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Abstract

Obtaining theoretical guarantees for neural net-
works training appears to be a hard problem in a
general case. Recent research has been focused on
studying this problem in the limit of infinite width
and two different theories have been developed:
a mean-field (MF) and a constant kernel (NTK)
limit theories. We propose a general framework
that provides a link between these seemingly dis-
tinct theories. Our framework out of the box gives
rise to a discrete-time MF limit which was not
previously explored in the literature. We prove
a convergence theorem for it, and show that it
provides a more reasonable approximation for
finite-width nets compared to the NTK limit if
learning rates are not very small. Also, our frame-
work suggests a limit model that coincides neither
with the MF limit nor with the NTK one. We
show that for networks with more than two hid-
den layers RMSProp training has a non-trivial
discrete-time MF limit but GD training does not
have one. Overall, our framework demonstrates
that both MF and NTK limits have considerable
limitations in approximating finite-sized neural
nets, indicating the need for designing more accu-
rate infinite-width approximations for them.

1. Introduction

Despite neural networks’ great success in solving a vari-
ety of problems, theoretical guarantees for their training
are scarce and far from being practical. It turns out that
neural models of finite size are very complex objects to
study since they usually induce a non-convex loss landscape.
This makes it highly non-trivial to obtain any theoretical
guarantees for the gradient descent training.

However theoretical analysis becomes tractable in the limit
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of infinite width. In particular, (Jacot et al., 2018) showed
that if weights are parameterized in a certain way then the
continuous-time gradient descent on neural network param-
eters converges to a solution of a kernel method. The corre-
sponding kernel is called a neural tangent kernel (NTK).

Another line of work studies a mean-field (MF) limit of the
training dynamics of neural nets with a single hidden layer
(Mei et al., 2018; 2019; Rotskoff & Vanden-Eijnden, 2019;
Sirignano & Spiliopoulos, 2020; Chizat & Bach, 2018;
Yarotsky, 2018). In these works a neural net output is scaled
differently compared to the work on NTK.

In our work we address several questions arising in this
context:

1. Which of these two limits appears to be a more reason-
able approximation for a finite-width network?

2. Do the two above-mentioned limits cover all possible
limit models for neural networks?

3. Is it possible to construct a non-trivial mean-field limit
for a multi-layer network?

The paper is organized as follows. In Section 2 we pro-
vide a brief review of the relevant studies. In Section 3 we
consider hyperparameter scalings that lead to non-trivial
infinite-width limits for neural nets with a single hidden
layer. Our analysis clearly shows that MF and NTK limits
are not the only possible ones. Also, our analysis suggests a
discrete-time MF limit which appears to be a more reason-
able approximation for a finite-sized neural network than
the NTK limit if learning rates are not very small. We stress
the difference between this discrete-time MF limit and a
continuous-time one described in previous works and prove
a convergence theorem for it. In Section 4 we show that
when a neural net has at least three hidden layers a discrete-
time MF limit becomes vanishing. Nevertheless, training a
network with RMSProp instead of a plain gradient descent
leads to a non-trivial discrete-time MF limit for any number
of layers.

2. Related work

NTK limit. In their pioneering work Jacot et al. (2018)
considered a multi-layer feed-forward network parameter-
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ized as follows:

Fo6Wair) = dy P Woe(dy Wiy - ¢(dg /P Wix)),
)]

where x € R%, d; is a size of the i-th layer and W; €

R%*di-1_ The weights are initialized as VVZ(?; ~ N(0,1).

Jacot et al. (2018) have shown that training this model with
a continuous-time gradient descent is equivalent to perform-
ing a kernel gradient descent for some specific kernel; they
called this kernel a neural tangent kernel (NTK). This ker-
nel is generally stochastic and evolves with time, however,
as they prove, it converges to a steady-state deterministic
kernel as dy.;,—1 — oo.

Lee et al. (2019) have shown that the training dynamics
of the network (1) stays close to the training dynamics of
its linearized version in the limit of infinite width; the lin-
earization is performed with respect to weights. They also
show that this statement holds for the discrete-time gradient
descent as long as the learning rates are sufficiently small.

Arora et al. (2019) provide a way to effectively compute the
NTK for convolutional neural networks. They found that
a kernel method with the NTK still performs worse than
the corresponding finite-width CNN. At the same time, as
was noted by Lee et al. (2019), the training dynamics in the
NTK limit is effectively linear. Bai & Lee (2019) artificially
created a situation where a linearized dynamics was not able
to track the training dynamics in the limit of infinite width.
These two works show that the NTK limit is not perfect in
the sense that it can be far from a realistic finite-size neural
net.

