
Differentially Private Set Union

Sivakanth Gopi 1 Pankaj Gulhane 1 Janardhan Kulkarni 1 Judy Hanwen Shen 1 2 Milad Shokouhi 1

Sergey Yekhanin 1

Abstract
We study the basic operation of set union in the
global model of differential privacy. In this prob-
lem, we are given a universe U of items, possi-
bly of infinite size, and a database D of users.
Each user i contributes a subset Wi ⊆ U of items.
We want an (ε,δ)-differentially private Algorithm
which outputs a subset S ⊂ ∪iWi such that the
size of S is as large as possible. The problem
arises in countless real world applications, and is
particularly ubiquitous in natural language pro-
cessing (NLP) applications. For example, discov-
ering words, sentences, n-grams etc., from private
text data belonging to users is an instance of the
set union problem. In this paper we design new
algorithms for this problem that significantly out-
perform the best known algorithms.

1. Introduction
Natural language models for applications such as suggested
replies for e-mails and dialog systems rely on the discov-
ery of n-grams and sentences (Hu et al., 2014; Kannan
et al., 2016; Chen et al., 2019; Deb et al., 2019). Words and
phrases used for training come from individuals, who may
be left vulnerable if personal information is revealed. For
example, a model could generate a sentence which reveals
personal information of the users on which it was trained
(Carlini et al., 2019). Therefore, algorithms that allow the
public release of the words, n-grams, and sentences ob-
tained from user text while preserving privacy are desirable.
Additional applications of this problem include the release
of search queries and keys in SQL queries (Korolova et al.,
2009; Wilson et al., 2020). While other privacy definitions
are common in practice, guaranteeing differential privacy,

1Microsoft 2Work done as part of the Microsoft AI
Residency Program. Correspondence to: Sivakanth
Gopi <sigopi@microsoft.com>, Janardhan Kulka-
rni <jakul@microsoft.com>, Judy Hanwen Shen
<hashe@microsoft.com>.

Proceedings of the 37 th International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

introduced in the seminal work of Dwork et al. (2006), en-
sures users the strongest preservation of privacy. In this
paper we consider user level privacy.

Definition 1.1 (Differential Privacy (Dwork et al., 2006)).
A randomized algorithm A is (ε,δ)-differentially private if
for any two neighboring databases D and D′, which differ
in exactly the data pertaining to a single user, and for all sets
S of possible outputs:

Pr[A(D) ∈ S] ≤ eε Pr[A(D′) ∈ S] + δ.

An algorithm satisfying differential privacy (DP) guarantees
that its output does not change by much if a single user is
either added or removed from the dataset. Moreover, the
guarantee holds regardless of how the output of the algo-
rithm is used downstream. Therefore, items (e.g. n-grams)
produced using a DP algorithm can be used in other appli-
cations without any privacy concerns. Since its introduction
a decade ago (Dwork et al., 2006), differential privacy has
become the de facto notion of privacy in statistical analysis
and machine learning, with a vast body of research work
(see Dwork et al. (2014) and Vadhan (2017) for surveys)
and growing acceptance in industry. Differential privacy
is deployed in many industries, including Apple (Apple,
2017), Google (Erlingsson et al., 2014; Bittau et al., 2017),
Microsoft (Ding et al., 2017), Mozilla (Avent et al., 2017),
and the US Census Bureau (Abowd, 2016; Kuo et al., 2018).

The vocabulary extraction and n-gram discovery problems
mentioned above, as well as many commonly studied prob-
lems (Korolova et al., 2009; Wilson et al., 2020) can be
abstracted as a set union which leads to the following prob-
lem.

Problem 1.1 (Differentially Private Set Union (DPSU)).
Let U be some universe of items, possibly of unbounded
size. Suppose we are given a databaseD of users where each
user i has a subset Wi ⊆ U . We want an (ε,δ)-differentially
private AlgorithmA which outputs a subset S ⊆ ∪iWi such
that the size of S is as large as possible.

As the universe of items can be unbounded, as in our moti-
vating examples, it is not clear how to apply the exponential
mechanism (McSherry & Talwar, 2007) to DPSU. Intu-
itively, when the universe is unbounded, an algorithm which

Differentially Private Set Union

outputs items outside the true union doesn’t lead to any
gains in privacy. And in many applications, it is essential
that we output a subset of the true union. Therefore, in the
definition of DPSU, we impose the condition that the output
is a subset of the true union. It is not hard to show that there
are no non-trivial (ε, 0)-DP DPSU algorithms, so we in this
paper we will only study (ε, δ)-DP algorithms for δ > 0.

Existing algorithms 1 for this problem (Korolova et al., 2009;
Wilson et al., 2020) collect a bounded number of items from
each user, build a histogram of these items, and disclose
the items whose noisy counts fall above a certain threshold.
In these algorithms, the contribution of each user is always
independent from the identity of items held by other users,
resulting in a wasteful aggregation process, where some
items’ counts could be far above the threshold. Since the
goal is to release as large a set as possible rather than to
release accurate counts of each item, there could be more
efficient ways to allocate the weight to users’ items. We

Figure 1. Size of the set output by our proposed algorithms POLICY

LAPLACE and POLICY GAUSSIAN compared to natural generaliza-
tions of previously known algorithms for various values of privacy
parameter ε and δ = exp(−10). The error bars are negligible.

deviate from the previous methods by allowing users to
contribute their items in a dependent fashion, guided by an
update policy. In our algorithms, proving privacy is more
delicate as some update policies can result in histograms
with unbounded sensitivity. We prove a meta-theorem to
show that update policies with certain contractive properties
would result in differentially private algorithms. The main
contributions of the paper are:

• Guided by our meta-theorems, we introduce two new
algorithms called POLICY LAPLACE and POLICY
GAUSSIAN for the DPSU problem. Both of them run
in linear time and only require a single pass over the

1They don’t study the DPSU problem as defined in this paper.
Their goal is to output approximate counts of as many items as
possible in ∪iWi.

users’ data.

