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A. Experimental details
We perform our experiments on a feed-forward net with
H + 1 hidden layers with no biases. We learn our network
as a binary classifier on a subset of CIFAR2 dataset (which
is a dataset of first two classes of CIFAR10) of size 1000.
We train our network for 50 epochs to minimize the binary
cross-entropy loss and report the final cross-entropy loss on
a full test set (of size 2000). We repeat our experiments for
5 random seeds and report means and standard deviations
on our plots. We experiment with other setups (i.e. using
a mini-batch gradient estimation instead of the exact one,
using a larger train dataset, using more training steps,
learning a multi-class classification problem) in SM I.
All experiments were conducted on a single NVIDIA
GeForce GTX 1080 Ti GPU using pytorch framework
(Paszke et al., 2017). Our code is available online:
https://github.com/deepmipt/research/
tree/master/Infinite_Width_Limits_of_
Neural_Classifiers.

Although our analysis assumes initializing variables with
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samples from a gaussian, nothing changes if we sample σξ
for ξ being any symmetric random variable with a distribu-
tion independent on hyperparameters.

In our experiments we took a network of width d∗ = 27 =
128 and apply a Kaiming uniform initialization scheme (He
et al., 2015) to its layers; we call this network a reference
network. Consider a network with a single hidden layer
first. According to the Kaiming initialization scheme, initial
weights should have zero mean and standard deviations
σ∗a ∝ (d∗)−1/2 and σ∗w ∝ d

−1/2
0 , where d0 is the input

dimension which we do not modify. For this network we
take (unscaled!) learning rates η∗a = η∗w = 0.02 for the
gradient descent training and η∗a = η∗w = 0.0002 and β =
0.99 for the RMSProp training. After that, we scale the
initial weights and the learning rates with width d according
to a specific scaling:

σ = σ∗
(
d

d∗

)qσ
, η̂a/w = η̂∗a/w

(
d

d∗

)q̃a/w
.

Since σ = σaσw and since we apply the (leaky) ReLU
non-linearity, we can take

σa = σ∗a

(
d

d∗

)qσ
, σw = σ∗w.

Since for GD we have η̂a/w = ηa/w/σ
2
a/w, then

ηa = η∗a

(
σa
σ∗a

)2(
d

d∗

)q̃a
= η∗a

(
d

d∗

)q̃a+2qσ

,

ηw = η∗w

(
σw
σ∗w

)2(
d

d∗

)q̃w
= η∗w

(
d

d∗

)q̃w
.

Similar holds for the multi-layer case. In this case since
σ = (σaσvH . . . σv1σw)1/(1+H), we can take

σa/v1/.../vH = σ∗a/v1/.../vH

(
d

d∗

)qσ
, σw = σ∗w.
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B. Dynamics of the limit model for the NTK
scaling

First consider a continuous-time gradient descent for a one-
hidden layer network in a general form:

θ̇
(t)
d = −η̂E x,y

∂`(y, z)

∂z

∣∣∣∣
z=f(x; θ

(t)
d )

∂f(x; θ
(t)
d )

∂θd
,

where θ(t)
d = {(â(t)

r , ŵ
(t)
r )}dr=1 is a sequence of d weights

(â, ŵ) associated with each neuron at a time-step t.

ḟ(x′; θ
(t)
d ) =

(
∂f(x′; θ

(t)
d )

∂θd

)T
θ̇

(t)
d =

= −η̂E ∂`(y, z)

∂z

∣∣∣∣
z=〈...〉

(
∂f(x′; θ

(t)
d )

∂θd

)T
∂f(x; θ

(t)
d )

∂θd
=

= −η̂E x,y
∂`(y, z)

∂z

∣∣∣∣
z=f(x; θ

(t)
d )

Θd(x
′,x; θ

(t)
d ).

Assume the model is scaled as d−1/2:

f(x; θ
(t)
d ) = d−1/2

d∑
r=1

â(t)
r φ(ŵ(t),T

r x).

Then a neural tangent kernel is written as follows:

Θd(x
′,x; θ

(t)
d ) = d−1

d∑
r=1

(
φ(ŵ(t),T

r x)φ(ŵ(t),T
r x′) +

+â2
rφ
′(ŵ(t),T

r x)φ′(ŵ(t),T
r x′)xTx′

)
.

If moreover η̂ = const, then for a fixed t independent of
d â(t) → â(0) and ŵ(t) → ŵ(0). Hence due to the Law of
Large Numbers Θd(x

′,x; θ
(t)
d )→ Θ∞(x′,x), where

Θ∞(x′,x) = E (â,ŵ)∼N (0,I1+d0
)

(
φ(ŵTx)φ(ŵTx′) +

+â2φ′(ŵTx)φ′(ŵTx′)xTx′
)
.

In the case of the discrete-time dynamics we have similarly:

θ
(k+1)
d = θ

(k)
d − η̂E x,y

∂`(y, z)

∂z

∣∣∣∣
z=f(x; θ

(k)
d )

∂f(x; θ
(k)
d )

∂θd
.

A classical result of calculus states that there exists a ξ(k)
d ∈

[0, 1](d0+1)d such that following holds:

f(x′; θ
(k+1)
d )− f(x′; θ

(k)
d ) =

=

(
∂f(x′; θ̃

(k)
d )

∂θd

)T
(θ

(k+1)
d − θ(k)

d ) =

= −η̂E ∂`(y, z)

∂z

∣∣∣∣
z=〈...〉

(
∂f(x′; θ̃

(k)
d )

∂θd

)T
∂f(x; θ

(k)
d )

∂θd
=

= −η̂E x,y
∂`(y, z)

∂z

∣∣∣∣
z=f(x; θ

(t)
d )

Θd(x
′,x; θ

(k)
d , θ̃

(k)
d ).

where θ̃(k)
d = θ

(k+1)
d � ξ(k)

d + θ
(k)
d � (1 − ξ(k)

d ), and we
have abused notation by redefining Θd. Nevertheless, in
this case Θd(x

′,x; θ
(k)
d , θ̃

(k)
d ) still converges to Θ∞(x′,x)

defined above for the same reasons as above.

C. Validation of the power-law asumptions
In Section 3 we have introduced power-law assumptions for
weight increments and for terms of the model decomposi-
tion:

|δâ(k)
r | ∝ dq

(k)
a , ‖δŵ(k)

r ‖ ∝ dq
(k)
w ; (1)

f
(k)
d,∅ (x) ∝ dq

(k)

f,∅ , f
(k)
d,a/w(x) ∝ dq

(k)

f,a/w , f
(k)
d,aw(x) ∝ dq

(k)
f,aw .
(2)

After that, we have derived corresponding exponents for two
cases: q(1)

a/w = qσ + q̃a/w < 0 and q(1)
a/w = qσ + q̃a/w = 0,

where qσ is an exponent for σ and q̃a/w are exponents for
learning rates:

σ ∝ dqσ , η̂a/w ∝ dq̃a/w .

