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A. Derivation of the Normalizing Constant
For clarity, we start by recalling the expression that we aim to show (equation 7 from the main text), and we make the
dependence on K explicit by writing CK(η):

CK(η) =

(
(−1)K+1

K∑
k=1

exp (ηk)∏
i 6=k (ηi − ηk)

)−1
. (1)

Proof: we proceed by induction on K. The base case K = 2 can be integrated directly:

C2(η) =

(∫ 1

0

exp(η1x1)dx1

)−1
=

(
eη1 − 1

η1

)−1
=

(
− eη1

η2 − η1
− eη2

η1 − η2

)−1
, (2)

where the last equality follows from η2 = 0.

For the inductive step, we assume that equation 1 gives the correct normalizing constant for K − 1, and compute the integral
for K:

CK(η)−1 =

∫
SK−1

exp(η>x)dµ

=

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xK−2

0

exp

(
K−1∑
i=1

ηixi

)
dxK−1 · · · dx2dx1. (3)

For the innermost integral, we have:∫ 1−x1−···−xK−2

0

exp

(
K−1∑
i=1

ηixi

)
dxK−1

= exp

(
K−2∑
i=1

ηixi

)∫ 1−x1−···−xK−2

0

exp(ηK−1xK−1)dxK−1

= exp

(
K−2∑
i=1

ηixi

)[
1

ηK−1
exp(ηK−1t)

]t=1−x1−···−xK−2

t=0

=
1

ηK−1
exp

(
K−2∑
i=1

ηixi

)
[exp(ηK−1(1− x1 − · · · − xK−2))− 1]

=
1

(ηK−1 − ηK)

[
exp(ηK−1) exp

(
K−2∑
i=1

(ηi − ηK−1)xi

)
− exp

(
K−2∑
i=1

ηixi

)]
. (4)
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Letting η(1)i = ηi − ηK−1 for i = 1, . . . ,K − 1, by inductive hypothesis we have that:

CK−1(η
(1))−1 =

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xK−3

0

exp

(
K−2∑
i=1

(ηi − ηK−1)xi

)
dxK−2 · · · dx2dx1

= (−1)K
K−1∑
k=1

exp
(
η
(1)
k

)
∏
i6=k

(
η
(1)
i − η

(1)
k

)
= (−1)K

K−1∑
k=1

exp (ηi − ηK−1)∏
i6=k (ηi − ηk)

. (5)

Similarly, letting η(2)i = ηi for i = 1, . . . ,K − 2, and η(2)K−1 = 0, we have that:

CK−1(η
(2))−1 =

∫ 1

0

∫ 1−x1

0

· · ·
∫ 1−x1−···−xK−3

0

exp

(
K−2∑
i=1

ηixi

)
dxK−2 · · · dx2dx1

= (−1)K
K−1∑
k=1

exp
(
η
(2)
k

)
∏
i6=k

(
η
(2)
i − η

(2)
k

)
= (−1)K

[
K−2∑
k=1

exp (ηk)

(−ηk)
∏
i6=k (ηi − ηk)

+
1∏K−2

i=1 ηi

]

= (−1)K
[
K−2∑
k=1

exp (ηk)

−(ηk − ηK)
∏
i 6=k (ηi − ηk)

+
exp(ηK)∏K−2

i=1 (ηi − ηK)

]
. (6)

Plugging (5) and (6) back into (4), we find:

CK(η)−1 = (−1)K+1
K∑
k=1

Rk(η)exp (ηk),

where the coefficients Rk(η) gather the terms that multiply each exp(ηk) term. For k = 1, . . . ,K − 2, both (5) and (6)
contribute to the coefficient:

Rk(η) =
1

ηK−1 − ηK

[
− 1∏

1≤i≤K−1,i6=k(ηi − ηk)
+

1∏
1≤i≤K,i6=k,i 6=K−1(ηi − ηk)

]

=
1

ηK−1 − ηK

[
−ηK + ηk + ηK−1 − ηk∏

1≤i≤K,i6=k(ηi − ηk)

]

=
1∏

i 6=k(ηi − ηk)
. (7)

The (K − 1)th coefficient can be computed more easily as it only appears in (5):