• Using a Reddit dataset, we demonstrate that our algo-
rithms significantly improve the size of DP set union
even when compared to natural generalizations of the
existing mechanisms for this problem (see Figure 1).

Our algorithms are being productized in industry to make
a basic subroutine in an NLP application differentially pri-
vate.

1.1. Base Line Algorithms

To understand the DPSU problem better, let us start with the
simplest case we can solve by known techniques. Define
∆0 = maxi |Wi|. Suppose ∆0 = 1. This special case can
be solved using the algorithms in (Korolova et al., 2009;
Wilson et al., 2020). Their algorithm works as follows: Con-
struct a histogram on ∪iWi (the set of items in a database
D) where the count of each item is the number of sets it
belongs to. Then add Laplace noise or Gaussian noise to the
counts of each item. Finally, release only those items whose
noisy histogram counts are above a certain threshold ρ. It is
not hard to prove that if the threshold is set sufficiently high,
then the algorithm is (ε, δ)-DP.

In many applications, however, ∆0 is much greater than 1.
For example, in the n-gram discovery problem, each user
holds a large set of n-grams not just 1. A straight-forward
extension of the histogram algorithm for ∆0 > 1 is to up-
per bound the `1-sensitivity by ∆0 (and `2-sensitivity by√

∆0), and then add some appropriate amount of Laplace
noise (or Gaussian noise) based on sensitivity. The thresh-
old ρ has to be set based on ∆0. The Laplace noise based
algorithm was also the approach considered in (Korolova
et al., 2009; Wilson et al., 2020). This approach has the
following drawback. Suppose a significant fraction of users
have sets of size smaller than ∆0. Then constructing a his-
togram based on counts of the items results in wastage of
sensitivity budget. A user i with |Wi| < ∆0 can increment
the count of items in Wi by any vector v ∈ RWi as long as
one can ensure that `1 sensitivity is bounded by ∆0 (or `2
sensitivity is bounded by

√
∆0 if adding Gaussian noise).

Consider the following natural generalization of Laplace
and Gaussian mechanisms to create a weighted histogram
of elements. A weighted histogram over a domain U is any
map H : U → R. For an item u ∈ U, H(u) is called the
weight of u. In the rest of the paper, the term histogram
should be interpreted as weighted histogram. Each user i
updates the weight of each item u ∈ Wi using the rule:
H[u] := H[u] + (∆0/|Wi|)1/p for p = 1, 2. It is not hard
to see that `p-sensitivity of this weighted histogram is still
∆

1/p
0 . Adding Laplace noise (for p = 1) or Gaussian noise

(for p = 2) to each item of the weighted histogram, and
releasing only those items above an appropriately calibrated

Differentially Private Set Union

threshold will lead to differentially private output. We call
these algorithms as WEIGHTED LAPLACE and WEIGHTED
GAUSSIAN, they will be used as benchmarks to compare
against our new algorithms.

1.2. Our Techniques

The WEIGHTED LAPLACE and WEIGHTED GAUSSIAN
mechanisms described above can be thought of trying to
solve the following variant of a Knapsack problem. Here
each item u ∈ U is a bin and we gain a profit of 1 if the total
weight of the item in the weighted histogram constructed
is more than the threshold. Each user can increment the
weight of elements u ∈Wi using an update policy φ which
is defined as follows.

Definition 1.2 (Update policy). An update policy is a map
φ : RU × 2U → RU such that supp(φ(H,W)−H) ⊂W ,
i.e., φ can only update the weights of items in W . And
the ith user updates H to φ(H,Wi). Since Wi is typically
understood from context, we will write φ(H) instead of
φ(H,Wi) for simplicity.

In this framework, the main technical challenge is the fol-
lowing:

How to design update policies such that the sensitivity of
the resulting weighted histogram is small while maximizing
the number of bins that are full?

Note that bounding sensitivity requires that
‖φ(H,W)−H‖`p ≤ C for some constant C i.e.
each user has an `p-budget of C and can increase the
weights of items in their set by an `p-distance of at most C.
By scaling, WLOG we can assume that C = 1. Note that
having a larger value of ∆0 should help in filling more bins
as users have more choice in how they can use their budget
to increment the weight of items.

In this paper, we consider algorithms which iteratively con-
struct the weighted histogram. That is, in our algorithms, we
consider users in a random order, and each user updates the
weighted histogram using the update policy φ. Algorithm 1
is a meta-algorithm for DP set union, and all our subsequent
algorithms follow this framework.

If the update policy is such that it increments the weights
of items independent of other users (as done in WEIGHTED
LAPLACE and WEIGHTED GAUSSIAN), then it is not hard
to see that sensitivity of H can be bounded by 1; that is,
by the budget of each user. However, if some item is al-
ready way above the threshold ρ, then it doesn’t make much
sense to waste the limited budget on that item. So the users
can choose a clever update policy to distribute their budget
among the Wi items based on the current weights.