Mean-field limit. There is a line of works (Mei et al.,
2018; 2019; Rotskoff & Vanden-Eijnden, 2019; Sirignano &
Spiliopoulos, 2020; Chizat & Bach, 2018; Yarotsky, 2018)
that consider a two-layer neural net of width d in a mean-
field limit:

d
fx;a, W) =d talp(WTx) =d! Zar¢(wfx),

r=1
2
where x € R%; the weights are initialized independently
on the width d and d goes to infinity. Note the difference in
scaling the output function between (2) and (1) for L = 2. In
the present case any weight configuration can be expressed
as a point measure in (a, w)-space R%+1:

d
pla, W] =d* Z 0, @ Osw,.-

r=1

A neural network is then expressed as an integral over the
measure:

f(x;a, W) :/aqS(WTX) wla, Wl(da,dw).  (3)

The above-mentioned works show that when learning rates
are appropriately scaled width d, a gradient descent dynam-
ics turns into a continuous-time dynamics for the measure p
in (a, w)-space driven by a certain PDE as d goes to infinity.
This evolution in the weight space also drives the evolution
of the model f (see (3)).

Note that those works that study a limit behavior of the
discrete-time gradient descent (Sirignano & Spiliopoulos,
2020; Mei et al., 2018; 2019) require the number of training
steps to grow with d since they prove convergence to a
continuous-time dynamics. In contrast, in our work we find
a similar mean-field-type limit that converges to a discrete-
time limit dynamics.

There are several attempts to extend the mean-field anal-
ysis to multi-layer nets (Sirignano & Spiliopoulos, 2019;
Nguyen, 2019; Fang et al., 2019). However this appears to
be highly non-trivial to formulate a measure evolution PDE
similar to a single-hidden-layer case (see the discussion
of difficulties in Section 3.3 of Sirignano & Spiliopoulos
(2019)). In particular, Sirignano & Spiliopoulos (2019)
rigorously constructed an iterated mean-field limit for a two-
hidden-layer case. In contrast, the construction of Nguyen
(2019) applies to any number of layers while not being
mathematically rigorous. Fang et al. (2019) claim to find a
way to represent a deep network as a sequence of integrals
over a system of probability measures. Given this, the loss
becomes convex as a function of this system of measures.
However they do not consider any training process.

It also has to be noted that Nguyen (2019) applied a weight
initialization with a non-zero mean for their experiments
with scaling multi-layer nets. As we show in Section 4, if the
number of hidden layers is more than two and initialization
has zero mean (which is common in deep learning), a mean-
field limit becomes trivial.

3. Training a one hidden layer net with
gradient descent

Here we consider a simple case of networks with a single
hidden layer of width d trained with GD. Our goal is to
deduce how one should scale its training hyperparameters
(learning rates and initialization variances) in order to con-
verge to a non-trivial limit model evolution as d — oco. We
say that a limit model evolution is non-trivial if the model
neither vanishes, nor diverges, and varies over the optimiza-
tion process. We formalize this notion later in the text. We
investigate certain classes of hyperparameter scalings that
lead to non-trivial limit models. We find both existing MF
and NTK scalings, as well as a different class of scalings
that lead to a model that does not coincide with either MF
or NTK limit. Finally, we discuss the ability of limit models
to approximate finite-width nets.
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Consider a one hidden layer net of width d:

d
f(X; a, W) =a’ = Zard)(wfx)v
r=1
where x € R¥%, W = [wy,...,wy] € R¥*d and
a = [ag,...,a9)7 € RL The nonlinearity ¢(z)

[2]+ — a[—2]+ for @ > 0 is considered to be the leaky
ReLU and applied element-wise. We consider a loss func-
tion £(y, z) that is continuosly-differentiable with respect
to the second argument. We also assume 9¢(y, z)/0z to be
positive continuous and monotonic Vy. The guiding exam-
ple is the standard cross-entropy loss. The data distribution
loss is defined as L(a, W) = E x yep,, ... Ly, f(x;a, W)),
where Dy, 1s a train dataset sampled from the data distri-
bution D.

Weights are initialized with isotropic gaussians with zero
means: W' ~ N'(0,021), a!”) ~ N(0,02)Vr =1...d.
The evolution of weights is driven by the gradient descent
dynamics:

oL (@™, W)

AOF) — g(k+1)
T r 807 ’

— 0" = —ny

where 6 is either a or w.