In order to have a non-vanishing non-diverging limit model
f

(k)
∞ that does not coincide with its initialization f (0)

∞ , we
have derived a set of conditions: see Section 3. For the first
case these conditions were the following:

qσ ∈ (−1,−1/2],

q
(1)
a/w ≤ −1− qσ, max(q(1)

a , q(1)
w ) = −1− qσ,

while for the second case they were:

qσ = −1, q
(1)
a/w = 0.

The MF scaling is exactly the second case, while the
NTK scaling corresponds to the first case: qσ = q

(1)
a =

q
(1)
w = −1/2. We have refered a family of scalings
qσ ∈ (−1,−1/2) and q(1)

a = q
(1)
w = −1 − qσ as ”inter-

mediate”.

As we have also derived in Section 3, for both cases q(k)
a/w =

q
(1)
a/w ∀k ≥ 1.
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Here we validate power-law assumptions (1) as well as
derived values for corresponding exponents for the three
special cases noted above: MF, NTK and intermediate scal-
ings, see Figure 1. We train a one hidden layer network with
the gradient descent for 50 epochs; see SM A for further
details. We take norms of final learned weight increments
and average them over hidden neurons:

av. |δâ(k)| = 1

d

d∑
r=1

|δâ(k)
r |,

av. ‖δŵ(k)‖2 =
1

d

d∑
r=1

‖δŵ(k)
r ‖2.

We then plot these values as functions of width d.

As one can see on left and center plots, weight increments as
functions of width are very well fitted with power-laws for
both input and output layers. Right plot matches numerical
estimates for corresponding exponents q(k)

a and q(k)
w with

their theoretical values (denoted by red ticks). Here we
notice a reasonable coincidence between them.

In order to validate a power-law assumption for model de-
composition terms (2), we compute the variance with respect
to the data distribution for each decomposition term. The
reason to consider variances instead of decomposition terms
themselves is that these terms are functions of x. If we just
fix a random x, then the numerical estimate for, say, f (k)

d,a (x)
can be noisy. Hence it is better to plot some statistics of
these terms with respect to the data, hoping that this statis-
tics will be more robust, which is true e.g. for expectation.
However, since we consider a binary classification problem
with balanced classes, we are likely to have E xf

(k)
d (x) ≈ 0.

Because of this, we are afraid to have all of the decomposi-
tion terms to be approximately zeros in expectation. For this
reason, we consider a variance instead of the expectation.
Note that f (k)

d ∝ dq
(k)
f implies Var xf

(k)
d ∝ d2q

(k)
f .

As we see in Figure 2, variances of all of the model de-
composition terms are fitted with power-laws well. The
only exception is Var xf

(k)
d,∅ (x) for the mean-field scaling:

see the solid curve on the left plot. Nevertheless, this term
converges to a constant for large d, which indicates that our
analysis becomes valid at least in the limit of large d. Note
that we have also matched numerical estimates of corre-
sponding exponents with their theoretical values in Figure 1
of the main text.

D. Derivation of κ-terms in a one hidden
layer case

For the sake of completeness, we copy all necessary defini-
tions from Section 3 here. A gradient descent step is defined

as follows:

∆δâ(k)
r = −η̂aσE∇(k)

f ` φ((ŵ(0)
r + δŵ(k)

r )Tx),

∆δŵ(k)
r = −η̂wσE∇(k)

f ` (â(0)
r + δâ(k)

r )φ′(. . .)x, (3)

δâ(0)
r = 0, δŵ(0)

r = 0, â(0)
r ∼ N (0, 1), ŵ(0)

r ∼ N (0, I);

f
(k)
d (x) = σ

d∑
r=1

(â(0)
r + δâ(k)

r )φ((ŵ(0)
r + δŵ(k)

r )Tx).

We assume:

σ ∝ dqσ , η̂a/w ∝ dq̃a/w .

|δâ(k)
r | ∝ dq

(k)
a , ‖δŵ(k)

r ‖ ∝ dq
(k)
w . (4)

Assuming our model f (k)
d does not diverge with d, gradient

step equations (3) imply:

q
(1)
a/w = qσ + q̃a/w,

q
(k+1)
a/w = max(q

(k)
a/w, q

(1)
a/w + max(0, q

(k)
w/a)). (5)

We decompose our f as:

f
(k)
d (x) = f

(k)
d,∅ (x) + f

(k)
d,a (x) + f

(k)
d,w(x) + f

(k)
d,aw(x), (6)

f
(k)
d,∅ (x) = σ

d∑
r=1

â(0)
r φ′(. . .)ŵ(0),T

r x,

f
(k)
d,a (x) = σ

d∑
r=1

δâ(k)
r φ′(. . .)ŵ(0),T

r x,

f
(k)
d,w(x) = σ

d∑
r=1

â(0)
r φ′(. . .)δŵ(k),T

r x,

f
(k)
d,aw(x) = σ

d∑
r=1

δâ(k)
r φ′(. . .)δŵ(k),T

r x,

where φ′(. . .) is a shorthand for φ′((ŵ(0)
r +δŵ

(k)
r )Tx) here.

We assume f (k)
d (x) ∝ dq

(k)
f , f (k)

d,∅ (x) ∝ dq
(k)

f,∅ , and so on.

By definition of decomposition (6) terms, we have:

q
(k)
f,∅ = qσ + κ(k)

∅ , q
(k)
f,a/w = q

(k)
a/w + qσ + κ(k)

a/w,

q
(k)
f,aw = q(k)

a + q(k)
w + qσ + κ(k)

aw , (7)

where all κ ∈ [1/2, 1].

Our goal now is to compute κ-terms for different values
of qσ and q̃a/w. However it is more convenient to consider
different cases for q(1)

a and q(1)
w instead.
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Figure 1. Weight increments obey power-law dependencies with respect to the width. Left: absolute output weight increments
averaged over hidden neurons as functions of width d. Center: same for input weight increments. As one can see, weight increments are
very well fitted with power-laws. Right: numerical estimates for exponents of corresponding power-laws, as well as their theoretical
values (denoted by red ticks). As one can see, theoretical values match numerical estimates very well. Setup: We train a 1-hidden layer
net on a subset of CIFAR2 (a dataset of first two classes of CIFAR10) of size 1000 with gradient descent. We take a reference net of width
d∗ = 27 = 128 trained with unscaled reference learning rates η∗a = η∗w = 0.02 and scale its hyperparameters according to MF (blue
curves), NTK (orange curves) and intermediate scalings with qσ = −3/4 (green curves, see main text). See SM A for further details.

D.1. q(1)
a and q(1)

w are both negative

In this case equations (5) imply q
(k)
a/w = q

(1)
a/w < 0

∀k ≥ 1. Hence φ′((ŵ(0)
r + δŵ

(k)
r )Tx) ∼ φ′(ŵ

(0),T
r x)

as d → ∞. Hence by the Central Limit Theorem,∑d
r=1 â

(0)
r φ′(. . .)ŵ

(0),T
r x ∝ d1/2. This means that κ(k)

∅ =
1/2.