Note that if a policy is such that updates of a user depend
on other users, it can be quite tricky to bound the sensitiv-

Algorithm 1 High level meta algorithm for DP Set Union
Input: D: Database of n users where each user i has
some subset Wi ⊂ U
ρ: threshold
Noise: Noise distribution (Lap(0, λ) or N (0, σ2))
Output: S: A subset of ∪iWi

Build weighted histogram H supported over ∪iWi using
Algorithm 2. S = ∅ (empty set)
for u ∈ ∪iWi do
Ĥ[u]← H[u] + Noise
if Ĥ[u] > ρ then
S ← S ∪ {u}

end if
end for
Output S

Algorithm 2 High level meta algorithm for building
weighted histogram using a given update policy

Input: D: Database of n users where each user i has
some subset Wi ⊂ U
∆0: maximum contribution parameter
hash: A random hash function which maps user ids into
some large domain without collisions
φ: Update policy for a user to update the weights of items
in their set
Output: H: A weighted histogram in R∪iWi

H = {} (empty histogram)
Sort users into User1,User2, . . . ,Usern by sorting the
hash values of their user ids under the hash function hash
for i = 1 to n do
Wi ← set of Useri
if |Wi| > ∆0 then
W ′i ← Randomly choose ∆0 items from Wi

else
W ′i ←Wi

end if
Update H[u] for each u ∈W ′i using update policy φ

end for
Output H

ity of the resulting weighted histogram. To illustrate this,
consider for example the greedy update policy. Each user
i can use his budget of 1 to fill the bins that is closest to
the threshold among the bins u ∈ Wi. If an item already
reached the threshold, the user can spend his remaining
budget incrementing the weight of next bin that is closest
to the threshold and so on. Note that from our Knapsack
problem analogy this seems to be a good way to maximize
the number of bins filled. However such a greedy policy
can have very large sensitivity (see supplementary material
for an example), and hence won’t lead to any reasonable
DP algorithm. So, the main contribution of the paper is

Differentially Private Set Union

in showing policies which help maximize the number of
items that are filled while keeping the sensitivity low. In
particular, we define a general class of `p-contractive update
policies and show that they produce weighted histograms
with bounded `p-sensitivity.

Definition 1.3 (`p-contractive update policy). We say that
an update policy φ is `p-contractive if there exists a subset
I (called the invariant subset for φ) of pairs of weighted
histograms which are at an `p distance of at most 1, i.e.,

I ⊂
{

(H1, H2) : ‖H1 −H2‖`p ≤ 1
}

such that the following conditions hold.

1. (Invariance) (H1, H2) ∈ I ⇒ (φ(H1), φ(H2)) ∈ I.2

2. (φ(H), H) ∈ I for all H .

Property (2) of Definition 1.3 requires that the update policy
can change the histogram by an `p distance of at most 1
(budget of a user).

Theorem 1.1 (Contractivity implies bounded sensitivity).
Suppose φ is an update policy which is `p-contractive over
some invariant subset I. Then the histogram output by
Algorithm 2 has `p-sensitivity bounded by 1.

We prove Theorem 1.1 in Section 2. Once we have bounded
`p-sensitivity, we can get a DP Set Union algorithm with
some additional technical work.

Theorem 1.2. (Informal: Bounded sensitivity implies DP)
For p ∈ {1, 2}, if the `p-sensitivity of the weighted his-
togram output by Algorithm 2 is bounded, then Algorithm 1
for DP Set Union can be made (ε, δ)-differentially private
by appropriately choosing the noise distribution (Noise)
and threshold (ρ).

The main contribution of the paper is two new algorithms
guided by Theorem 1.1. The first algorithm, which we call
POLICY LAPLACE, uses update policy that is `1-contractive.
The second algorithm, which we call POLICY GAUSSIAN,
uses update policy that is `2-contractive. Finally we show
that our algorithms significantly outperform the weighted
policies.

At a very high-level, the role of contractivity in our algo-
rithms is indeed similar to its role in the recent elegant work
of Feldman et al. (2018). They show that if an iterative
algorithm is contractive in each step, then adding Gaussian
noise in each iteration will lead to strong privacy amplifi-
cation. In particular, users who make updates early on will

2Note that property (1) is a slightly weaker require-
ment than the usual notion of `p-contractivity which requires
‖φ(H1)− φ(H2)‖`p ≤ ‖H1 −H2‖`p for all H1, H2. Instead
we require contraction only for (H1, H2) ∈ I.

enjoy much better privacy guarantees. However their frame-
work is not applicable in our setting, because their algorithm
requires adding noise to the count of every item in every
iteration; this will lead to unbounded growth of counts and
items which belong to only a single user can also get output
which violates privacy.

2. Contractivity implies DP algorithms
In this section, we show that if an update policy satisfies
contractive property as in Definition 1.3, we can use it to
develop a DP algorithm for DPSU. First we show that con-
tractivity of update policy implies bounded sensitivity (The-
orem 1.1), which in turn implies a DP Set Union algorithm
by Theorem 1.2

We will first define sensitivity and update policy formally.
Let D denote the collection of all databases. We say that
D,D′ are neighboring databases, denoted by D ∼ D′, if
they differ in exactly one user.

Definition 2.1. For p ≥ 0, the `p-sensitivity of f : D →
Rk is defined as supD∼D′ ‖f(D)− f(D′)‖`p where the
supremum is over all neighboring databases D,D′.

Proof of Theorem 1.1. Let φ be an `p-contractive update
policy with invariant subset I. Consider two neighboring
databases D1 and D2 where D1 has one extra user com-
pared to D2. Let H1 and H2 denote the histograms built by
Algorithm 1 using the update policy φ when the databases
are D1 and D2 respectively.

Say the extra user inD1 has position t in the global ordering
given by the hash function. Let Ht−1

1 and Ht−1
2 be the

histograms after the first t− 1 (according to the global order
given by the hash function hash) users’ data is added to
the histogram. Therefore Ht−1

1 = Ht−1
2 . And the new user

updates Ht−1
1 to Ht

1. By property (2) in Definition 1.3
of `p-contractive policy, (φ(Ht−1

1), Ht−1
1) ∈ I. Since

φ(Ht−1
1) = Ht

1, we have (Ht
1, H

t−1
1) = (Ht

1, H
t−1
2) ∈ I.