Initialization variances, 02 and o2, generally depend on d:
e.g. 02 oc d~! for He initialization (He et al., 2015). This
fact complicates the study of the limit d — co. To work
around this, we rescale our hyperparameters:
(k) (k)
&gk) _ ar VAV(]C) Wi R Na s Nw

= ’I]a = —= .
Oa ’ T Cuw ) 027 0_3)

The GD dynamics preserves its form:

) LW ak)
AGK) = —ﬁg%.
80,

At the same time scaled initial conditions do not depend on
Vo N(0,1), WY ~ N0, 1) Vr =1...d.

By expanding gradients we get the following:

d anymore: a

A = 70000 E x, VIl 9w Tx), @)
AWP = —i1y,040,Exy V0P ¢ (WD Tx)x, (5)

d&o) ~ N(0,1), VAV7(«0) ~N(0,I) forallr=1...d,

(6)
where we have denoted ék) (x) _
Ta Zf:l &ﬁ’k)¢’(0w\7vﬁk)’TX) and Vgck)ﬂ —

26(y,z)

O g0
¢(0z) = o¢(z) for ¢ being the leaky ReLU. We shall omit
x, y in the expectation from now on.

We have also used the fact that

Denote 0 = 0,0,,. Assume hyperparameters that drive the
dynamics are scaled with d:
T o< dTv

oxdi, 1, o die

We call a set of exponents (g, §q, Gw) ~a scaling”. Every
scaling define a limit model jau (x) = limy— 00 fék)(x).
We want this limit to be non-divergent, non-vanishing and
not equal to the initialization féo) for any £ > 1. We call

such scalings and corresponding limit models non-trivial.

3.1. Analyzing non-triviality
We start with introducing weight increments:

sal) = a®) — a0 swk) = wk)

- w0,
Since our dynamics is symmetric with respect to permuta-
tion of indices r, we can assume the following:

1665 oc %, 6w oc d” (7)
)| ~ d=1/2 for the NTK
scaling, while |5d£k)\ ~ d° for the MF scaling. We validate
the assumption above numerically for some of the scalings
in SM C. We proceed with decomposing the model:

Our intuition here is that |(5d§«]C

d
UZ O 4 saNg' (.. )(w D +ow ) Tx

- éf“@) (%) + £ ) + £ )+ £0 ), ®)

where we define the decomposition terms as:

(k) _UZ (0)¢ A(O)T
d
) =0 >0/ W x
r=1
d
PR ) =03 a0 (. )ew D Tx,
r=1

BTy

d
L) =0 >8R )ow
r=1

Here ¢/'(. . .) is a shorthand for ¢’ ((W O 4 swik ) X).

Since all of the terms inside the sums are presumably power-
laws of d (or at least do not grow or vanish with d), it is
natural to assume power-laws for the decomposition terms
also (see SM C for empiricial validation):

)

. (k
£ (%) o o, o

(k)
f(k) (X) o dalw, fc(lfca)w(x) o d4f aw
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Here and later we will write "a/w” meaning "a or w”.

The introduced assumptions allow us to formulate the non-
triviality condition in terms of the power-law exponents:

max(q}). ¢} a\ ), a0, =0vk> 1 (9
max(qj(‘ 2, q}(( z)w q;kgw) =0or q}kg) =0and ¢® > 0.

10)

The first condition ensures that limg_, o, f ék) is finite and

not uniformly zero, while the second one ensures that this

limit does not coincides with the initialization (hence the

learning dynamics does not get stuck as d — o0). In partic-

ular, the second condition requires either one of f, éka) f (5’2,

(k)
or d,aw

to contribute substantially to f C(lk) for large d, or, if
the leading term is fy ¢, it requires limg_, oo fék@) not to coin-
cide with limg—, oo fc(lo) (because ¢ (W) 4 ow ) Tx) -
¢ (w(0.T )asd%mlfq(k) > 0).

In order to test Conditions (9) and (10), we have to relate the
introduced g-exponents with the scaling (¢o, ¢a, ¢ ). From
the definition of decomposition (8) terms we get:

(k) () (k) (k) (k)

Qf@*QU+%@ ) Qfa/w*qa/w+qa-+%a/w,
k
¢y =P +a® + g5 + 38, (11)

where all > € {1/2,1}. We now use q}kg to illustrate where

these equations come from. We have:

E oo fon (x) = odE§a ¢/ (.. )w(OTx =
o, 6ak) .
od'T9 R e ()W Tk,

since all terms of the sum have the same expectation. Hence
if the last expectation is non-zero in the limit of d — oo,
then we have Ef(k)( ) o odite”

q%( ) = ¢ + ¢5 + 1 s0, ") = 1. However, if it

is zero in the limit of d — oo, then we have to reason
about the variance. We have Var féfca) (x) o o2d 2" if
all terms of the sum appear to be independent in the limit
of d = oo, or Var féﬁl)

and consequently

(x) x 02d*+24" if they are per-
fectly correlated. Hence q}k)( )= q((lk) +q, + 2, where
) e {1/2,1}. Generally, all s¢«-terms can be defined if

(k) (k) are known.