At the same time, using the definition of the gradient step
for δŵ(k)

r ,

f
(k)
d,w(x) = σ

d∑
r=1

â(0)
r φ′((ŵ(0)

r + δŵ(k)
r )Tx)δŵ(k),T

r x ∝

∝ η̂wσ2
d∑
r=1

â(0)
r φ′((ŵ(0)

r + δŵ(k)
r )Tx)(â(0)

r + δâ(k−1)
r )×

×φ′((ŵ(0)
r + δŵ(k−1)

r )Tx)xTx ∼

∼ η̂wσ2
d∑
r=1

(â(0)
r )2(φ′(ŵ(0),T

r x))2xTx.

We see that expression inside the sum has non-zero expecta-
tion, hence the sum scales as d, not as d1/2. Hence κ(k)

w = 1.
Using the similar reasoning we conclude that κ(k)

a = 1. For

f
(k)
d,aw we have:

f
(k)
d,aw(x) = σ

d∑
r=1

δâ(k)
r φ′((ŵ(0)

r + δŵ(k)
r )Tx)δŵ(k),T

r x ∝

∝ η̂aη̂wσ3
d∑
r=1

(ŵ(0)
r + δŵ(k−1)

r )Tx×

×(φ′((ŵ(0)
r + δŵ(k−1)

r )Tx))2 ×
×φ′((ŵ(0)

r + δŵ(k)
r )Tx)(â(0)

r + δâ(k−1)
r )xTx ∼

∼ η̂aη̂wσ3
d∑
r=1

â(0)
r xTx(φ′(ŵ(0),T

r x))3ŵ(0),T
r x.

Here all random terms of the sum has zero expectation and
â

(0)
r is independent from (φ′(ŵ

(0),T
r x))3ŵ

(0)
r ; hence the

sum scales as d1/2 and consequently κ(k)
aw = 1/2.

Summing up, if q(1)
a/w < 0, then κ(k)

∅ = κ(k)
aw = 1/2 and

κ(k)
a/w = 1 ∀k ≥ 1. Note that the NTK scaling is a subcase

of this case.

D.2. q(1)
a and q(1)

w are both zeros

In this case equations (5) imply q(k)
a/w = q

(1)
a/w = 0 ∀k ≥ 1.

Hence, generally, both δâ(k) and δŵ(k) depend on both
â(0) and ŵ(0). This implies that sums in definitions of f (k)

d,a ,

f
(k)
d,w and f (k)

d,aw scale as d; hence κ(k)
a = κ(k)

w = κ(k)
aw = 1

∀k > 1. Moreover, this implies that the sum

f
(k)
d,∅ = σ

d∑
r=1

â(0)
r φ′((ŵ(0)

r + δŵ(k)
r )Tx)ŵ(0),T

r x
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Figure 2. Model decomposition terms obey power-law dependencies with respect to the width. Left: the variance with respect to the
data distribution for terms of model decomposition (6) as a function of width d for the mean-field scaling. Center: same for the NTK
scaling. Right: same for the intermediate scaling with qσ = −3/4. As one can see, the data distribution variance of model decomposition
terms are well-fitted with power-laws. Setup: We train a 1-hidden layer net on a subset of CIFAR2 (a dataset of first two classes of
CIFAR10) of size 1000 with a gradient descent. We take a reference net of width d∗ = 27 = 128 trained with unscaled reference learning
rates η∗a = η∗w = 0.02 and scale its hyperparameters according to MF (blue curves), NTK (orange curves) and intermediate scalings with
qσ = −3/4 (green curves, see text). See SM A for further details.

also scales as d. Hence κ(k)
∅ = 1 ∀k ≥ 1. Note that this is

the case of the MF scaling.

E. Other meaningful scalings
In the main text we have considered two solution classes
for a system of equations and inequlaities that defines a
meaningful scaling. One class corresponds to the case of
both q(1)

a and q(1)
w being less than zero, while the other one

corresponds to the case of both of them being zeros. In this
section we consider all other possible cases.

E.1. q(1)
a = 0, while q(1)

w < 0

In this case equations (5) imply q(k)
a = q

(1)
a = 0 and q(k)

w =

q
(1)
w < 0 ∀k ≥ 1. Since ŵ(k) → ŵ(0), δâ(k) does not

become independent on ŵ(0) as d → ∞; hence κ(k)
a = 1.

Also, since q(k)
w < 0, φ′(ŵ(k),Tx) → φ′(ŵ(0),Tx); hence

κ(k)
∅ = 1/2.

A condition q(k)
f,a = qσ + q

(1)
a + κ(k)

a ≤ 0 then implies that

qσ ≤ −1. Hence q(k)
f,∅ = qσ+κ(k)

∅ ≤ −1/2 < 0. Moreover,

q
(k)
f,w = qσ + q

(k)
w +κ(k)

w < 0, since κ(k)
w ≤ 1, and similarly,

q
(k)
f,aw = qσ + q

(k)
a + q

(k)
w + κ(k)

aw < 0 since κ(k)
aw ≤ 1.

Hence in order to have a non-vanishing limit model we
have to have q(k)

f,a = 0 which implies qσ = −1. Note that

q
(1)
a = qσ + q̃a = 0; since then q̃a = 1. Since f (k)

d,a is the
only term of the model decomposition that remains finite
as d → ∞, we essentialy learn the output layer only in
the limit of d→∞. Hence we can describe the dynamics

of the limit model both in terms of the evolution of the
limit measure and in terms of a constant deterministic limit
kernel.

Indeed, suppose σ = σ∗d−1 and η̂a = η̂∗ad. The limit
measure evolution writes as follows:

f (k)
∞ (x) = σ∗

∫
âφ(ŵTx)µ(k)

∞ (dâ, dŵ);

µ(k+1)
∞ = Ta(µ(k)

∞ ; η̂∗aσ
∗, σ∗), µ(0)

∞ = N1+d0(0, I),

where a gradient descent step operator Ta is defined on
probabilistic measures µ supported on a finite set of atoms
d as follows:

Ta(µd; η̂
∗
aσ
∗, σ∗) =

1

d

d∑
r=1

δâ′r ⊗ δŵr ,

where

â′r = âr − η̂∗aσ∗E x,y
∂`(y, z)

∂z

∣∣∣∣
z=fd(x;σ∗)

φ(ŵT
r x),

and fd(x;σ∗) = σ∗
∫
âφ(ŵTx)µd(dâ, dŵ) for (âr, ŵr),

r ∈ [d], being atoms of measure µd.

Consider now a kernel Θ̃a,∞ defined as follows:

Θ̃a,∞(x,x′) = η̂∗aσ
∗,2E ŵ∼N (0,Id0

)φ(ŵTx)φ(ŵTx′).

Using the same argument as in SM B, we can write a
continuous-time evolution of the limit model in terms of
this kernel:

ḟ (t)
∞ (x′) = −E x,y

∂`(y, z)

∂z

∣∣∣∣
z=f

(t)
∞ (x)

Θ̃a,∞(x,x′),
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f (0)
∞ (x) = E (â,ŵ)∼N (0,I1+d0

)âφ(ŵTx) = 0.