The remaining users are now added to Ht
1, H

t−1
2 in the

same order. Note that we are using the fact that the users are
sorted according some hash function and they contribute in
that order (this is also needed to claim that Ht−1

1 = Ht−1
2).

Therefore, by property (1) in Definition 1.3 of `p-contractive
policy, we get (H1, H2) ∈ I. Since I only contains pairs
with `p-distance at most 1, we have ‖H1 −H2‖`p ≤ 1.
This proves that the histogram built by Algorithm 2 using φ
has `p-sensitivity of at most 1.

Above theorem implies that once we have a `p contractive
update policy, we can appeal to Theorem 1.2 to design a DP
algorithm for DPSU.

Differentially Private Set Union

3. Policy Laplace Algorithm
In this section we will present an `1-contractive update pol-
icy called `1-DESCENT (Algorithm 3) and use it to obtain
a DP Set Union algorithm called POLICY LAPLACE (Algo-
rithm 4).

3.1. `1-DESCENT update policy

The policy is described in Algorithm 3. We will set some
cutoff Γ above the threshold ρ to use in the update policy.
Once the weight of an item (H[u]) crosses the cutoff, we
don’t want to increase it further. In this policy, each user
starts with a budget of 1. The user uniformly increases
H[u] for each u ∈ W ′i s.t. H[u] < Γ. Once some item’s
weight reaches Γ, the user stops increasing that item and
keeps increasing the rest of the items until the budget of 1
is expended. To implement this efficiently, the ∆0 items
from each user are sorted based on distance to the cutoff.
Beginning with the item whose weight is closest to the
cutoff Γ (but still below the cutoff), say item u, we will add
Γ − H[u] (gap to cutoff for item u) to each of the items
below the cutoff. This repeats until the user’s budget of 1
has been expended.

This policy can also be interpreted as gradient descent to
minimize the `1-distance between the current weighted his-
togram and the point (Γ,Γ, . . . ,Γ), hence the name `1-
DESCENT. Since the gradient vector is 1 in coordinates
where the weight is below cutoff Γ and 0 in coordinates
where the weight is Γ, the `1-DESCENT policy is moving
in the direction of the gradient until it has moved a total
`1-distance of at most 1.
3.2. POLICY LAPLACE

The POLICY LAPLACE algorithm (Algorithm 4) for DPSU
uses the framework of the meta algorithm in Algorithm 1
using the update policy in Algorithm 3. Since the added
noise is Lap(0, λ), which is centered at 0, we want to set
the cutoff Γ in the update policy to be sufficiently above
the threshold ρ. Thus we pick Γ = ρLap + α · λ for some
α > 0. From our experiments, choosing α ∈ [2, 6] works
best empirically. The parameters λ, ρLap are set so as to
achieve (ε, δ)-DP as shown in Theorem 3.1.

3.3. Privacy analysis of POLICY LAPLACE

In this section we will prove that the POLICY LAPLACE
algorithm (Algorithm 4) is (ε, δ)-DP. By Theorem 1.2 and
Theorem 1.1, it is enough to show that `1-DESCENT policy
(Algorithm 3) is `1-contractive. For two histograms G1, G2,
we write G1 ≥ G2 if G1[u] ≥ G2[u] for each every item u.
G1 ≤ G2 is defined similarly.

Lemma 3.1. Let I = {(G1, G2) : G1 ≥
G2, ‖G1 −G2‖`1 ≤ 1}. Then `1-DESCENT update pol-
icy is `1-contractive over the invariant subset I.

Algorithm 3 `1-DESCENT update policy
Input: H: Current histogram
W : A subset of U of size at most ∆0

Γ: cutoff parameter
Output: H: Updated histogram
// Build cost dictionary G
G = {} // Empty dictionary
for u ∈W do

if H[u] < Γ then
// Gap to cutoff for items below cutoff Γ
G[u]← Γ−H[u]

end if
end for
budget← 1 // Each user gets a total budget of 1
K ← |G| // Number of items still under cutoff
// Sort in increasing order of the gap Γ−H[u]
G← sort(G)
// Let u1, u2, . . . , u|G| be the sorted order
for j = 1 to |G| do

// Cost of increasing weights of remaining K items by
G[uj]
cost = G[uj] ·K
if cost ≤ budget then

for ` = j to |G| do
H[u`]← H[u`] +G[uj]
// Gap to cutoff is reduced by G[uj]
G[u`]← G[u`]−G[uj]

end for
budget← budget - cost
// uj has reached cutoff, so decrease K by 1
K ← K − 1

else
for ` = j to |G| do

// Update item weights by as much as remaining
budget allows
H[u`]← H[u`] + budget

K
break

end for
end if

end for

Proof. Let φ denote the `1-DESCENT update policy.

We will first show property (2) of Definition 1.3. Let G
be any weighted histogram and let G′ = φ(G). Clearly
G′ ≥ G as the new user will never decrease the weight
of any item. Moreover, the total change to the histogram
is at most 1 in `1-distance. Therefore ‖G′ −G‖`1 ≤ 1.
Therefore (G′, G) ∈ I.