RK−1(η) = −
1

(ηK−1 − ηK)

1∏
1≤i≤K−2(ηi − ηK−1)

=
1∏

i 6=K−1(ηi − ηK−1)
, (8)

and similarly, the Kth coefficient appears only in (6):

RK(η) =
1

(ηK−1 − ηK)

1∏
1≤i≤K−2(ηi − ηK−1)

=
1∏

i 6=K(ηi − ηK)
. (9)
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This completes the proof. �

Remark. For completeness, we also include the normalizing constant written in terms of the parameterization of the original
density in equation 2 of the main text:

∫
SK−1

K∏
i=1

λxii dµ(x) = (−1)K+1
K∑
k=1

λk∏
i6=k log

λi
λk

.

B. Additional Properties of the CC Distribution
B.1. Mean and Covariance

As mentioned in the main manuscript (section 3.5), by standard properties of exponential families, the mean and covariance
of the CC can be obtained by differentiating the normalizing constant. For completeness, we include these results here. If
x ∼ CC(η), then the mean of x is given by:

E[xi] = −
∂

∂ηi
logC(η), (10)

and the covariance is given by:

cov(xi, xj) = −
∂2

∂ηi∂ηj
logC(η). (11)

B.2. KL Divergence

The KL divergence between two CC variates can be computed directly from their means:

KL(p(x|η)||p(x|η̃)) = Ep(x|η)
[
log

p(x|η)
p(x|η̃)

]
= Ep(x|η)

[
logC(η)− logC(η̃) +

K−1∑
i=1

(ηi − η̃i)xi

]
= logC(η)− logC(η̃) + (η − η̃)>Ep(x|η)[x]. (12)

B.3. Moment Generating Function

The moment generating function of the CC distribution can be written directly in terms of the normalizing constant:

Mx(t) = E[et
>x]

=

∫
SK−1

et
>xC(η)eη

>xdµ

= C(η)

∫
SK−1

e(t+η)>xdµ

=
C(η)

C(t+ η)
. (13)

The characteristic function can be derived similarly.

B.4. Marginalization

Unlike the Dirichlet, the CC is not preserved under marginalization, even when allowing transformations of the param-
eter vector. In other words, if (x1, . . . , xK−1) ∼ CC(η1, . . . , ηK−1), then it is not true that x1 ∼ CC(η1), nor that
(x1, . . . , xK−2) ∼ CC(η1, . . . , ηK−2). It is not even true that x1 ∼ CC(η̃1), nor that (x1, . . . , xK−2) ∼ CC(η̃1, . . . , η̃K−1),
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for any η̃. This can be seen easily by integrating out the case K = 3:∫ 1−x1

0

C(η1, η2) exp(η1x1 + η2x2)dx2 = C(η1, η2) exp(η1x1)

[
exp(η2t)

η2

]t=1−x1

t=0

=
C(η1, η2) exp(η2)

η2
exp((η1 − η2)x1)−

C(η1, η2)

η2
exp(η1x1), (14)

which is not of the form C(η̃1) exp(η̃1x1) for any η̃1.

As a direct consequence, we cannot use a stick-breaking construction (Connor & Mosimann, 1969; Paisley et al., 2010) to
simulate CC variates from 1-dimensional CB variates, as with the Dirichlet and the Beta distributions.

C. Sampling
In this section, we develop sampling algorithms for the CC distribution and analyze their performance empirically. We also
describe how to use our samplers to obtain reparameterization gradients (Kingma & Welling, 2014).

C.1. The ‘Naive’ Rejection Sampler

Given the form of the CC density function, a rejection sampling scheme follows readily by combining independent
1-dimensional CB draws (algorithm 1).

Algorithm 1 Naive sampler
Input: target distribution CC(λ).
Output: sample x drawn from target.

1: For i = 1, . . . ,K − 1, draw xi ∼ CC(λi, λK) independently.
2: If

∑K−1
i=1 xi > 1, go back to step 1, otherwise return x = (x1, . . . , xK−1).