Moreover, for the same argument as in SM B, the similar
evolution equation holds also for the discrete-time evolution:

∆f (k)
∞ (x′) = −E x,y

∂`(y, z)

∂z

∣∣∣∣
z=f

(k)
∞ (x)

Θ̃a,∞(x,x′).

E.2. q(1)
w = 0, while q(1)

a < 0

This case is almost analogous to the previous one. Equations
(5) imply q(k)

w = q
(1)
w = 0 and q(k)

a = q
(1)
a < 0 ∀k ≥ 1,

and δŵ(k) does not become independent on â(0) as d →
∞; hence κ(k)

w = 1. Note that in contrast to the previous
case, since q(k)

w = 0, φ′(ŵ(k),Tx) 9 φ′(ŵ(0),Tx); hence
κ(k)
∅ = 1.

A condition q(k)
f,w = qσ+q

(1)
w +κ(k)

w ≤ 0 (or, equivalently, a

condition q(k)
f,∅ = qσ +κ(k)

∅ ≤ 0) then implies that qσ ≤ −1.

Hence q(k)
f,a = qσ + q

(k)
a + κ(k)

a < 0, since κ(k)
a ≤ 1, and

similarly, q(k)
f,aw = qσ + q

(k)
a + q

(k)
w + κ(k)

aw < 0, since

κ(k)
aw ≤ 1.

Hence in order to have a non-vanishing limit model we have
to have q(k)

f,∅ = q
(k)
f,w = 0, which implies qσ = −1. Note

that q(1)
w = qσ + q̃w = 0; since then q̃w = 1. In this case

we again essentialy learn only a single layer in the limit
of d → ∞. However a kernel which drives the dynamics
evolves with k since w(k) 9 w(0):

Θ̃(k)
w,∞(x,x′) = η̂∗wσ

∗,2 lim
d→∞

1

d

∞∑
d=1

E â∼N (0,1)|â|2×

× φ′(ŵ(k),Tx)φ′(ŵ(k),Tx′)xTx′.

Nevertheless, the dynamics can be described in terms of the
measure evolution similar to the previous case.

E.3. q(1)
a > 0, while q(1)

a + q
(1)
w ≤ 0

In this case equations (5) imply q(k)
a = q

(1)
a > 0, while

q
(k)
w = q

(1)
a + q

(1)
w ≤ 0 ∀k > 1. Similar to the case of

SM E.1, δâ(k) does not become independent on ŵ(0) as
d→∞; hence κ(k)

a = 1.

Consider k > 1. A condition q(k)
f,a = qσ + q

(1)
a + κ(k)

a ≤ 0

then implies qσ ≤ −1 − q(1)
a < −1. Hence q(k)

f,∅ = qσ +

κ(k)
∅ < 0 since κ(k)

∅ ≤ 1. Moreover, q(k)
f,w = qσ + q

(k)
w +

κ(k)
w < 0 since κ(k)

w ≤ 1 and q(k)
w = q

(1)
a + q

(1)
w ≤ 0, and

similarly, q(k)
f,aw = qσ+q

(k)
a +q

(k)
w +κ(k)

aw ≤ q(k)
f,a ≤ 0 since

κ(k)
aw ≤ 1.

Hence in order to have a non-vanishing limit model we have
to have q(k)

f,a = 0, which implies q(1)
a = qσ + q̃a = −1− qσ .

Since then q̃a = −1 − 2qσ, while qσ < −1. Suppose
q

(k)
w = q

(1)
a + q

(1)
w < 0. In this case q(k)

f,aw < 0, hence f (k)
d,a

is the only term of the model decomposition that remains
finite as d→∞, and we learn the output layer only in the
limit of d→∞, as was the case of SM E.1. In this case we
are again able to describe the dynamics of the limit model
both in terms of the evolution of the limit measure and in
terms of a constant deterministic limiting kernel.

While the kernel description does not change at all com-
pared to the case described in SM E.1, measure evolution
equations require slight modifications. Indeed, suppose
σ = σ∗dqσ and η̂a = η̂∗ad

−1−2qσ . The limit measure evolu-
tion writes as follows:

f (k)
∞ (x) = σ∗

∫
âφ(ŵTx)µ(k)

∞ (dâ, dŵ);

µ(k+1)
∞ = Ta(µ(k)

∞ ; η̂∗aσ
∗, σ∗), µ(0)

∞ = δ ⊗N (0, Id0
),

where a gradient descent step operator Ta is defined on
probabilistic measures µ supported on a finite set of atoms
d as follows:

Ta(µd; η̂
∗
aσ
∗, σ∗) =

1

d

d∑
r=1

δâ′r ⊗ δŵr ,

where

â′r = âr − η̂∗aσ∗E x,y
∂`(y, z)

∂z

∣∣∣∣
z=fd(x;σ∗)

φ(ŵT
r x),

and fd(x;σ∗) = σ∗
∫
âφ(ŵTx)µd(dâ, dŵ) for (âr, ŵr),

r ∈ [d], being atoms of measure µd.

The only thing changed here is that in the limit out-
put weights â are initialized with zeros. The reason
for this is that the increment at the first step δâ(0) =

−η̂aσE∇(0)
f ` φ(ŵ(0),Tx) grows as d−1−qσ as d → ∞.

Hence â(k) → δâ(k) as d→∞ for k ≥ 1.

Suppose now q
(k)
w = q

(1)
a + q

(1)
w = 0. In this case δâ(k)

and δŵ(k) do not become independent, since ŵ(k) 9 ŵ(0);
hence κ(k)

aw = 1. This implies that q(k)
f,aw = qσ + q

(k)
a +

q
(k)
w + κ(k)

aw = 0 for k > 1, hence two terms of the model
decomposition remain finite as d → ∞: f (k)

d,a and f (k)
d,aw.

Note that q(1)
a + q

(1)
w = 0 implies q̃w = −q̃a − 2qσ = 1.

Suppose η̂w = η̂∗wd. In this case we are again able to
describe the dynamics of the limit model in terms of the
evolution of the limit measure:

f (k)
∞ (x) = σ∗

∫
âφ(ŵTx)µ(k)

∞ (dâ, dŵ);

µ(k+1)
∞ = Ta(µ(k)

∞ ; η̂∗aσ
∗, σ∗), µ(0)

∞ = δ ⊗N (0, Id0),
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where a gradient descent step operator Ta is defined on
probabilistic measures µ supported on a finite set of atoms
d as follows:

T (µd; η̂
∗
aσ
∗, η̂∗wσ

∗, σ∗) =
1

d

d∑
r=1

δâ′r ⊗ δŵr ,

where

â′r = âr − η̂∗aσ∗E x,y
∂`(y, z)

∂z

∣∣∣∣
z=fd(x;σ∗)

φ(ŵT
r x),

ŵ′r = ŵr − η̂∗wσ∗E x,y
∂`(y, z)

∂z

∣∣∣∣
z=fd(x;σ∗)

ârφ
′(ŵT

r x),

and fd(x;σ∗) = σ∗
∫
âφ(ŵTx)µd(dâ, dŵ) for (âr, ŵr),

r ∈ [d], being atoms of measure µd.