We will now prove property (1) of Definition 1.3. Let
(G1, G2) ∈ I, i.e., G1 ≥ G2 and ‖G1 −G2‖`1 ≤ 1. Let
G′1 = φ(G1), G′2 = φ(G2). A new user can increase G1

and G2 by at most 1 in `1 distance. Let Γ be the cutoff

Differentially Private Set Union

Algorithm 4 POLICY LAPLACE algorithm for DPSU
Input: D: Database of n users where each user has some
subset W ⊂ U
∆0: maximum contribution parameter
(ε, δ): privacy parameters
α: parameter for setting cutoff
Output: S: A subset of ∪iWi

λ← 1/ε // Noise parameter in Lap(0, λ)
// Threshold parameter

ρLap ← max1≤t≤∆0

1
t + 1

ε log

(
1

2(1−(1−δ)1/t)

)
Γ← ρLap+α ·λ // Cutoff parameter for update policy
Run Algorithm 1 with Noise ∼ Lap(0, λ) and the `1-
DESCENT update policy in Algorithm 3 to output S.

parameter in Algorithm 3. Let S be the set of ∆0 items with
the new user, therefore only the items in S will change in
G′1, G

′
2. WLOG, we can assume that the user changes both

G1 andG2 by exactly total `1 distance of 1. Otherwise, in at
least one of them all the items in S should reach the cutoff Γ.
If this happens with G1, then clearly Γ = G′1[u] ≥ G′2[u]
for all u ∈ S. But it is easy to see that if this happens
with G2, then it should also happen with G1 in which case
G′1[u] = G′2[u] = Γ for u ∈ S.

Imagine that at time t = 0, the user starts pushing mass
continuously at a rate of 1 to both G1, G2 until the entire
mass of 1 is sent, which happens at time t = 1. The mass
flow is equally split among all the items which haven’t yet
crossed cutoff. Let Gt1 and Gt2 be the histograms at time t.
Therefore G0

i = Gi and G1
i = G′i. We claim that Gt1 ≥ Gt2

implies that dG
t
1[u]
dt ≥ dGt

2[u]
dt for all u ∈ S s.t. Gt1[u] < Γ.

This is because the flow is split equally among items which
didn’t cross the cutoff, and there can only be more items in
Gt2 which didn’t cross the the cutoff when compared to Gt1.
And at time t = 0, we have G0

1 ≥ G0
2. Therefore, we have

Gt1 ≥ Gt2 for all t ∈ [0, 1] and so G′1 ≥ G′2.

We will now prove `1-contraction. Let Ci = ‖Gi −G′i‖`1 .
By the discussion above, C1 ≤ C2 (either total mass flow is
equal to 1 for both or all items in S will reach cutoff Γ in
G1 before this happens in G2).

‖G′1 −G′2‖`1
=
∑
u∈S

G′1[u]−
∑
u∈S

G′2[u] (Since G′1 ≥ G′2)

=
∑
u∈S

G1[u]−
∑
u∈S

G2[u] + C1 − C2

≤
∑
u∈S

G1[u]−
∑
u∈S

G2[u] (Since C1 ≤ C2)

= ‖G1 −G2‖`1 (Since G1 ≥ G2)

≤ 1.

Therefore (G′1, G
′
2) ∈ I which proves property (2) of Defi-

nition 1.3.

We now state a formal theorem which proves (ε, δ)−DP
of POLICY LAPLACE algorithm3.

Theorem 3.1. The POLICY LAPLACE algorithm (Algo-
rithm 4) is (ε, δ)-DP when

ρLap ≥ max
1≤t≤∆0

1

t
+

1

ε
log

(
1

2
(
1− (1− δ)1/t

)) .
4. Policy Gaussian Algorithm
In this section we will present an `2-contractive update pol-
icy called `2-DESCENT (Algorithm 5) and use it to obtain a
DP Set Union algorithm called POLICY GAUSSIAN (Algo-
rithm 4).

4.1. `2-DESCENT update policy

Similar to the Laplace update policy, we will set some cutoff
Γ above the threshold ρ and once an item’s count (H[u])
crosses the cutoff, we don’t want to increase it further. In
this policy, each user starts with a budget of 1. But now, the
total change a user can make to the histogram can be at most
1 when measured in `2-norm (whereas in Laplace update
policy we used `1-norm to measure change). In other words,
sum of the squares of the changes that the user makes is at
most 1. Since we want to get as close to the cutoff (Γ) as
possible, the user moves the counts vector (restricted to the
set W of ∆0 items the user has) in the direction of the point
(Γ,Γ, . . . ,Γ) by an `2-distance of at most 1. This update
policy is presented in Algorithm 5.

This policy can also be interpreted as gradient descent
to minimize the `2-distance between the current weighted
histogram and the point (Γ,Γ, . . . ,Γ), hence the name `2-
DESCENT. Since the gradient vector is in the direction of
the line joining the current point and (Γ,Γ, . . . ,Γ), the `2-
DESCENT policy is moving the current histogram towards
(Γ,Γ, . . . ,Γ) by an `2-distance of at most 1.

4.2. POLICY GAUSSIAN

The POLICY GAUSSIAN algorithm (Algorithm 6) for DPSU
uses the framework of the meta algorithm in Algorithm 1
using the Gaussian update policy (Algorithm 5). Since the
added noise is N (0, σ2) which is centered at 0, we want to
set the cutoff Γ in the update policy to be sufficiently above
(but not too high above) the threshold ρGauss. Thus we pick
Γ = ρGauss + α · σ for some α > 0. From our experiments,
choosing α ∈ [2, 6] empirically yields these best results.

3The proof for this theorem can be found in the supplementary
material.

