and we report the
result that maximises ESS/∇. This is intended to decouple
the problem of tuning the number of leapfrog steps from the
issues of parameterisation consider in this paper, and ensure
that each method is reasonably tuned. For iHMC, we tune a
single number of leapfrog steps that is shared across both
the CP and NCP substeps.

D. Additional Analysis
In addition to the estimated effective sample sizes, we di-
rectly examined posterior moments estimated from each
method. Theory implies that the estimated posterior mean
and standard deviation should converge to their true values
at a rate of O(

√
N), where N is the number of effective

samples, so we would expect these results to be broadly
consistent with the estimated effective samples sizes in § 6.

For each model, we computed a ‘gold standard’ estimated
posterior mean and standard deviation. We first used each
method to estimate empirical means and standard deviations
for the latent variables, using the full set of 200 × 10000
samples produced across all chains. We then took the me-
dian of each statistic across the four methods, i.e., the mean
of the two central values, for our final estimate. This is
robust to the case where one of the four methods totally
fails to mix— generally because a fully centred or fully
noncentred parameterisation is not appropriate—as long as
the other methods produce reasonable samples. By inspec-
tion, at least three of the four methods agreed closely in all
cases, which provides some comfort that our gold standard
estimates are reasonable.

Table 1 shows normalized expected error in the posterior
statistics estimated by a single chain of each method, as a
function of the number of gradient steps taken. For each

latent variable zi, we compute the expected absolute error in
the mean, using the running mean µ̂(:t)

i,k estimated from the
first t gradient steps of the kth chain, and the gold standard
mean µi computed as above, to be

r
(:t)
i =

1

K

∑
k

∣∣∣µ̂(:t)
i,k − µi,

∣∣∣
where K is the number of chains. We analogously compute
expected absolute error in standard deviation by

s
(:t)
i =

1

K

∑
k

∣∣∣σ̂(:t)
i,k − σi

∣∣∣ .
Each model has many latent variables, whose posteriors
have different scales. To summarise inference across all
variables in a model, we report the mean of the errors
normalized by the standard deviation (which we treat as
a reasonable representative of the posterior scale for each
variable) across all N latent variables,

r̄(:t) =
1

N

∑
i

r
(:t)
i /σi s̄(:t) =

1

N

∑
i

s
(:t)
i /σi.

These quantities are plotted in Table 1. Note that the x axis
is the number of gradient steps taken; this may correspond
to different numbers of actual samples from each method,
depending on the number of leapfrog steps used. As dis-
cussed in § 6, the number of gradient steps is the appropriate
metric here, as it’s a reasonable proxy for wallclock time.

The relative performance of the methods generally corre-
sponds to and supports the effective sample size estimates
reported in § 6. VIP converges notably faster than other
methods in the German credit model, and otherwise about
as quickly as the better of CP and NCP, each of which
sometimes fails quite badly on its own. Interleaved HMC
is generally between CP and NCP, with the exception of
the estimated standard deviations on the electric company
dataset, where it notably beats out all of the other methods.

We also provide autocorrelations for each method, plotting
autocorrelations for each latent variable across three chains
along with the mean autocorrelation (plotted in bold). Given
an autocorrelation sequence r1, . . . , rN−1 on N samples,
the effective sample size is defined as

ESS(N) =
N

1 + 2
∑N−1
i=1

N−i
N ri

;

these are the values reported in § 6.

Automatic Reparameterisation of Probabilistic Programs

Error in mean (r̄(:t)) Error in stddev (s̄(:t)) Autocorrelations

Radon, MA

Eight schools

Election

Electric

German credit

Table 1. Additional inference diagnostics.