We now relate q( /) with the scaling (¢, ¢u, ¢u ). First, we

rewrite the dynamics in terms of weight increments:

and g,

A6 = —i,oE VI o(wO + 5w x),

AW = —i, 0B Ve (a0 + 80 ¢' (.. )x, (12)

60\ =0, ow® =0, al® ~ N(0,1), w9 ~ N(0,1).

Recall that we are looking for scalings that lead to a non-
divergent limit model fc(x]f ); hence f(gk) should not grow

with d. Then, since ngk)ﬁ is strictly positive continuous and

monotonic Vy, we have |V§f€)€ | bounded away from zero as

a function of d. Also, since a\” oc 1 and ||vif,(-0) || < 1, from

the dynamics equations (12) we get:

(1)

4 =Ga+ 40, 4P = Gu + 4o, (13)

g = max(¢{¥), Ga + g- + max(0, ¢)),

g = max(q, Gu + g5 + max(0,¢%))).
The last two equations can be rewritten as:

(k+1) _

s (k) (D)

= max(q, /,» 4y ,, T max(0, qw/a)) (14)
Here we have used the following heuristic rules:
woc d®, vocd® = uw o dT Ty 4 v oc @)

Although these rules are not mathematically correct, we
empirically validated the exponents predicted by equations
(13) and (14): see SM C.

The »-terms together with equations (9), (10), (11), (13),
and (14) define a set of sufficient conditions for a scaling
(gos qa, Guw) to define a non-trivial limit model. In the next
section, we derive several solution classes for this system of
equations. These classes contain both MF and NTK scalings,
as well as a family of scalings that lead to a limit model that
coincides with neither MF, nor NTK limits.

3.2. Non-trivial limits

Although deriving s¢-terms appears to be quite complicated
generally, we derive them for several special cases.

Consider the case of q((Ll) < 0 and qf,jl ) < 0. Equations

(14) imply qék) = qgl) and q(k) 5,1) VEk > 1 then. We
also conclude (see SM D) that %Q() ) — m&’f,} = 1/2 and

%gjzﬂ = 1 in this case.

—1/2 and q(/) <
—1 — ¢, with an equality for at least one of q((l ) or q(l)
Because of the latter, and since in our case we have to have

max(q((zl), qS)) < 0, we get a constraint ¢, > —1. Note

Conditions (9) and (10) then imply ¢, <

also that in this case q}kgw < 0.

Hence by taking ¢, € (—1,—1/2] and G, /., = q((ll/)w —qy <
—1 — 2q,, with at least one inequality being an equality, we
define a non-trivial scaling. As a particular example of this

case consider q, = q,(ll) = qq(ul) = —1/2. Tt follows than
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from (13) that ¢, = G, = 0. If we take 7, = %, = 7 and
o = o*d~1/? then we get the following relations:

(6) (¢ Zg*d 1/24(8) (B Tx)

k k
AGE — 0LV, a®)
! 90,
&g’O) ~ N(Oa 1)7 Wg*O) ~ N(Ovl)

This system exactly corresponds to the one used in the NTK
theory (Jacot et al., 2018) (see also eq. (1)).

Following (Jacot et al., 2018; Lee et al., 2019), we call a
neural tangent kernel (NTK) the following function:

d *) (x) 9 &) (!
@gc)(x,x,)zchk( ) 0f )

\  oa, day
O (x) (9P N\
oW, ( oW, > -
d
=2 (WP Tx) (W) +
r=1

+¢I(VAV7(]€),TX) ¢/ (‘;\V,g‘k)’TX/)dSAk)’szX/) .

0 € {a,w},

forallr =1...d.

If we consider training with the continuous-time GD this
kernel drives the evolution of the model, see SM B:

FP ) = ~iEx, VP Ux,y) 00 (x,x),  (15)

where we have taken 7, = 7, = 7).

For a finite d the NTK is a random variable, however
when ¢ oc d~1/2, @fio) converges to a deterministic non-

degenerate limit kernel ©, due to the Law of Large Num-
(k) (k) Vanish with d (i e.

converge to W£ ) (0)

and da,
- (k)

Moreover, if dw,
(k)

bers.