Differentially Private Set Union

Algorithm 5 `2-DESCENT update policy
Input: H: Current histogram
W : A subset of U of size at most ∆0

Γ: cutoff parameter
Output: H: Updated histogram
G = {} // Empty dictionary
for u ∈W do

// G is the vector joining H|W to (Γ,Γ, . . . ,Γ)
G[u]← Γ−H[u]

end for
// `2-distance between H|W and (Γ,Γ, . . . ,Γ)

Z ←
(∑

u∈W G[u]2
)1/2

// If Z ≤ 1, then the user moves H|W to (Γ,Γ, . . . ,Γ).
Else, move H|W in the direction of (Γ,Γ, . . . ,Γ) by an
`2-distance of at most 1
if Z < 1 then

for u ∈W do
H[u]← Γ

end for
else

for u ∈W do
H[u]← H[u] + G[u]

Z
end for

end if

The parameters σ, ρGauss are set so as to achieve (ε, δ)-DP
as shown in Theorem 4.1. Φ(·) is the cumulative density
function of standard Gaussian distribution and Φ−1(·) is its
inverse.

Algorithm 6 POLICY GAUSSIAN algorithm for DPSU
Input: D: Database of n users where each user has some
subset W ⊂ U
∆0: maximum contribution parameter
(ε, δ): privacy parameters
α: parameter for setting cutoff
Output: S: A subset of ∪iWi

// Standard deviation in Gaussian noise
σ ← min

{
σ : Φ

(
1

2σ − εσ
)
− eεΦ

(
− 1

2σ − εσ
)
≤ δ

2

}
// Threshold parameter
ρGauss ← max1≤t≤∆0

(
1√
t

+ σΦ−1
((

1− δ
2

)1/t))
Γ← ρLap+α ·σ // Cutoff parameter for update policy
Run Algorithm 1 with Noise ∼ N (0, σ2) and the `2-
DESCENT update policy in Algorithm 5 to output S.

To find min
{
σ : Φ

(
1

2σ − εσ
)
− eεΦ

(
− 1

2σ − εσ
)
≤ δ

2

}
,

one can use binary search because Φ
(

1
2σ − εσ

)
−

eεΦ
(
− 1

2σ − εσ
)

is a decreasing function of σ. An efficient
and robust implementation of this binary search can be
found in (Balle & Wang, 2018).

4.3. Privacy analysis of POLICY GAUSSIAN

In this section we will prove that the POLICY GAUSSIAN
algorithm (Algorithm 6) is (ε, δ)-DP. By Theorem 1.2 and
Theorem 1.1, it is enough to show `2-contractivity of `2-
DESCENT update policy. We will need a simple plane geom-
etry lemma for this. A proof can be found in the supplemen-
tary material.

Lemma 4.1. Let A,B,C denote the vertices of a triangle
in the Euclidean plane. If |AB| > 1, let B′ be the point
on the side AB which is at a distance of 1 from B and if
|AB| ≤ 1, define B′ = A. C ′ is defined similarly. Then
|B′C ′| ≤ |BC|.

B

C

A

C’

B’
BB’ = 1

CC’ = 1

AB’ = 𝑥

AC’ = 𝑦

θ

Figure 2. Geometric illustration of Lemma 4.1 when
|AB|, |AC| > 1. The lemma implies that |B′C′| ≤ |BC|.

Lemma 4.2. Let I = {(G1, G2) : ‖G1 −G2‖`2 ≤ 1}.
Then the `2-DESCENT update policy is `2-contractive over
the invariant set I.

Proof. Let φ denote the `2-DESCENT policy. Property (2)
of Definition 1.3 follows easily because each new user can
only change a weighted histogram by an `2-distance of at
most 1.

We will now prove Property (1) of Definition 1.3. Let
(G1, G2) ∈ I, i.e., ‖G1 −G2‖`2 ≤ 1. Let G′1 = φ(G1)
and G′2 = φ(G2). A new user can increase G1 and G2 by
at most 1 in `2 distance. Let Γ be the cutoff parameter in
Algorithm 5. Let S be the set of ∆0 items with the new
user, therefore only the items in S will change in G′1, G

′
2.

Therefore we can just assume that G1, G2 are supported
on S for the sake of the analysis. Algorithm 6 moves Gi
towards P = (Γ,Γ, . . . ,Γ) by an `2-distance of 1 (or to P
if the distance to P is already lower than 1). We can re-
strict ourselves to the plane containing G1, G2, P (G′1, G

′
2

will also lie on the same plane). Now by Lemma 4.1,
‖G′1 −G′2‖`2 ≤ ‖G1 −G2‖`2 .

We now state a formal theorem which proves (ε, δ)−DP
of POLICY GAUSSIAN algorithm4.

4The proof for this theorem can be found in the supplementary
material.

Differentially Private Set Union

Theorem 4.1. The POLICY GAUSSIAN algorithm (Algo-
rithm 6) is (ε, δ)-DP if σ, ρGauss are chosen s.t.

Φ

(
1

2σ
− εσ

)
− eεΦ

(
− 1

2σ
− εσ

)
≤ δ

2
and

ρGauss ≥ max
1≤t≤∆0

(
1√
t

+ σΦ−1

((
1− δ

2

)1/t
))

.

5. Experiments
While the algorithms we described generalize to many do-
mains that involve the release of set union, our experiments
will use a natural language dataset. In the context of n-gram
release, D is a database of users where each user is asso-
ciated with 1 or more Reddit posts and Wi is the set of
unique n-grams used by each user. The goal is to output as
large a subset of n-grams ∪iWi as possible while providing
(ε, δ)-differential privacy to each user. In our experiments
we consider n = 1 (unigrams)5.

