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A. Proofs of Policy Algorithms (Theorems 3.1
and 4.1)

Let D denote the collection of all databases. We say that
D,D′ ∈ D are neighboring databases, denoted by D ∼ D′,
if they differ in exactly one user.

Definition A.1. For p ≥ 0, the `p-sensitivity of f : D →
Rk is defined as supD∼D′ ‖f(D)− f(D′)‖`p where the
supremum is over all neighboring databases D,D′.

The noise that we add is sampled either from Laplace or
Gaussian (Normal) distribution. The probability density
functions of these distributions are given by:

Lap(µ, λ) = Laplace(µ, λ) =
1

2λ
exp
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)
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1
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We will need the following standard DP mechanisms.

Proposition A.1 (The Laplace Mechanism (Dwork et al.,
2006)). Suppose f : D → Rk is a function with `1 sensi-
tivity ∆1. For any ε ≥ 0, the Laplace mechanism M(x) =
f(x) + (Y1, Y2, . . . , Yk) is (ε, 0)-DP when Y1, Y2, . . . , Yk
are i.i.d. random variables drawn from Lap(0,∆1/ε).

Proposition A.2 (Gaussian Mechanism (Balle & Wang,
2018)). Suppose f : D → Rd is a function with `2-
sensitivity ∆2. For any ε ≥ 0 and δ ∈ [0, 1], the Gaussian
mechanism M(x) = f(x) + Z with Z ∼ N (0, σ2I) is
(ε, δ)-DP if and only if

Φ

(
∆2

2σ
− εσ

∆2

)
− eεΦ

(
−∆2

2σ
− εσ

∆2

)
≤ δ

where Φ is the cdf of standard normal distribution.
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Definition A.2. We say that two distributions P,Q on a
domain X are (ε, δ)-close to each other, denoted by P ≈ε,δ
Q, if for every S ⊂ X , we have

1. Prx∼P [x ∈ S] ≤ eε Prx∼Q[x ∈ S] + δ and

2. Prx∼Q[x ∈ S] ≤ eε Prx∼P [x ∈ S] + δ.

We say that two random variables X,Y are (ε, δ)-close to
each other, denoted by X ≈ε,δ Y , if their distributions are
(ε, δ)-close to each other.

We will need the following lemmas which is useful to prove
(ε, δ)-DP.
Lemma A.1. Let P,Q be probability distributions over a
domain X . If there exists an event E s.t. P (E) = 1 − δ′
and P |E ≈ε,δ Q, then P ≈ε,δ+δ′ Q.

Proof. Fix some subset S ⊆ X .

Pr
x∼P
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x∼P

[x ∈ S|Ē] + P [E] Pr
x∼P

[x ∈ S|E]

≤ P (Ē) + Pr
x∼P

[x ∈ S|E]

= δ′ + Pr
x∼P |E
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≤ δ′ + eε Pr
x∼Q

[x ∈ S] + δ

We now prove the other direction.

Pr
x∼Q

[x ∈ S] ≤ eε Pr
x∼P |E

[x ∈ S] + δ

≤ eεPrx∼P [x ∈ S]

P (E)
+ δ
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)
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Now if eε Prx∼P [x ∈ S] ≤ 1 − δ′, then we have
Prx∼Q[x ∈ S] ≤ eε Prx∼P [x ∈ S] + δ′ + δ. Otherwise,
trivially

Pr
x∼Q

[x ∈ S] ≤ 1 ≤ eε Pr
x∼P

[x ∈ S] + δ′ + δ.
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We will also need the fact that if X ≈ε,δ Y , then after
postprocessing they also remain (ε, δ)-close.

Lemma A.2. If two random variables X,Y are (ε, δ)-close
and M is any randomized algorithm, then M(X) ≈ε,δ
M(Y ).

Proof. Let M(z) = F (z,R) for some function F where
R is the random bits used by M . For any subset S of the
possible outputs of M ,

Pr[M(X) ∈ S] = Pr
X,R

[F (X,R) ∈ S]

=
∑
r
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[F (Y,R) ∈ S] + δ.

The other direction holds by symmetry.

Proof of Theorem 3.1. SupposeD1 andD2 are neighboring
databases whereD1 has one extra user compared toD2. Let
P and Q denote the distribution of output of the algorithm
when the database is D1 and D2 respectively. We want
to show that P ≈ε,δ Q. Let E be the event that A ⊂
supp(H2).