(k)

Qo fu < 0), then W,/ and a, and a,

spectively. Hence @fi ) converges to the same deterministic
non-degenerate limit kernel O,

However ©, becomes uniformly zero when ¢, < —1/2.
Given q(lj) <0, G(k) still converges to O, = 0. Never-
theless, if § = ¢, = Gw = —1 — 2q,, then a new kernel

(:)fik) = @gk) converges to a non-vanishing deterministic
limit kernel ©,. The dynamics of the limit model is then
driven by the above-mentioned limit kernel:
JOO) = ~Ex, VP lx,y) Oc(x,X).  (16)
Moreover, similar evolution equation holds also for the
discrete-time dynamics, see again SM B:
FED ) O () =

-E x,yvgfk)g(xv y) (:)oo (X7 X/)‘

a7

Note also that if g, < —1/2 then the limit model vanishes
at the initialization due to the Central Limit Theorem:

a(lO) = UZargb

We shall refer scalings for which ¢, €

~ d9 12 for d — 0.

(=1,—-1/2) as ”in-
termediate”. Since fég) is zero for the intermediate scalings
while it is not for the NTK scaling, limits induced by inter-
mediate scalings do not coincide with the NTK limit. As we
show in the next section, intermediate limits do not coincide
with the MF limit either. Nevertheless, despite the altered
initialization, the limit dynamics for intermediate scalings
is still driven by the kernel similar to the NTK case: see
eq. (17). Note that this intermediate” limit dynamics is
the same for any ¢, € (—1,—1/2). Chizat et al. (2019)
have already noted that taking ¢, € (—1,—1/2] leads to
the so-called ”lazy-training” regime that in our terminology

reads simply as q(k) < 0.

a/w

3.2.1. MEAN-FIELD LIMIT
(1) _ (1)

If we take qa = 0, then again, equations (14)
imply qq (k) = (1) and q(k) (1) Vk > 1. In this case we
conclude that %Q() ) = %((f;) = ((1]20 =1 (see SM D).

Conditions (9) and (10) than imply ¢, = —1. It follows
than from (13) that §, = §,, = 1. Taking 0 = o*d~! and
Tlajw = 1"d allows us to write the gradient descent step as
a measure evolution equation.

k
WO =

a neural net-
k
S =
(k) (da,dw) while the gradient descent
k41 k
$ =T o),

Indeed, consider a weight-space measure:
é Zle 5(15.&) ® 5‘&?).
work output
o* [ap(wix) p
step can be represented as fu,
;Lfi ) converges to ,uoo = Ni14,(0, I) in the limit of infinite

width. Since n* and ¢* are constants, the evolution of this
limit measure is still driven by the same transition operator

Given this,

can be represented as

T: ugéﬂ) = ’T(ug’é), n*,0*). In SM F we prove that than
/L((ik) converges to ugo) =Tk ((io)) and f(gk) converges to a

finite /& = o* [ ap(wTx) ul¥ (da, dw):

Theorem 1 (Informal version of Corollary 1 in SM F). If
oocd A, Jw < d, and {, ¢, and the data distribution are
sufficiently regular, then there exist limits in probability as
d — oo for ,ufik) and for ék)(x) vx Vk > 0.

This theorem states the convergence of the discrete-time dy-
namics of a finite-width model to a discrete-time dynamics
of a limit model. We call the corresponding limit model a
discrete-time mean-field limit.

This limit differs from those considered in prior works. In-
deed, previous studies on the mean-field theory resulted in
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a continuous-time dynamics for the limit model. For exam-
ple, (Sirignano & Spiliopoulos 2020) assume 7 < 1. They
prove that in this setup u!{ converges to a continuous-time
measure-valued process ! for t € R. The limit process v;
is driven by a certain integro-differentiable equation. In con-
trast, in our case ,ugo) is driven by a discrete-time process.
Other works (e.g. Mei et al. (2018; 2019)) assume 7 = o(d)
and also consider a continuous-time evolution for a limit

model.

At the same time Rotskoff & Vanden-Eijnden (2019) and
Chizat & Bach (2018) assume a learning rate scaling similar
to ours but they consider a continuous-time gradient descent
dynamics for the finite-width net.

Note that if q(k)

a/w

< 0 (as for NTK and intermediate scal-

and sw(k (k)

ings), then da(* ) vanish as d — oo, hence Iy
converges to uoo = MN114,(0,1). This means that in this
case we cannot represent the dynamics of the limit model
féf ) in terms of the dynamics of the limit measure, hence

this case is out of the scope of the MF theory.