5.1. Dataset

Our dataset is collected from the subreddit r/AskReddit.
We take a sample of 15,000 posts from each month between
January 2017 and December 2018. We filter out duplicate
entries, removed posts, and deleted authors. For text pre-
processing, we remove URLs and symbols, lowercase all
words, and tokenize using nltk.word tokenize. After
preprocessing, we again filter out empty posts to arrive at a
dataset of 373,983 posts from 223,388 users.

Similar to other natural language datasets, this corpus fol-
lows Zipf’s law across users. The frequency of unigrams
across users is inversely proportional to its rank of the un-
igram. The distribution of how many unigrams each user
uses also follows a long tail distribution. While the top
10 users contribute 850-2000 unique unigrams, most users
(93.1%) contribute less than 100 unique unigrams.

5.2. Results

For the problem of outputting the large possible set of uni-
grams, Table 1 and Figure 3, summarize the performance
of DP set union algorithms for different values of ∆0. The
privacy parameters are ε = 3 and δ = exp(−10). For
each algorithm, we average the results of 5 different shuf-
fles of user ordering and also include the standard devi-
ation in Table 1. We compare our algorithms with base-
line algorithms: COUNT LAPLACE, COUNT GAUSSIAN,
WEIGHTED LAPLACE, and WEIGHTED GAUSSIAN dis-
cussed previously6. Our conclusions are as follows:

5Our code is made available here https://github.com/
heyyjudes/differentially-private-set-union.

6Additional experiments with different α and ε values are in-
cluded in the supplementary materials

Figure 3. Count of unigrams released by set union algorithms aver-
aged across 5 shuffles of user order. Privacy parameters are ε = 3
and δ = exp(−10). The cutoff Γ is calculated using α = 5.

• Our new algorithms POLICY LAPLACE and POLICY
GAUSSIAN output a DP set union that is 2-4 times
larger than output of weighted/count based algorithms.
This holds for all values of ε ≥ 1.

• To put the size of released set in context, we compare
our new algorithms against the number of unigrams
belonging to at least k users (See Table 2). For POLICY
LAPLACE with ∆0 = 100, the size of the output set
covers almost all unigrams (94.8%) when k = 20
and surpasses the size of the output set when k ≥ 25.
POLICY GAUSSIAN with ∆0 = 100 covers almost all
unigrams (91.8%) when k = 15 and surpasses the size
of the output set when k ≥ 18. In other words, our
algorithms (with ε = 3 and δ = exp(−10)) perform
better than k-anonymity based algorithms for values of
k around 20.

5.2.1. SELECTING HYPERPARAMETERS WHILE
MAINTAINING PRIVACY

As can be seen from Table 1 the ∆0 resulting in the largest
output set varies by algorithm. Since most users in our
dataset possess less than 300 unique unigrams, it is not
surprising that the largest output set can be achieved with
∆0 < 300. However, running our algorithms for different
values of ∆0 and selecting the best output will result in
a higher value of ε. There are several ways to find the
best value of ∆0 (or any other tunable parameter): 1) using
prior knowledge of the data 2) running the algorithms on
a small sample of the data to find the best parameters, and
discarding that sample. 3) finally, one could also run all the
algorithms in parallel and choose the best performing one.
Here we will have to account for the loss in privacy budget;
see (Liu & Talwar, 2019) for example.

https://github.com/heyyjudes/differentially-private-set-union
https://github.com/heyyjudes/differentially-private-set-union

Differentially Private Set Union

Table 1. Count of unigrams released by various set union algorithms. Results are averaged across 5 shuffles of user order. The best results
for each algorithm are in bold. The privacy parameters are ε = 3 and δ = exp(−10). α = 5 is chosen for the cutoff parameter Γ.

∆0 1 10 50 100 200 300

COUNT LAPLACE 4484 ± 32 3666 ± 7 2199 ± 8 1502 ± 14 882 ± 4 647 ± 4
COUNT GAUSSIAN 3179 ± 15 6616 ± 18 6998 ± 23 6470 ± 12 5492 ± 14 4813 ± 14
WEIGHTED LAPLACE 4479 ± 26 4309 ± 15 4012 ± 10 3875 ± 9 3726 ± 17 3648 ± 12
WEIGHTED GAUSSIAN 3194 ± 11 6591 ± 18 8570 ± 14 8904 ± 24 8996 ± 30 8936 ± 12
POLICY LAPLACE 4482 ± 21 12840 ± 28 15268 ± 10 14739 ± 23 14173 ± 25 13870 ± 23
POLICY GAUSSIAN 3169 ± 13 11010 ± 15 16181 ± 33 16954 ± 58 17113 ± 16 17022 ± 57

Table 2. This table shows the total number of unigrams that at least
k users possess (|Sk|) and the percentage coverage of this total
by POLICY LAPLACE (|SPL| = 14739) and POLICY GAUSSIAN

(|SPG| = 16954) for ∆0 = 100.

k |Sk| % COVERAGE POL-
ICY LAPLACE

% COVERAGE POL-
ICY GAUSSIAN

5 34699 24.5% 48.9%
10 23471 62.8% 72.2%
15 18461 79.8% 91.8%
18 16612 88.7% 102.1%
20 15550 94.8% 109.0%
25 13638 108.1% 124.3%

6. Conclusion
We initiated the study of differentially private set union
problem, which has many real-world applications. We de-
signed better algorithms for the problem using the notion
of contractive update policy as a guiding principle to pre-
serve privacy. From a set of empirical experiments on a
Reddit natural language dataset, we demonstrate that our
policy algorithms release a larger set-union than previous
algorithms.

One immediate question is to give theoretical guarantees
on the size of set union produced by our algorithms. A
more interesting and significantly challenging question is to
design instance optimal algorithms for the problem. Given
the ubiquitous nature of this problem, we believe that it is a
worthwhile direction to explore.