Claim A.1. P |E ≈ε,0 Q

Proof. Let H1 and H2 be the histograms generated by the
algorithm from databases D1 and D2 respectively. And Ĥ1

and Ĥ2 be the histograms obtained by adding Lap(0, 1/ε)
noise to each entry of H1 and H2 respectively. For any
possible output A of Algorithm 4, we have

Q(A) = Pr[A = {u ∈ supp(H2) : Ĥ2[u] > ρLap}] and

P |E(A) = Pr[A = {u ∈ supp(H2) : Ĥ1[u] > ρLap}].

So A ∼ P |E is obtained by postprocessing Ĥ1|E and
A ∼ Q is obtained by postprocessing Ĥ2. Since postpro-
cessing only makes two distributions closer (Lemma A.2), it
is enough to show that the distributions of the Ĥ1|supp(H2)

and Ĥ2 are (ε, 0)-close to each other. Because the histogram
building algorithm (Algorithm 2) has `1-sensitivity of at
most 1 by hypothesis,

∥∥H1|supp(H2) −H2

∥∥
`1
≤ 1. There-

fore P |E ≈ε,0 Q by the properties of Laplace mechanism
(Proposition A.1).

By Lemma A.1, it is enough to show that P (E) ≥ 1 − δ.
Let T = supp(H1) \ supp(H2). Note that |T | ≤ ∆0 and
H1[u] ≤ 1

|T | for u ∈ T.
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Thus for

ρLap ≥ max
1≤t≤∆0

1

t
+

1

ε
log

(
1

2
(
1− (1− δ)1/t

)) ,
we have P (Ē) ≤ δ. Therefore the DP Set Union algorithm
(Algorithm 1) is (ε, δ)-DP.

Proof of Theorem 4.1. SupposeD1 andD2 are neighboring
databases whereD1 has one extra user compared toD2. Let
P and Q denote the distribution of output of the algorithm
when the database is D1 and D2 respectively. We want
to show that P ≈ε,δ Q. Let E be the event that A ⊂
supp(H2).

Claim A.2. P |E ≈ε,δ/2 Q

Proof. Let H1 and H2 be the histograms generated by the
algorithm from databases D1 and D2 respectively. And
Ĥ1 and Ĥ2 be the histograms obtained by adding N (0, σ2)
noise to each entry of H1 and H2 respectively. By the post-
processing lemma (Lemma A.2), it is enough to show that
the distributions of the Ĥ1|supp(H2) and Ĥ2 are (ε, δ/2)-
close to each other. Because the histogram building algo-
rithm (Algorithm 2) has `2-sensitivity of at most 1 by hy-
pothesis,

∥∥H1|supp(H2) −H2

∥∥
`2
≤ 1. Therefore by proper-

ties of Gaussian mechanism (Proposition A.2), it is enough
to choose σ as in the statement of the theorem.

By Lemma A.1, it is enough to show that P (E) ≥ 1− δ/2.
Let T = supp(H1) \ supp(H2). Note that |T | ≤ ∆0 and
H1[u] ≤ 1√

|T |
for u ∈ T.
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P (Ē) = Pr[∃u ∈ T | Ĥ1[u] > ρGauss]

= 1− Pr[∀u ∈ T Ĥ1[u] ≤ ρGauss]

= 1−
∏
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= 1−
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Pr[H1[u] +Xu ≤ ρGauss]
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∏
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|T |

]
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|T |
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(
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Thus for
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t

+ σΦ−1
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2
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))

,

we have P (Ē) ≤ δ/2. Therefore the DP Set Union algo-
rithm (Algorithm 1) is (ε, δ)-DP.

B. Bounded Sensitivity implies DP (Proof of
Theorem 1.2)

We will now prove a formal version of Theorem 1.2, i.e.,
if the histogram output by Algorithm 2 has bounded `p-
sensitivity (for p ∈ {1, 2}), then by adding appropriate noise
and setting an appropriate threshold, Algorithm 1 for DP set
union can be made differentially private. The lower bounds
on the threshold (ρ) that we obtain in this generality are
only slightly worse compared to the corresponding bounds
in Theorems 3.1 and 4.1.

Theorem B.1. Suppose the histogram output by Algo-
rithm 2 has `1-sensitivity 1. Then Algorithm 1 is (ε, δ)-DP
when the Noise distribution is Lap(0, λ) where λ = 1/ε
and the threshold

ρ ≥ max
1≤t≤∆0

1 +
1

ε
log

(
1

2
(
1− (1− δ)1/t

)) .
Proof. Proof of Theorem B.1 is extremely similar to the
proof of Theorem 3.1. The only place where it differes
is in Equation (1) where we bound H1[u] ≤ 1 instead of
H1[u] ≤ 1/|T |.

Theorem B.2. Suppose the histogram output by Algo-
rithm 2 has `2-sensitivity 1. Then Algorithm 1 is (ε, δ)-DP
when the Noise distribution is N (0, σ2) where σ and the

threshold ρ are chosen s.t.