On the other hand, if q(k) qfl,k) = 0, then a determinis-
tic limit limg_, o G&k) (x,x') still exists due to the Law of
Large Numbers, however this limit depends on step k since
' (W) Tx) » ¢ (w0 Tx). Hence the dynamics of a
limit model féf ) in the mean-field limit cannot be described
in terms of a constant deterministic kernel.

So far we have considered two cases: q( /) < 0 and q(l/)w =

0. We elaborate other possible cases in SM E.

3.3. Infinite-width limits as approximations for
finite-width nets

In the previous section we have introduced a family of scal-
ings leading to different limit models. Limit models can be
easier to study mathematically: for example, in the NTK
limit the training process converges to a kernel method. If
we show that a limit model approximates the original one
well, we can substitute the latter with the former in our
theoretical considerations.

Notice that conditions (9) and (10) allow some of (but not
all of) q%, q;kg, q;kl)u and q;ﬁiw to be less than zero. This
means that corresponding terms of decomposition (8) vanish
as d — oo. However for d = d*, where d* < oo is the
width of a “reference” model, all of these terms are present.
If we assume that indeed all of these terms obey power-
laws with respect to d (which is a reasonable assumption for
large d), then we can conclude that the fewer terms vanish
as d — oo, the better the corresponding limit approximates
the original finite-width net. We validate this assumption
for the above-mentioned scalings in SM C.

One can see that for the NTK limit we have q;ké = qgck)

q;k; = 0, hence the first three terms of decomposition (8)

are preserved as d — oo, however qﬁt Zw = —1. In Figure 1

(center) we empirically check that this is indeed the case.
One can notice however that the last term which is not
preserved, vanishes as 7} — 0 faster than f doa ) and fék) This
reflects the fact that originally the NTK limit was derived for
the continuous-time gradient descent for which the learning
rate is effectively zero.

Note also that if qil/)w < 0 (for which the NTK scaling

is a special case), then q}kgw < 0 (see above), hence the

last term of decomposition (8) always vanishes in this case.
Hence the NTK scaling should provide the most reason-
able approximation for finite-width nets among all scal-
ings in this class. For comparison, we also consider the
intermediate scaling 4o = —3/4, Gq/w = 1/2 for which

Q;kg; = *1/4 fa = q}k) = 0, and q;ﬁiw = 71/2 for
k> 1. '

In contrast, for the MF limit we have q;kq)) = q§ 3 = q)(sz)u =

q;k;w = 0 for £ > 1. Hence we expect all the terms of

decomposition (8) to be preserved as d — oco. We check
this claim empirically in Figure 1, center.

We also found it interesting to plot the case of the ’default”
scaling: o oc d~'/2 and 7,,, o 1 (black curves). It corre-
sponds to the situation when we make our network wider
while keeping learning rates in the original parameterization
constant. In this case 7, « d, 7, « 1, hence ¢, = 1 and
Gw = 0.
We compare final test losses for the above-mentioned scal-
ings in Figure 1, left. As we see, all scalings except the de-
fault one result in finite limits for the loss while the default
one diverges. As we see in Figure 1 (right), the mean-field
limit tracks the learning dynamics of the reference network
better than the other limits considered. It is interesting to
note also that as the learning dynamics shows, MF and inter-
mediate limits are deterministic while the NTK limit, as well
as the reference model, are not. This is because the model
at the initialization converges to zero for the first two cases.
Also, this is the reason why the NTK limit becomes a better
approximation for a finite-width net if learning rates are
small enough (see Figure 3 in SM H). In this case the term
éf“a)w, which is not preserved in the NTK limit, becomes
negligible already for the reference network.

4. Training a multi-layer net

While reasoning about non-trivial limits for multi-layered
nets is more technically involved, some qualitative results
are still possible. For instance, we show that a (discrete-
time) mean-field limit is vanishing for networks with more
than three hidden layers. However, such a limit seems to
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Figure 1. MF, NTK and intermediate scalings result in non-trivial limit models for a single layer neural net. A limit model induced
by the intermediate scaling differs from both MF and NTK limits. Left: a final test cross entropy (CE) loss as a function of the width
d. MF, NTK and intermediate scalings converge but the default scaling does not. The MF limit approximates the reference finite-width
network better than all other limits. Center: numerical estimates for the exponents of the decomposition (8) terms as well as their
theoretical values (denoted by red ticks). We see that for the default scaling some of the exponents are positive, hence corresponding
decomposition terms diverge. For the MF limit all of the exponents are zeros, meaning all of the decomposition terms are preserved. Also,
we see that our numerical experiments match the theory well. Right: the test CE loss as a function of training step & for the reference net
and its limits. We see that 1) the MF limit best matches the reference, 2) the NTK limit is not deterministic while the intermediate limit is.
This is because the model at the initialization converges to zero for the intermediate scaling. Setup: We train a 1-hidden layer net on a
subset of CIFAR2 (a dataset of the first two classes of CIFAR10) of size 1000 with gradient descent. We take a reference net of width
d* = 27 = 128 trained with unscaled reference learning rates i = 7., = 0.02 and scale its hyperparameters according to MF (blue
curves), NTK (orange curves), and intermediate scaling with g = —3/4 (green curves, see text). We also make a plot for the case when
we do not scale our learning rates (black curves) and scale standard deviations at the initialization as the initialization scheme of He et al.
(2015) suggests. See SM A for further details.