We have a zero initialization for the output weights for the
same reason as for the case of q(k)

w < 0. Note that in contrast
to the above-mentioned case, the case of q(k)

w = 0 cannot
be described in terms of a constant limit kernel. Indeed, we
have a stochastic time-dependent kernel for finite width d
associated with output weights learning:

Θ̃(k)
a,∞(x,x′) = η̂∗aσ

∗,2 1

d

d∑
r=1

φ(ŵ(k),T
r x)φ(ŵ(k),T

r x′).

This kernel converges to a deterministic one as d→∞ by
the Law of Large Numbers, however, the limit kernel stays
step-dependent, since ŵ(k) = ŵ(0) + δŵ(k), while the last
term here does not vanish as d→∞.

Note that the ”default” case we have considered in the main
text falls into the current case. Indeed, by default we have
σ ∝ d−1/2 and ηa/w ∝ 1. This implies qσ = −1/2, q̃a = 1

and q̃w = 0; consequently, q(1)
a = 1/2 and q(1)

w = −1/2.
However, as we have shown above, having qσ ≤ −1 −
q

(1)
a = −3/2 is necessary to guarantee that the limit model

does not diverge. As we observe in Figure 1 of the main
text a limit model resulted from the default scaling indeed
diverges.

E.4. q(1)
w > 0, while q(1)

a + q
(1)
w ≤ 0

The difference between this case and the previous one is
essentially the same as between cases of SM E.2 and of
SM E.1. For this reason we leave this case as an exercise
for the reader.

E.5. q(1)
a + q

(1)
w > 0

Suppose first that q(1)
a > 0. In this case equations (5) imply

q
(2)
w = q

(1)
a + q

(1)
w > 0 and q(2)

a ≥ q(1)
a > 0. It is easy to see

that equations 5 further imply q(2k)
a = q

(2k)
w = k(q

(2)
a +q

(2)
w )

∀k ≥ 1. This means that q(k)
a and q(k)

w grow linearly with
k. Hence all of q(k)

f,a, q(k)
f,w, q(k)

f,aw become positive for large
enough k irrespective of qσ .

Obviously, the same holds if q(1)
w > 0. Hence in this case

our analysis suggests that a limit model f (k)
∞ diverges with

d for large enough k. However, when our analysis predicts
that a limit model diverges, we cannot guarantee that ∇(k)

f `
does not vanish with d, hence equations 5 become generally
incorrect. Indeed, if a model reaches 100% train accuracy at
step k, then∇(k)

f ` vanishes exponentially if f grows. This
means that f cannot really diverge width d if it reaches
100% train accuracy.

F. A discrete-time mean-field limit of a
network with a single hidden layer

In this section we omit ”hats” for brevity, assuming all
relevant quantities to be scaled appropriately.

Recall that in the MF limit σ ∝ d−1 and ηa/w ∝ d. Suppose
σ = σ∗d−1 and w.l.o.g. ηa/w = η∗d.

We closely follow the measure-theoretic formalism of Sirig-
nano & Spiliopoulos (2020). Consider a measure in (a,w)-
space at each step k for a given d:

µ
(k)
d =

1

d

d∑
r=1

δ
a

(k)
r
⊗ δ

w
(k)
r
.

Given this, a neural network output can be represented as
follows:

f
(k)
d (x) = σ∗

∫
aφ(wTx)µ

(k)
d (da, dw).

A gradient descent step is written as follows:

∆a(k)
r = −η∗σ∗E x,y∇(k)

f ` φ(w(k),T
r x),

∆w(k)
r = −η∗σ∗E x,y∇(k)

f ` a(k)
r φ′(w(k),T

r x)x. (8)

For technical reasons we assume weights ar and wr ∀r ∈
[d] to be initialized from the distribution P with compact
support:

a(0)
r ∼ P, w

(0)
r,j ∼ P ∀r ∈ [d] ∀j ∈ [d0]. (9)

One can notice that in the main body of this work we have
assumed P to be N (0, 1) that does not have a compact
support. Nevertheless, it is more common in practice to
use a truncated normal distribution instead of the original
normal one, which was used in the main body for the ease
of explanation only.



Infinite-Width Limits of Neural Classifiers: Supplementary Material

We introduce a transition operator T which represents a
gradient descent step (8):

µ
(k+1)
d = T (µ

(k)
d ; η∗, σ∗). (10)

This operator depends explicitly on σ∗ because ∇(k)
f ` is a

gradient of f (k)
d and the latter depends on σ∗. This represen-

tation clearly shows that a gradient descent defines a Markov
chain for measures on the weight space with deterministic
transitions. The initial measure µ(0)

d is given by initial condi-
tions (9). Since they are random, measure µ(k)

d is a random
measure for any k ≥ 0 and for any d ∈ N. Nevertheless, for
all k ≥ 0 µ

(k)
d converges to a corresponding limit measure

as the following theorem states:
Theorem 1. Suppose `(y, ·) ∈ C2(R), ∂`(y, z)/∂z is
bounded and Lipschitz continuous and φ is Lipschitz con-
tinuous. Suppose also that x has finite moments up to the
fourth one. Finally, assume that the distribution of initial
weights P has compact support. Then ∀k ≥ 0 there exists
a measure µ(k)

∞ such that µ(k)
d converges to µ(k)

∞ weakly as
d→∞ wrt to the 2-Wasserstein metric and each measure
µ

(k)
d is supported on a ball BRk a.s. for all d.

Proof. We prove this by induction on k.

Let k = 0. Any measure µ on the weight space is uniquely
determined by its action on all g ∈ C(R1+d0) with compact
support: 〈g, µ〉 =

∫
g(a,w)µ(da, dw). If this measure is

random, then the last integral is a random variable. Hence
µ

(0)
d converges to µ(0)

∞ = P weakly as d → ∞, iff for all
g ∈ C(R1+d0) with compact support 〈g, µ(0)

d 〉 converges to
〈g, µ(0)

∞ 〉 weakly as d→∞.

Let h ∈ Cb(R). Consider

lim
d→∞

E a(0),W (0)h
(〈
g, µ

(0)
d

〉)
=

= lim
d→∞

E a(0),W (0)h

(
1

d

d∑
r=1

g(a(0)
r ,w(0)

r )

)
=

= h
(
E a(0),w(0)g

(
a(0),w(0)

))
= h

(〈
g, µ(0)
∞

〉)
,

where the second equality comes from the Law of Large
Numbers which is valid since initial weights are i.i.d. This
proves a weak convergence of 〈g, µ(0)

d 〉 to 〈g, µ(0)
∞ 〉. As was

noted above, this is equivalent to a weak convergence of
measures µ(0)

d :

lim
d→∞

E a(0),W (0)h[µ
(0)
d ] = h[µ(0)

∞ ]

for any h ∈ Cb(M(R1+d0)).