To see why algorithm 1 achieves the desired distribution, firstly note that by independence, the distribution produced in step
1 is:

pstep1(x) ∝
K−1∏
i=1

λxii λ
1−xi
K ∝ λx1

1 · · ·λ
xK−1

K−1 λ
1−x1−···−xK−1

K . (15)

This is precisely the density we seek, except it is drawn on [0, 1]K−1 instead of the simplex. Step 2 rejects all samples that
fall outside the simplex, thus achieving the target distribution.

The obvious shortcoming of this sampling approach is that, even for moderate values of K, the proportion of rejections
becomes large. This is particularly troublesome in the balanced case, x ∼ CC(1/K, . . . , 1/K), which is equivalent to
drawing uniformly on [0, 1]K−1 and rejecting whenever we fall outside of a simplex of measure 1/(K − 1)!. In other words,
we accept with a probability that decays factorially in dimension.

C.1.1. REPARAMETERIZATION

The 1-dimensional CB distribution can be reparameterized using the analytical expression for the inverse CDF, derived
by Loaiza-Ganem & Cunningham (2019). In this section we extend the strategy to a multivariate analogue for the CC
distribution. The underlying idea is that the rejection step in algorithm 1 only depends on the L1 norm of the proposal, but
not on the parameter. This implies that, once we find an accepted proposal, we can use the inverse CDF reparameterization
directly, without requiring a correction term as per the general framework for acceptance-rejection reparameterization
gradients (Naesseth et al., 2017).

Our aim is to write x = g(u,λ), where the density of u does not depend on λ. To this end, write F (x|λi, λK) for
the CDF of x ∼ CC(λi, λK). Note that this expression will follow readily from an equivalent CB distribution, as
CC(λi, λK) = CB(λi/(λi + λK)). For each i = 1, . . . ,K − 1, applying the inverse CDF component-wise on each of
ui

iid∼ U(0, 1) results in F−1(ui|λi, λK) ∼ CC(λi, λK). Thus, the vector

F−1(u|λ) := [F−1(u1|λ1, λK), . . . , F−1(uK−1|λK−1, λK)] (16)



Supplementary Material for “The Continuous Categorical: A Novel Simplex-Valued Exponential Family”

provides a differentiable reparameterization of the distribution CC(λ), provided u was drawn from the pre-image of the
simplex SK−1 under the mapping F−1, or in other words, provided that u ∈ F(SK−1). The rejection step simply guarantees
that we find a sample of uniforms inside this region, but once we have found such a sample, it will lie in the interior of the
region with probability 1, and therefore we can differentiate through the transformation as desired:

∂x

∂λ
=

∂

∂λ
F−1(u|λ). (17)

We formalize this reparameterization in algorithm 2.

Algorithm 2 Reparameterized rejection sampler
Input: target distribution CC(λ).
Output: a sample u such that F−1(u|λ) ∼ CC(λ).

1: For i = 1, . . . ,K − 1, draw ui ∼ U(0, 1) and set xi = F−1(x|λi, λK).
2: If

∑K
i=1 xi > 1, return to step 1, otherwise return u = (u1, . . . , uK−1).

C.2. The Ordered Rejection Sampler

An analysis of algorithm 1 reveals two relevant observations. Firstly, the simulation of each xj ∼ CC(λj , λK) in step 1
involves computing the inverse cdf F−1(·|λi, λK), which is more expensive than computing the cumulative sum

∑j
i=1 xi

of the draws. It therefore pays to recompute the cumulative sums after each draw and go directly to the rejection step as
soon as it exceeds 1. Secondly, note that we do not generally expect the components of λ to be balanced. Thus, even though
simulating each xi in step 1 requires the same amount of computation, those drawn from smaller values of λi are more
likely to be close to 0 than those drawn from higher values of λi. The dimensions that are more likely to be close to 0 are
also less likely to make our cumulative sum exceed the rejection threshold. It therefore also pays to draw the xi components
in order of decreasing λi.

These remarks motivate an improved sampling scheme, which we call the ordered rejection sampler (algorithm 3). Empiri-
cally, we find that this sampler substantially reduces the rejection rate (see figure 1) as well as the computation time (by not
only rejecting less, but also rejecting sooner). However, this sampler performs poorly when λ is balanced; such a setting
leaves little room for improvement from the re-ordering operation, and the resulting sampler is similar to the naive rejection
sampler. This motivates a further sampling scheme that we introduce in the following section, but further improvements to
this sampler are left to future work. Lastly, we note that the reparameterization scheme of section C.1.1 can be modified
trivially to apply here also.