exist if the network is trained with RMSProp. Given this, the gradient descent step on the scaled quantities

Consider a multi-layered network with all hidden layers writes as follows:

having width d: d A&SJZ) _ —ﬁaUHHIEV}k)E(x y) o(fH FH,(K) (%)),
f(X; a7V1:H7W) = Z Ay ¢( " (X Vl H W))7 R R k R
/i AN = —im e THE VP Uk, y) a®)o(FI0 (x)),
(13)
where
Fr5 e VIR, vrt i U7, G VIR W),
" rhzl " h " AVAV'E";) = _ﬁwaH+1Ex yv(k)f(x7y)><
x, W W X .
e W) = x Z a8/ (FI209(x))

Here again, all quantities are initialized with zero-mean
gaussians: a'’) ~ N(0,02), w ~ N(0,021), and
Ury ~ N(0,0%,). x Z ol P e) %

. rHo1=
We perform a gradient descent step for the parameters a, e

VIH W with learning rates 1, 1),1:1, and n,, respectively. 2. (k) 1 ¢ 71,() A1(R) 47 (o (R),T
We introduce scaled quantities in the similar manner as for X Z Urar ¢ (™ ) Orrg ¢ (W x)x

the single hidden layer case: n=t

k h,(k) k N N
ak) — ﬂ a) v W — W7("0) al% ~ N(0,1), 9"~ N(0,1), W ~ N(0, 1),
TH ou ) ThTh—1 oyn ) 0 Cuw ) (19)
. Na . Nyh ) N where we have denoted f," . (k) (x) = Thh (x; VE) LR 17 (k)
nazﬁ’ Noh = —5 nw:U—2 anda—(UaUvH...ledw)l/(H+1).

a vh w
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4.1. MF scaling leads to a trivial discrete-time MF limit

As we have noted in Section 3.2.1, the mean-field theory
describes a state of a neural network with a measure in the
weight space p; similarly, it describes a networks’ learning
dynamics as an evolution of this measure. In particular,
this means that weight updates cannot depend explicitly on
the width d. Indeed, if they grow with d, then for some
measure [, with infinite number of atoms this measure
will diverge after a single gradient step. Similarly, if they
vanish with d, then for a measure with an infinite number
of atoms this measure will not evolve with gradient steps.
Since we consider a polynomial dependence on d for our
hyperparameters, our dynamics should not depend on d
explicitly.

It is not obvious how to properly define a weight-space
measure in the case of multiple hidden layers; the discus-
sion in Section 3.3 of Sirignano & Spiliopoulos (2019); see
also Fang et al. (2019). However, if we manage to define
it properly, then each sum in the dynamics equation (19)
will be substituted with an integral over the measure. Each
such integral will contribute a d factor to the correspond-
ing equation. Hence in order to have a learning dynamics
independent on d we should have:

ﬁa/w0H+1dH x 1, ﬁvhUH+1dH_1 x 1,
because there are H sums in the dynamics equation for
@ and w, and H — 1 sums for oV H . Similarly, since the
network output should not depend on d, we should also
have:

gHHLgH+T o 1,

From this follows that o oc d 1, Tajw ¢ d, and 7,n < d?.

As we show in SM G, for H > 2 this scaling leads to
a vanishing limit: f{gk) (x) > 0asd — oo Vx Vk > 0.
The intuition behind this result is simple: if H > 2 and
¢(z) ~ z for z — 0, then given the scaling above all of the
weight increments vanish as d — oo for k£ = 0. This means
that the learning process cannot start in the limit of large d.
We validate this claim empirically for H = 2 in Figure 2,
center. In contrast, for the NTK scaling, which corresponds
to o o< d~*/% and A, /yn 1, o 1, not all of the terms vanish.
Nevertheless, if H = 1, a non-trivial mean-field limit seems
to exist as our experiments demonstrate: see Figure 2, left.