Also, since all ar ∼ P , wr,j ∼ P and P has compact
support, µ(0)

d has compact support almost surely. Hence we
can write µ(0)

d ∈M(B1+d0

R0
) a.s. for some R0 <∞ ∀d.

We have proven the induction base. By induction assump-
tion, we have µ(k)

d ∈M(B1+d0

Rk
) a.s. for some Rk <∞ ∀d.

Let for any h ∈ Cb(M(R1+d0))

lim
d→∞

E a(0),W (0)h[µ
(k)
d ] = h[µ(k)

∞ ].

By definition, this means weak convergence of measures
µ

(k)
d to µ(k)

∞ . Then we have:

lim
d→∞

E a(0),W (0)h[µ
(k+1)
d ] = lim

d→∞
E a(0),W (0)h[T (µ

(k)
d )].

In order to prove that this limit exists and equals to
h[T (µ

(k)
∞ )] we have to show that h ◦ T ∈ Cb(M(B1+d0

Rk
)).

We prove the following lemma in Section F.1:

Lemma 1. Given conditions of Theorem 1 and R < ∞,
the transition operator T that performs a gradient descent
step (10) is continuous wrt the 2-Wasserstein metric on
M(B1+d0

R ).

Hence h ◦ T ∈ Cb(M(B1+d0

Rk
)). Since then, by the induc-

tion hypothesis for all h ∈ Cb(M(R1+d0))

lim
d→∞

E a(0),W (0)h[µ
(k+1)
d ] =

= lim
d→∞

E a(0),W (0)h[T (µ
(k)
d )] = h[T (µ(k)

∞ )].

We then define µ(k+1)
∞ = T (µ

(k)
∞ ).

Also, it easy to see that since φ, φ′ and ∂`(y, z)/∂z are
bounded and the distribution of x has a bounded varia-
tion, µ(k)

d ∈ M(B1+d0

Rk
) a.s. implies µ(k+1)

d = T µ(k)
d ∈

M(B1+d0

Rk+1
) a.s. for some Rk+1 <∞.

We have proven that for all k ≥ 0 µ
(k)
d converges to µ(k)

∞

weakly as d → ∞ wrt the 2-Wasserstein metric and µ(k)
d

has compact support a.s. for any d ∈ N.

Corollary 1 (Theorem 1 of Section 3, restated). Given the
same conditions as in Theorem 1, following statements hold:

1. ∀k ≥ 0 µ
(k)
d converges to µ(k)

∞ in probability as d →
∞;

2. f (k)
d (x) converges to some f (k)

∞ (x) in probability as
d→∞ ∀x ∈ X .

Proof. Since weak convergence to a constant implies con-
vergence in probability, the first statement directly follows
from Theorem 1.

By definition, weak convergence of µ(k)
d means for any

h ∈ Cb(M(R1+d0))

lim
d→∞

E a(0),W (0)h[µ
(k)
d ] = h[µ(k)

∞ ].
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Hence for any g ∈ Cb(R)

lim
d→∞

E a(0),W (0)g(f
(k)
d (x)) =

= lim
d→∞

E a(0),W (0)g(f [µ
(k)
d ;x]) =

= lim
d→∞

E a(0),W (0)(g ◦ f)[µ
(k)
d ;x] = (g ◦ f)[µ(k)

∞ ;x],

since f [·;x] ∈ C(M(R1+d0)) for any x ∈ X .

Hence f (k)
d (x) = f [µ

(k)
d ;x] converges weakly to f (k)

∞ (x) =

f [µ
(k)
∞ ;x] as d→∞. By the same argument as above, this

implies convergence in probability.

F.1. A gradient descent step defines a continuous
operator in the space of weight-space measures

Proof of Lemma 1. Without loss of generality assume σ∗ =
η∗ = 1. Consider a sequence of measures µd ∈M(B1+d0

R )

that converges to µ∞ ∈ M(B1+d0

R ) wrt the 2-Wasserstein
metric. We have to prove that T µd converges to T µ∞ wrt
the 2-Wasserstein metric.

Define θd = (ad,wd) ∈ B1+d0

R and δθd = θ∞ − θd =

(a∞ − ad,w∞ −wd) ∈ B1+d0

R . For a given d consider a
sequence of measures µjd,∞ ∈ M(B1+d0

R ⊗ B1+d0

R ) with
marginals equal to µd and µ∞ respectively, as required by
the definition of the Wasserstein metric. Choose a sequence
in such a way that

lim
j→∞

∫
(‖δθd‖22 µ

j
d,∞(dθd, dθ∞) =

= inf
µd,∞

∫
(‖δθd‖22 µd,∞(dθd, dθ∞) =W2

2 (µd, µ∞),

where infium is taken over all µd,∞ ∈M(B1+d0

R ⊗ B1+d0

R )
with marginals equal to µd and µ∞ respectively as required
by the definition of the Wasserstein metric. A sequence
{µjd,∞}∞j=1 exists by properties of infium. Then we have
the following:

W2
2 (T µd, T µ∞) ≤

≤ lim
j→∞

∫
‖δθd + δ∆θd‖22 µ

j
d,∞(dθd, dθ∞),

where we have defined

∆θd =
(
−E∇fd` φ(wT

d x),−E∇fd` adφ′(wT
d x)x

)
,

∇fd` =
∂`(y, z)

∂z

∣∣∣∣
z=f [µd;x]

and δ∆θd = ∆θ∞ −∆θd respectively. From this follows:

W2
2 (T µd, T µ∞) ≤ lim

j→∞

∫
‖δθd‖22 µ

j
d,∞(dθd, dθ∞) +

+ lim
j→∞

∫
‖δ∆θd‖22 µ

j
d,∞(dθd, dθ∞) +

+2 lim
j→∞

∫
〈δθd, δ∆θd〉µjd,∞(dθd, dθ∞).

Consequently,

W2
2 (T µd, T µ∞) ≤ W2

2 (µd, µ∞) + (11)

+ lim
j→∞

∫
‖δ∆θd‖22 µ

j
d,∞(dθd, dθ∞) + (12)

+4R lim
j→∞

√∫
‖δ∆θd‖22 µ

j
d,∞(dθd, dθ∞). (13)

The last term comes (1) from the Cauchy-Schwartz inequal-
ity: 〈δθd, δ∆θd〉 ≤ ‖δθd‖2‖δ∆θd‖2, (2) from the fact that
both µd and µ∞ are concentrated in a ball of radius R:
‖δθd‖2 = ‖θd − θ∞‖2 ≤ ‖θd‖2 + ‖θ∞‖2 ≤ 2R, and (3)

from Jensen’s inequality:
∫
‖θ‖2 µ(dθ) ≤

√∫
‖θ‖22 µ(dθ),

for µ being a probability measure.

The first term converges to zero by the definition of the
sequence of measures µd. Consider the second term:∫

‖δ∆θd‖22 µ
j
d,∞(dθd, dθ∞) =

=

∫
(δ∆ad)

2 µjd,∞(dθd, dθ∞)+ (14)

+

∫
‖δ∆wd‖22 µ

j
d,∞(dθd, dθ∞).