Algorithm 3 Ordered rejection sampler
Input: target distribution CC(λ).
Output: sample x drawn from target.

1: Find the permutation π that orders λ from largest to smallest, and let λ̃ = π(λ).
2: Set the cumulative sum c← 0 and i← 2.
3: while c < 1 do
4: Draw ui ∼ U(0, 1).
5: Set xi = F−1(ui|λ̃i, λ̃1).
6: Set c← c+ xi.
7: Set i← i+ 1.
8: end while
9: If c > 1, go back to step 2.

10: Set x1 = 1−
∑K
i=2 xi.

11: Return x = π−1(x1, . . . , xK).

C.3. The Permutation Sampler

Next, we develop a permutation sampler that performs particularly well for configurations of λ that are balanced (those that
lead to distributions that are close to uniform). Our key insights here are that the unit cube can be partitioned into simplexes,
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each of which corresponds to a permutation of its dimensions, and that the CC distribution is, in a sense, ‘invariant’ over
these permutations.

C.3.1. PARTITIONING THE CUBE INTO SIMPLEXES

Let R = [0, 1]K−1, the unit cube. For a permutation σ : {1, 2, . . . ,K − 1} → {1, 2, . . . ,K − 1}, we denote Sσ = {x ∈
RK−1 : 0 ≤ xσ(1) ≤ xσ(2) ≤ · · · ≤ xσ(K−1) ≤ 1}. We can then partition (up to intersections of Lebesgue measure zero)
the cube using the (K − 1)! different permutations:

R =
⋃
σ

Sσ, (18)

where the union is over all permutations. While our sample space cl(SK−1), is not equal to Sσ for any σ, we will see in
section C.3.2 that sampling from cl(SK−1) and sampling from Sid are equivalent, where id is the identity permutation.
However, as we will see in section C.3.3, sampling from Sid allows to take advantage of the cube partitioning of equation
18, while the same cannot be done for cl(SK−1).

C.3.2. THE EQUIVALENCE OF SAMPLING OVER ANY SIMPLEX

In this section, we consider varying the support of our CC density from the standard simplex, to other simplexes as well as
the unit cube. We denote the support explicitly by writing x ∼ CCA(η) for the density:

pA(x|η) ∝ exp

(
K−1∑
i=1

ηixi

)
1(x ∈ A) (19)

where the subscript A will typically denote a simplex. Now, letting x ∼ CCA(η) and y = Qx, where Q ∈ R(K−1)×(K−1)

is an invertible matrix, it follows by the change of variable formula that:

pQ(A)(y|η) =
1

|det(Q)|
pA(Q

−1y|η)

∝ exp(η>[Q−1y])1(y ∈ Q(A))
= exp([Q−>η]>y)1(y ∈ Q(A)), (20)

where Q(A) = {y : y = Qx,x ∈ A}. Thus, we have that y ∼ CCQ(A)(η̃), where η̃ = Q−>η, so that y has a new CC
distribution on a transformed sample space. Moreover, if Q is a permutation matrix and A = Sσ for some permutation σ,
then Q(A) is a ‘permuted’ simplex, and η̃ is a rearranged parameter vector, hence the equivalence of sampling over any
simplex for the CC.

C.3.3. THE PERMUTATION SAMPLING ALGORITHM

Now, consider a lower triangular matrix of ones:

B =


1 0 0 · · · 0
1 1 0 · · · 0
1 1 1 · · · 0
...

...
...

. . .
...