Note that this result does not drive away the possibility
of constructing a meaningful continuous-time MF limit,
for which the limit dynamics is driven by an ODE. Also,
we expect a meaningful MF limit to be possible for non-
linearities that do not vanish near zero (e.g. for sigmoid).

4.2. Training a multi-layer net with RMSProp

Up to this point we have considered a GD training. Consider
now training with RMSProp which updates the weights with

normalized gradients. We show that in this case a mean-field
limit exists and it is not trivial for any H > 0.

For the RMSProp training gradient updates look as follows:

k k+1 k V((Jk)
AGF) = glt1) _ (k) — “ne—'0, (20)
RMS,
where 0 € {a,, ., vZ .. ,...,0} . Wy} Here we have

used following shorthands:
v = vece®),

(k) H.(k) R ) ang

where 9(") = {arhm THTH—13++ 9 U

k
RMSYY = | 3 p=r i @ v for B € (0,1).
k'=0

Similarly to the GD case, we divide equation (20) by the
standard deviation oy of the initialization of the weight 6:

(k)
AR — 16 vé
oo RMS)’
9

where ng) and RMSék) are defined similarly as above.

In this case we define scaled learning rates differently com-
pared to the GD case: 7y = 1g/0s.

As noted above, the mean-field analysis requires weight
updates not to depend on d explicitly. Since our weight
update rule uses normalized gradients, this condition reads
simply as 7y o 1 for all weights § and o oc d~! since the
model output f[uq; x] should not depend on d explicitly.

Using similar reasoning as before (namely, weight incre-
ments should decay as d—'/2) we can also define the NTK
scaling: 7y oc 1 for all § and o oc d~'/2. We compare
these two limits in Figure 2, right. Notice that similar to
the single hidden layer case, the NTK limit preserves terms

with low-order dependencies on learning rates (i.e. fskw) ,

f éka) Joh /w), while the MF limit, being now non-vanishing,

preserves terms with higher-order dependencies on them.

5. Conclusions

There are two different theories that study neural nets in
the limit of infinite width: a mean-field theory and a kernel
theory. These theories imply that if certain conditions are
fulfilled, corresponding infinite-width limits are non-trivial,
i.e. the resulting function neither explodes nor vanishes and
the learning process does not get stuck as the width goes to
infinity.

In our study we derive a set of sufficient conditions on the
scaling of hyperparameters (weight initialization variances
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Figure 2. MF and NTK limits for multilayer networks. Top row: the final test cross-entropy (CE) loss as a function of width d. Bottom
row: numerical estimates for exponents of terms of the decomposition of f %) similar to eq.(8). All of these terms vanish for a network
with (at least) three hidden layers in the MF limit, however, this is not the case when the number of hidden layers is two. Nevertheless,
if we consider training with RMSProp, the MF limit becomes non-vanishing. For the NTK scaling, not all of the decomposition terms
vanish in any case, however, some of them do, indicating possible discrepancies between the reference net and its NTK limit. Setup:
We train a multi-layer net on a subset of CIFAR2 (a dataset of first two classes of CIFAR10) of size 1000 with either a plain gradient
descent or RMSProp. We take a reference net of width d* = 27 = 128 trained with (unscaled) reference learning rates n’; = 7., = 0.02
for GD and n;; = n;, = 0.0002 for RMSProp, and scale its hyperparameters according to MF (blue curves) and NTK (orange curves)
scalings. We also make a plot for the case when we do not scale our learning rates (black curves) while scaling standard deviations at the
initialization as the initialization scheme of He et al. (2015) suggests. See SM A for further details.

and learning rates) with width to ensure that we reach a
non-trivial limit when the width goes to infinity. Solutions
under these conditions include scalings that correspond to
mean-field and NTK limits, as well as a family of scalings
that lead to a limit model different from these two.

We propose a decomposition of our model and show that
some of its terms may vanish for large width. We argue
that a limit provides a more reasonable approximation for a
finite-width net if as few of these terms vanish as possible.

Our analysis out of the box suggests a discrete-time MF
limit which, to the best of our knowledge, has not been cov-
ered by the existing literature yet. We prove a convergence
theorem for it and show that it provides a more reasonable
approximation for finite-width nets than the NTK limit as
long as learning rates are not too small.

As we show afterwards, a discrete-time mean-field limit
appears to be trivial for a network with more than two hidden
layers. Nevertheless, if we train our network with RMSProp
instead of GD, the above-mentioned limit becomes non-
trivial for any number of hidden layers.
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