Φ

(
1

2σ
− εσ

)
− eεΦ

(
− 1

2σ
− εσ

)
≤ δ

2
and

ρ ≥ max
1≤t≤∆0

(
1 + σΦ−1

((
1− δ

2

)1/t
))

.

Proof. Proof of Theorem B.2 is extremely similar to the
proof of Theorem 4.1. The only place where it differes
is in Equation (2) where we bound H1[u] ≤ 1 instead of
H1[u] ≤ 1/

√
|T |.

C. Proof of Lemma 4.1
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Figure 1. Geometric explanation of Lemma 4.1 when
|AB|, |AC| > 1.

Proof of Lemma 4.1. Let us first assume that both
|AB|, |AC| > 1. Let θ be the angle at A and let
|AB′| = x, |AC ′| = y as shown in Figure 1. Then by the
cosine formula,

|BC|2 = |AB|2 + |AC|2 − 2|AB||AC| cos θ

= (x+ 1)2 + (y + 1)2 − 2(x+ 1)(y + 1) cos θ

= x2 + y2 + 2xy cos θ + 2(x+ y + 1)(1− cos θ)

≥ x2 + y2 + 2xy cos θ (cos θ ≤ 1)

= |B′C ′|2.

If |AB|, |AC| ≤ 1, then B′ = C ′ = A and then the
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B’
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Figure 2. Geometric explanation of Lemma 4.1 when |AB| >
1, |AC| ≤ 1.
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claim is trivially true. Suppose |AB| > 1, |AC| ≤ 1. Now
C ′ = A. Let |AB′| = x, |AC| = z ≤ 1 and θ be the angle
at A as shown in Figure 2. Then by the cosine formula,

|BC|2 = |AB|2 + |AC|2 − 2|AB||AC| cos θ

= (x+ 1)2 + z2 − 2(x+ 1)z cos θ

= x2 + 2x(1− z cos θ) + (z − cos θ)2 + (1− cos2 θ)

≥ x2 = |AB′|2 = |B′C ′|2.
(0 ≤ z ≤ 1, | cos θ| ≤ 1)

By symmetry, the claim is also true when |AC| >
1, |AB| ≤ 1.

D. Privacy analysis of Weighted Laplace and
Guassian Algorithms

D.1. Weighted Laplace

Algorithm 1 LAPLACE weighted update
Input: H: Current histogram
W : A subset of U of size at most ∆0

Output: H: Updated histogram
for u in W do

H[u]← H[u] + 1
|W |

end for

Theorem D.1. The WEIGHTED LAPLACE algorithm (Al-
gorithm 1) is (ε, δ)-DP when

ρLap ≥ max
1≤t≤∆0

1

t
+

1

ε
log

(
1

2
(
1− (1− δ)1/t

)) .
Proof. Proof is exactly the same as that of Theorem 3.1.

D.2. Weighted Gaussian

Algorithm 2 GAUSSIAN weighted update
Input: H: Current histogram
W : A subset of U of size at most ∆0

Output: H: Updated histogram
for u in W do

H[u]← H[u] +
√

1
|W |

end for

Theorem D.2. The WEIGHTED GAUSSIAN algorithm (Al-
gorithm 2) is (ε, δ)-DP if σ, ρGauss are chosen s.t.

Φ
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1

2σ
− εσ

)
− eεΦ

(
− 1

2σ
− εσ

)
≤ δ

2
and

ρGauss ≥ max
1≤t≤∆0

(
1√
t

+ σΦ−1

((
1− δ

2

)1/t
))

.

Proof. Proof is exactly the same as that of Theorem 4.1.

E. Greedy Policy

Figure 3. Visualization of greedy update example where the final
l1 sensitivity is larger than 1.

In this section, we give a simple counter example to illustrate
how the sensitivity of a greedy policy algorithm can be
unbounded.

Algorithm 3 GREEDY POLICY update
Input: H: Current histogram
W : A subset of U of size at most ∆0

Γ: cutoff parameter
Output: H: Updated histogram
// Build cost dictionary G
G = {} // Empty dictionary
for u ∈W do

if H[u] < Γ then
// Gap to cutoff for items below cutoff Γ
G[u]← Γ−H[u]

end if
end for
budget← 1 // Each user gets a total budget of 1
// Sort in increasing order of the gap Γ−H[u]
G← sort(G)
// Let u1, u2, . . . , u|G| be the sorted order
for j = 1 to |G| do

if G[uj ] ≤ budget then
H[uj ]← H[uj ] +G[uj ]
budget← budget - G[uj ]