1 1 1 · · · 1

 . (21)

Note that Sid = B(cl(SK−1)), so that sampling from CCcl(SK−1)(η) is equivalent to sampling from CCSid(η̃) and trans-
forming the result with B−1, where η̃ = B−>η. Now consider rejection sampling to draw from CCSid(η̃). As with the
naive sampler, our proposal can be drawn on the whole unit cube from independent 1-dimensional CB variates, but the
advantage here is that we do not have to directly reject the sample if it fell outside of the desired simplex Sid, but rather we
can transform it onto that simplex and then accept it with an appropriate probability (which we can compute easily using the
invariance property). Here, the acceptance probability depends on which simplex the proposal fell into, and is given by:

α(y, η̃, P ) =
pSid(y|η̃)

κ(η̃, P )pSid(y|P−>η̃)
, (22)
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where κ(η̃, P ) is the rejection sampling constant, which in this case is equal to:

κ(η̃, P ) = max
y∈Sid

pSid(y|η̃)
pSid(y|P−>η̃)

. (23)

Algorithm 4 Permutation sampler
Input: target distribution CC(η).
Output: sample x drawn from target.

1: Sample y′ ∼ CCR(η̃) (again, this is straightforward to do by sampling each coordinate independently).
2: Sort the elements of y′. In other words, find a permutation σ such that σ(y′) ∈ Sid. Let P be the corresponding

permutation matrix and y = Py′.
3: Compute κ(η̃, P ) by taking the maximum over the the vertices of Sid, and use this to compute the acceptance probability
α(y, η̃, P ).

4: Accept y with probability α(y, η̃, P ). Otherwise, go back to step 1.
5: Return x = B−1y.

The algorithm samples correctly from CCSid(η̃), because y′ can be thought of as a sample from pR(y
′|η,y′ ∈ Sσ) =

pSσ (y
′|η), which we then transform with P to obtain a distribution on Sid. If we use this distribution as a proposal

distribution for a rejection sampling algorithm, we recover precisely the acceptance probability of equation 22. Intuitively, if
our sample x does not fall on the desired simplex Sid, we move around the simplex in which it fell (along with x itself) so
that it matches the desired simplex, and then do rejection sampling.

We conclude this subsection with two short notes on the optimization problem of equation 23. The first one is that when
η(2) = Q−>η(1) where |det(Q)| = 1, then the normalizing constants cancel out, which is the case in our algorithm since
|det(P )| = 1. The second is that, by taking logs, the optimization problem can be transformed into a linear problem subject
to linear inequality constraints, meaning that the solution must be achieved at a vertex. Since there are K vertices, namely 0,
eK−1, eK−1 + eK−2, . . . ,

∑K−1
i=1 ei, we can solve the problem by simply checking each of these vertices.

C.4. Performance

While the ordered rejection sampler can never have a worse rejection rate than its naive counterpart, the comparison
with the permutation sampler depends on the shape of the target distribution, as discussed. The perfectly balanced case
λ = (1/K, . . . , 1/K) results in the worst possible rejection rate for the ordered rejection sampler (we accept with probability
1/(K−1)!), but also the best possible rejection rate for the permutation sampler (this is the uniform case so α(y, η̃, P ) = 1).
On the other end of the spectrum, in the totally unbalanced case where one element of λ holds all the weight and the others
are close to zero, the ordered rejection sampler achieves an acceptance rate close to 1, whereas it is much smaller for the
permutation sampler (see section C.4.3). In this sense, our samplers are complementary, and an optimal sampling algorithm
could involve combining accept/reject steps from both methods. We study the performance of our samplers empirically, by
comparing the distribution of the rejection rates under a sparsity-inducing prior λ ∼ Dirichlet(1/K, . . . , 1/K). Indeed,
the ordered rejection sampler tends to considerably outperform the permutation sampler (see figure 1), as well as (trivially)
the naive sampler.

Now, it may come as a surprise that the permutation sampler does not necessarily outperform the naive sampler. After all,
the naive sampler only accepts samples that fell directly into the desired simplex, whereas the permutation sampler has the
additional possibility of accepting a sample that fell outside of Sid after applying a suitable permutation. However, this
intuition breaks down once we realize that the proposal distributions from the two methods are not equivalent. We make this
precise in the following sections.