Consider then the first term here:∫
(δ∆ad)

2 µjd,∞(dθd, dθ∞) =

=

∫ (
E x,y

(
∇fd` φ(wT

d x)−

−∇f∞` φ(wT
∞x)

))2

µjd,∞(dθd, dθ∞) =

=

∫
(E x,y(g(x, θd)h(x, y, µd)−

−g(x, θ∞)h(x, y, µ∞)))2 µjd,∞(dθd, dθ∞),

where we have defined

g(x, θ) = g(x, (a,w)) = φ(wTx),

h(x, y, µ) =
∂`(y, z)

∂z

∣∣∣∣
z=f [µ;x]

.

W.l.o.g. assume φ has a Lipschitz constant 1:
φ(·) ∈ Lip(R; 1). From this follows that g(x, ·) ∈
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Lip(R1+d0 ; ‖x‖2). It is easy to see that since
we consider measures supported on BR, f [·,x] ∈
Lip(M(B1+d0

R ); 2R‖x‖2) wrt the 2-Wasserstein metric. In-
deed,

|f [µd,x]− f [µ∞,x] =

=
∣∣∣∫ adφ(wT

d x)µ(dad, dwd)−

−
∫
a∞φ(wT

∞x)µ(da∞, dw∞)
∣∣∣ =

=
∣∣∣∫ (adφ(wT

d x)− a∞φ(wT
∞x))µ(dθd)µ(dθ∞)

∣∣∣ ≤
≤
∫
|adφ(wT

d x)− a∞φ(wT
∞x)|µ(dθd)µ(dθ∞) ≤

≤
∫

(|ad||φ(wT
d x)− φ(wT

∞x)|+

+|ad − a∞||φ(wT
∞x)|)µ(dθd)µ(dθ∞) ≤

≤ R‖x‖2
∫

(‖δwd‖2 + |δad|)µ(dθd)µ(dθ∞) ≤

≤ R‖x‖2

√∫
‖wd −w∞‖22 µ(dθd)µ(dθ∞) +

+R‖x‖2

√∫
|ad − a∞|2 µ(dθd)µ(dθ∞) ≤

≤ 2R‖x‖2W2(µd, µ∞),

where we have used Jensen’s inequality:
∫
‖θ‖2 µ(dθ) ≤√∫

‖θ‖22 µ(dθ) since µ is a probability measure.

W.l.o.g. ∂`/∂z ∈ Lip(R; 1) ∀y ∈ {0, 1}. Hence the latter
implies h(x, y, ·) ∈ Lip(M(B1+d0

R ); 2R‖x‖2).

Taking into account that w.l.o.g. ∂`/∂z and φ′ are bounded
by 1, we have:

|g(x, θd)h(x, y, µd)− g(x, θ∞)h(x, y, µ∞)| ≤
≤ |g(x, θd)− g(x, θ∞)|+

+R‖x‖2|h(x, y, µd)− h(x, y, µ∞)| ≤
≤ ‖x‖2‖θd − θ∞‖2 + 2R2‖x‖22W2(µd, µ∞).

From this follows:

(E x,y(g(x, θd)h(x, y, µd)− g(x, θ∞)h(x, y, µ∞)))2 ≤
≤ E x,y(g(x, θd)h(x, y, µd)− g(x, θ∞)h(x, y, µ∞))2 ≤
≤ E x,y‖x‖22‖θd − θ∞‖22 + 4R4E x,y‖x‖42W2

2 (µd, µ∞) +

+4R2E x,y‖x‖32‖θd − θ∞‖2W2(µd, µ∞).

Hence

lim
j→∞

∫
(E x,y(g(x, θd)h(x, y, µd)−

− g(x, θ∞)h(x, y, µ∞)))2 µjd,∞(dθd, dθ∞) ≤
≤ E x,y‖x‖22W2

2 (µd, µ∞)+4R4E x,y‖x‖42W2
2 (µd, µ∞)+

+ 4R2E x,y‖x‖32W2
2 (µd, µ∞) =

= E x,y(‖x‖2 + 2R2‖x‖22)2W2
2 (µd, µ∞).

We can apply the same logic to the second term of (14) to
get the same upper bound:∫

(δ∆wd)
2 µjd,∞(dθd, dθ∞) =

=

∫ (
E x,y

(
∇fd` adφ′(wT

d x) −

− ∇f∞` a∞φ′(wT
∞x)

))2

µjd,∞(dθd, dθ∞) ≤

≤ E x,y(‖x‖2 + 2R2‖x‖22)2W2
2 (µd, µ∞).

Applying this upper bound to equation (13), we finally get
the following:

lim
d→∞

W2
2 (T µd, T µ∞) ≤ lim

d→∞

(
W2

2 (µd, µ∞) +

+2E x,y(‖x‖2 + 2R2‖x‖22)2W2
2 (µd, µ∞) +

+4R
√

2E x,y(‖x‖2 + 2R2‖x‖22)2W2(µd, µ∞)
)

= 0,

where the last equality is valid, because by assumptions
x has finite moments up to the fourth one. Hence T µd
converges to T µ∞ wrt the 2-Wasserstein metric.

Summing up, we have proven that T is continuous wrt the
2-Wasserstein metric.

G. The mean-field limit is trivial for the case
of more than two hidden layers

Here we re-write the definition of a multi-layer net, as well
as the gradient descent step on scaled quantities:

f(x;a, V 1:H ,W ) =

d∑
rH=1

arHφ(fHrH (x;V 1:H ,W )),

where

fh+1
rh+1

(x;V 1:h+1,W ) =

d∑
rh=1

vh+1
rh+1rh

φ(fhrh(x;V 1:h,W )),

f0
r0(x,W ) = wT

r0x.
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The gradient descent step:

∆â(k)
rH = −η̂aσH+1E∇(k)

f ` φ(f̂H,(k)
rH (x)),

∆v̂H,(k)
rHrH−1

= −η̂vHσH+1E∇(k)
f ` â(k)

rH φ(f̂H−1,(k)
rH−1

(x)),

. . .

∆ŵ(k)
r0 = −η̂wσH+1E∇(k)

f `

d∑
rH=1

â(k)
rH φ

′(f̂H,(k)
rH (x))×

×
d∑

rH−1=1

v̂H,(k)
rHrH−1

φ′(f̂H−1,(k)
rH−1

(x))× . . .

. . .×
d∑

r1=1

v̂2,(k)
r2r1 φ

′(f̂1,(k)
r1 (x))v̂1,(k)

r1r0 φ
′(ŵ(k),T

r0 x)x.

â(0)
rH ∼ N (0, I), v̂h,(0)

rhrh−1
∼ N (0, I), ŵ(0)

r0 ∼ N (0, I),
(15)

where we have denoted f̂
h,(k)
rh (x) =

fhrh(x; V̂ (k),1:h, Ŵ (k)).