References
Abowd, J. M. The challenge of scientific reproducibility

and privacy protection for statistical agencies. Technical
report, Census Scientific Advisory Committee, 2016.

Apple, D. P. T. Learning with privacy at scale. Technical
report, Apple, 2017.

Avent, B., Korolova, A., Zeber, D., Hovden, T., and Livshits,
B. Blender: enabling local search with a hybrid differen-
tial privacy model. In Proc. of the 26th USENIX Security
Symposium, pp. 747–764, 2017.

Balle, B. and Wang, Y.-X. Improving the gaussian mecha-
nism for differential privacy: Analytical calibration and
optimal denoising. In International Conference on Ma-
chine Learning, pp. 403–412, 2018.

Bittau, A., Erlingsson, U., Maniatis, P., Mironov, I., Raghu-
nathan, A., Lie, D., Rudominer, M., Kode, U., Tinnes,
J., and Seefeld, B. Prochlo: Strong privacy for analytics
in the crowd. In Proceedings of the 26th Symposium on
Operating Systems Principles, SOSP ’17, pp. 441–459,
2017.

Carlini, N., Liu, C., Erlingsson, Ú., Kos, J., and Song, D.
The secret sharer: Evaluating and testing unintended
memorization in neural networks. In 28th {USENIX}
Security Symposium ({USENIX} Security 19), pp. 267–
284, 2019.

Chen, M. X., Lee, B. N., Bansal, G., Cao, Y., Zhang, S.,
Lu, J., Tsay, J., Wang, Y., Dai, A. M., Chen, Z., and
et al. Gmail smart compose: Real-time assisted writing.
In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 2287–2295, 2019.

Deb, B., Bailey, P., and Shokouhi, M. Diversifying reply
suggestions using a matching-conditional variational au-
toencoder. In Proceedings of the 2019 Conference of the
North American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies, Vol-
ume 2 (Industry Papers), Minneapolis, Minnesota, June
2019. Association for Computational Linguistics.

Differentially Private Set Union

Ding, B., Kulkarni, J., and Yekhanin, S. Collecting teleme-
try data privately. In Advances in Neural Information
Processing Systems, pp. 3574–3583, 2017.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. Cali-
brating noise to sensitivity in private data analysis. In The-
ory of Cryptography Conference, pp. 265–284. Springer,
2006.

Dwork, C., Roth, A., et al. The algorithmic foundations
of differential privacy. Foundations and Trends R© in
Theoretical Computer Science, 9(3–4):211–407, 2014.

Erlingsson, Ú., Pihur, V., and Korolova, A. Rappor:
Randomized aggregatable privacy-preserving ordinal re-
sponse. In Proceedings of the 2014 ACM SIGSAC con-
ference on computer and communications security, pp.
1054–1067. ACM, 2014.

Feldman, V., Mironov, I., Talwar, K., and Thakurta, A. Pri-
vacy amplification by iteration. In Thorup, M. (ed.), 59th
IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018,
pp. 521–532. IEEE Computer Society, 2018.

Hu, B., Lu, Z., Li, H., and Chen, Q. Convolutional neu-
ral network architectures for matching natural language
sentences. In Advances in neural information processing
systems, pp. 2042–2050, 2014.

Kannan, A., Kurach, K., Ravi, S., Kaufmann, T., Tomkins,
A., Miklos, B., Corrado, G., Lukacs, L., Ganea, M.,
Young, P., et al. Smart reply: Automated response sugges-
tion for email. In Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, pp. 955–964, 2016.

Korolova, A., Kenthapadi, K., Mishra, N., and Ntoulas, A.
Releasing search queries and clicks privately. In Proceed-
ings of the 18th international conference on World wide
web, pp. 171–180, 2009.

Kuo, Y.-H., Chiu, C.-C., Kifer, D., Hay, M., and Machanava-
jjhala, A. Differentially private hierarchical group size
estimation. arXiv preprint arXiv:1804.00370, 2018.

Liu, J. and Talwar, K. Private selection from private
candidates. In Charikar, M. and Cohen, E. (eds.),
Proceedings of the 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing, STOC 2019, Phoenix,
AZ, USA, June 23-26, 2019, pp. 298–309. ACM, 2019.
doi: 10.1145/3313276.3316377. URL https://doi.
org/10.1145/3313276.3316377.

McSherry, F. and Talwar, K. Mechanism design via dif-
ferential privacy. In 48th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2007),

October 20-23, 2007, Providence, RI, USA, Proceed-
ings, pp. 94–103. IEEE Computer Society, 2007. doi:
10.1109/FOCS.2007.41. URL https://doi.org/
10.1109/FOCS.2007.41.

Vadhan, S. The complexity of differential privacy. In Tuto-
rials on the Foundations of Cryptography, pp. 347–450.
Springer, 2017.

Wilson, R., Zhang, C. Y., Lam, W., Desfontaines, D.,
Simmons-Marengo, D., and Gipson, B. Differentially
private SQL with bounded user contribution. 2020.

https://doi.org/10.1145/3313276.3316377
https://doi.org/10.1145/3313276.3316377
https://doi.org/10.1109/FOCS.2007.41
https://doi.org/10.1109/FOCS.2007.41

	Introduction
	Base Line Algorithms
	Our Techniques

	Contractivity implies DP algorithms
	Policy Laplace Algorithm
	1-descent update policy
	Policy Laplace
	Privacy analysis of Policy Laplace

	Policy Gaussian Algorithm
	2-descent update policy
	policy gaussian
	Privacy analysis of Policy Gaussian

	Experiments
	Dataset
	Results
	Selecting hyperparameters while maintaining privacy

	Conclusion