C.4.1. REJECTION RATE - NAIVE SAMPLER

Suppose we seek x ∼ CCcl(SK−1)(η). The naive rejection sampler proposes x ∼ CCR(η), and accepts if x ∈ SK−1. The
proposal density is equal to (we know the normalizing constant as we have the product of independent CBs):

pR(x|η) =
K−1∏
i=1

ηi
eηi − 1

eηixi . (24)
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Figure 1. Shows the performance of 3 sampling algorithms across different dimensions K. Each histogram shows the distribution, over
100 trials, of the number of proposals required for 1 acceptance, on the log scale (base 10). The distributions are not exponential, since
each of the 100 trials is sampled from a different CC(λ) distribution, where the parameter follows λ iid∼ Dirichlet(1/K, · · · , 1/K).
Due to computational constraints, the number of proposals in each trial is right-censored, hence the large bars at the right end of the
histograms.

Therefore, the probability of acceptance is:

P (CCR(η) ∈ SK−1) =
∫
SK−1

K−1∏
i=1

ηi
eηi − 1

eηixidµ. (25)

We can apply the transformation B to rewrite this as:

P (B(CCR(η)) ∈ B(SK−1)) = P (CCB(R)(B
−>η) ∈ Sid) =

∫
Sid

K−1∏
i=1

ηi
eηi − 1

eη̃ixidµ, (26)

where we have used the fact that |det(B)| = 1 so that the normalizing constant remains unchanged. Thus, the probability
of acceptance of the naive sampler is equal to:

P (accept) =

(
K−1∏
i=1

ηi
eηi − 1

)
·
∫
Sid

eη̃
>xdµ. (27)

C.4.2. REJECTION RATE - PERMUTATION SAMPLER

In the case of the permutation sampler, the acceptance rate is harder to compute. However, one can easily obtain a lower
bound by considering only the samples that fall directly into our target simplex (in this case, Sid). In this case, the proposal
distribution is:

pR(x|η̃) =
K−1∏
i=1

η̃i
eη̃i − 1

eη̃ixi . (28)
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If the resulting sample falls in Sid, we accept the sample and map it back to cl(SK−1). Thus, the acceptance rate has the
lower bound

P (accept) ≥

(
K−1∏
i=1

η̃i
eη̃i − 1

)
·
∫
Sid

eη̃
>xdµ. (29)

Note that, while this lower bound has the same integral term as the naive rejection sampler, it is multiplied by a different
normalizing constant. In particular, there are configurations of η that can lead to much worse normalizing constants for the
permutation sampler than for the naive rejection sampler, resulting in a worse acceptance rate overall.

C.4.3. EXAMPLE

We give an example of a configuration of η such that the acceptance rate of the naive sampler is better than that of the
permutation sampler. Consider the case (η1, · · · , ηK−1) = (−M, · · · ,−M), where M is a large positive number. Note that
this example is far from the uniform case λ = (1/K, · · · , 1/K). In fact, in this case, after transforming with B, we obtain
η̃K−1 = −M , and η̃K−2 = · · · = η̃1 = 0. Thus, when we sample a proposal y ∼ CCR(η̃), typically yK−1 will be small
relative to y1, · · · , yK−2, which will be ordered at random. This means the sorting step of our permutation sampler will
likely map yK−1 to y′1, as well as sorting the remaining entries y′2 < · · · < y′K−1. In other words, P maps the (K − 1)th

entry to the 1st entry, and one of the first K − 2 entries to the (K − 1)th entry (whichever of these happens to sample the
largest value). The resulting distributions pSid(·|η̃) and pSid(·|P−>η̃) are similar, with the key difference that the former
puts the negative η̃ coefficient (namely η̃K−1 = −M ) in the last position (the largest component of y), while the latter puts
it into some other position determined by σ−1, i.e. the right-most column of P or equivalently, the bottom row of P−1. In
this setting, it follows that κ will be equal to 1, and the ratio pSid(y

′|η̃)/pSid(y′|P−>η̃) will be small. Thus, our rejection
sampling ratio is typically small and we are likely to reject our proposal. The ratio will be close to 1 only in the event that
the proposed value xK−1 is large relative to the other components x1, · · · , xK−2, which rarely happens as xK−1 is sampled
from a univariate CC with much smaller coefficient. Note further, that η̃ cannot be re-shuffled in this case, as this would lead
to a target distribution on a simplex other than Sid (we can only shuffle η prior to applying B, which in this case leaves η
unchanged). We conclude that we cannot achieve a uniformly better rejection rate through the permutation sampler, relative
to the naive method.
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