else
H[uj ]← H[uj ]+ budget
break

end if
end for

Suppose there are N user let u1 and u2 be two items in the
universe. We will denote the weight of item u after user
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i’s contribution as H(i)[u]. Suppose user i has only item
u1 while users i+ 1, i+ 2, . . . , N have both items. Let H1

be the histogram generated with all N users while H2 be
the histogram generated without user i. Let ∆0 = 2 and
H(i−1)[u1] < H(i−1)[u2] < 1 +H(i−1)[u1]. According to
the greedy update described in Algorithm 3, in H1, user i
will add weight 1 to u1 and users i + 1, i + 2, . . . , N will
also to u1 since H(i)[u1] > H(i)[u2]. In H2, users i+1, i+
2, . . . , N will add to u2 since H(i−1)[u1] < H(i−1)[u2].
This process is described in figure 3. Therefore the `1-
sensitivity of the histogram built using Greedy Policy update
(Algorithm 3) can be Ω(Γ, N).

F. Dataset Details
Using a log-log scale, the frequency of users for each un-
igram vs. the rank of the unigram is linear (Figure 4). In
other words, the lowest ranked (most common) unigrams
are used by almost all users while the highest ranked (least
common) unigrams are used by very few users.

Figure 4. Frequency (i.e. number of users who use the unigram) vs.
rank of the unigram (based on frequency) on a log-log scale. This
linear relationship shows that the frequency of unigrams among
users also follows Zipf’s law (power law), i.e., count ∝ 1/rankα

for some constant α > 0. The α in this case is ≈ 1.

The distribution of how many unigrams each user uses also
follows a long tail distribution. While the top 10 users
contribute between 850 and 2000 unique unigrams, most
users (93.1%) contribute less than 100 unique unigrams.
Table 1 summarizes the percentage of users with a unique
vocabulary smaller than each threshold T provided.

Table 1. Percentage of users with unique unigram count of less
than or equal to T. The vast majority of user have less than 100
unique unigrams.

THRESHOLD (T) USERS WITH |Wi| ≤ T

1 2.78%
10 29.82%
50 79.16%
100 93.13%
300 99.59%

G. Additional Experiments
G.1. Multiple passes through each user

In the experiments described thus far, each user contributes
items once within the budget constraints. We also investi-
gate whether the output of set union increases in size when
each user contributes the same budget over multiple passes
(e.g. user 1 contributes half of their budget each time over 2
passes), we compare POLICY LAPLACE and POLICY GAUS-
SIAN outputs. Table 2 summarizes the results showing that
there is not strong evidence suggesting that running multiple
passes through the users improves the size of the output set.

G.2. Selecting α: parameter to set threshold Γ

Figure 5 shows the number of unigrams released by POLICY
LAPLACE and POLICY GAUSSIAN for various values of α.
We observe that the number of unigrams released increases
sharply until α = 4, then remains nearly constant and then
slowly decreases. This choice of α only affects the policy
algorithms since the weighted and count algorithms do not
use a threshold.
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Figure 5. Number of unigrams released for various values of α.
The number of unigrams released increases sharply until about
α = 2, then remains nearly constant and then decreases. Here we
fixed ∆0 = 100 and ε = 3.
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Table 2. Count of unigrams released POLICY LAPLACE and POLICY GAUSSIAN algorithms for single and double passes over users.
Results are averaged and rounded across 5 shuffles of user order. The privacy parameters are ε = 3 and δ = exp(−10). α = 2 is chosen
for the threshold parameter. Significant p-values for a two-sided independent t-test are bolded.

POLICY LAPLACE POLICY GAUSSIAN

∆0 1 PASS 2 PASSES P-VAL 1 PASS 2 PASSES P-VAL

1 4236 ± 14 4257 ± 17 0.083 3135 ± 25 3131 ± 20 0.829
10 12452 ± 31 12389 ± 17 0.008 10784 ± 22 10817 ± 54 0.293
50 15056 ± 35 15080 ± 21 0.262 15763 ± 33 15809 ± 45 0.139
100 14562 ± 50 14567 ± 24 0.846 14562 ± 50 14568 ± 24 0.846
200 14005 ± 33 13979 ± 31 0.271 14005 ± 33 13979 ± 31 0.271
300 13702 ± 37 13678 ± 47 0.448 13702 ± 37 13678 ± 47 0.447

THE EFFECT OF ε
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Figure 6. Number of unigrams released for various values of ε.
Here we fixed ∆0 = 100 and α = 5.

We use ε = 3 for the experiments in table 1. At this value of
ε our policy algorithms perform much better than previous
count and weighted algorithms. To check whether this result
holds with smaller ε, we also run these algorithms on various
values of ε. Figure 6 shows that for ε ≥ 1 our policy
algorithms always perform better.
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