Similarly to the case of H = 0 (see Section 3), we consider
a power-law dependence on d for σ and learning rates, as
a result introducing qσ, q̃a, q̃vh and q̃w. In Section 4 we
have shown that for the mean-field limit we should have
qσ = −1, q̃a/w = 1 and q̃vh = 2.

We now show that for H ≥ 2 the mean-field limit is
trivial: limd→∞ f

(k)
d (x) = 0. Similarly to the case of

H = 0, we introduce weight increments δâ(k)
rH = â

(k)
rH−â

(0)
rH ,

δv̂
h,(k)
rhrh−1 = v̂

h,(k)
rhrh−1 − v̂

h,(0)
rhrh−1 and δŵ(k)

r0 = ŵ
(k)
r0 − ŵ

(0)
r0 ,

and assume a power-law dependence on d for them resulting
in the introduction of exponents q(k)

a , q(k)

vh
and q(k)

w .

Analogically to a single hidden layer case, we decompose
our f :

f
(k)
d (x) = f

(k)
d,∅ (x)+f

(k)
d,a (x)+

H∑
h=1

f
(k)

d,vh
(x)+f

(k)
d,w(x)+

+ . . .+ f
(k)

d,av1:Hw
(x), (16)

where the exact definition of each term can be derived from
its sub-index: e.g. f (k)

d,wa has δâ(k), δŵ(k) and v̂h,(0) ∀h ∈
[H] terms.

Introducing an exponent q for each term, we get:

q
(k)
f = max(q

(k)
f,∅, q

(k)
f,a, . . . , q

(k)

f,av1:Hw
), q

(0)
f = 2qσ + 1.

(17)
We write all of the terms of the decomposition for f in a
unified way. Let Θh be a subset of {a, v1:H , w} of size h.
Then:

q
(k)
f,Θh

= H(κ
(k)
Θh

+ qσ) +
∑
θ∈Θh

q
(k)
θ , (18)

where κ(k)
Θh
∈ [1/2, 1] comes from the same logic as in the

single hidden layer case. Since qσ = −1, if we show that
all q(k)

θ < 0 ∀k ≥ 1, then we conclude that all components
of decomposition (16) vanish.

Let us look on the gradient descent dynamics (15). It implies
the following equalities for k = 0:

q
(1)
a/w = q̃a/w + (H + 1)qσ +

H

2
= −H

2
, (19)

q
(1)

vh
= q̃vh + (H + 1)qσ +

H − 1

2
= −H − 1

2
,

which come from the fact that all â(0), v̂h,(0) and ŵ(0) are
independent and ∝ 1. Indeed, gradient updates for δâ and
δŵ have H sums each, and each sum scales as d1/2 (this
where the term H/2 comes from); at the same time gradient
updates for δv̂h have H − 1 sums each.

Due to the symmetry of the gradient step dynamics, q(1)
v1 =

. . . = q
(1)

vH
imply q(k)

v1 = . . . = q
(k)

vH
∀k ≥ 1. We shall

denote it with q(k)
v then.

Suppose H ≥ 2. We prove that q(k)
a/w ≤ q

(1)
a/w = −H/2

and q(k)
v ≤ q

(1)
v = (1 − H)/2 ∀k ≥ 1 by induction. The

induction base k = 1 is trivial. For the sake of illustration,
we first consider the induction step for qw:

q(k+1)
w ≤ max

(
q(k)
w , q̃w + (H + 1)qσ+

+ max

(
H

2
,
H + 1

2
+ q(k)

a ,
H + 1

2
+ q(k)

v ,

H + q(k)
a + q(k)

v , H + 2q(k)
v

))
≤

≤ max

(
−H

2
,−H

2
+ max

(
0,

1

2
+ q(k)

a ,
1

2
+ q(k)

v ,

H

2
+ q(k)

a + q(k)
v ,

H

2
+ 2q(k)

v

))
≤

≤ max

(
−H

2
,−H

2
+ max

(
0,

1−H
2

,
2−H

2
,

1−H
2

,
2−H

2

))
= −H

2
. (20)

All inequalities except the first come from the induction
hypothesis. We now demonstrate where the first inequality
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comes from. Recall that ‖δŵ(k+1)‖ ∝ dq(k+1)
w and

δŵ(k+1)
r0 = δŵ(k)

r0 −

− η̂wσH+1E∇(k)
f `

d∑
rH=1

(â(0)
rH + δâ(k)

rH )φ′(f̂H,(k)
rH (x))×

×
d∑

rH−1=1

(v̂H,(0)
rHrH−1

+ δv̂H,(k)
rHrH−1

)φ′(f̂H−1,(k)
rH−1

(x))× . . .

. . .×
d∑

r1=1

(v̂2,(0)
r2r1 + δv̂2,(k)

r2r1 )φ′(f̂1,(k)
r1 (x))×

× (v̂1,(0)
r1r0 + δv̂1,(k)

r1r0 )φ′((ŵ(0)
r0 + δŵ(k)

r0 )Tx)x. (21)

Here we have a product of H sums, by expanding which we
obtain a sum of 2H+1 products of sums in total; for example,
for H = 2 we have:

d∑
r2=1

(â(0)
r2 + δâ(k)

r2 )φ′(f̂2,(k)
r2 (x))×

×
d∑

r1=1

(v̂2,(0)
r2r1 + δv̂2,(k)

r2r1 )φ′(f̂1,(k)
r1 (x))×

× (v̂1,(0)
r1r0 + δv̂1,(k)

r1r0 )φ′((ŵ(0)
r0 + δŵ(k)

r0 )Tx)x =

=

d∑
r2=1

â(0)
r2 φ

′(. . .)

d∑
r1=1

v̂2,(0)
r2r1 φ

′(. . .)v̂1,(0)
r1r0 φ

′(. . .)x+

+

d∑
r2=1

δâ(k)
r2 φ

′(. . .)

d∑
r1=1

v̂2,(0)
r2r1 φ

′(. . .)v̂1,(0)
r1r0 φ

′(. . .)x+

+

d∑
r2=1

â(0)
r2 φ

′(. . .)

d∑
r1=1

δv̂2,(k)
r2r1 φ

′(. . .)v̂1,(0)
r1r0 φ

′(. . .)x+

+

d∑
r2=1

â(0)
r2 φ

′(. . .)

d∑
r1=1

v̂2,(0)
r2r1 φ

′(. . .)δv̂1,(k)
r1r0 φ

′(. . .)x + . . .

. . .+

d∑
r2=1

δâ(k)
r2 φ

′(. . .)

d∑
r1=1

δv̂2,(k)
r2r1 φ

′(. . .)δv̂1,(k)
r1r0 φ

′(. . .)x =

= Σ
(k)
d,∅ + Σ

(k)
d,a + Σ

(k)
d,v1 + Σ

(k)
d,v2+

+ Σ
(k)
d,v1v2 + Σ

(k)
d,v2a + Σ

(k)
d,av1 + Σ

(k)
d,av1v2 ,

where the notation we have introduced
is intuitive: for example, Σ

(k)
d,av1 =∑d

r2=1 δâ
(0)
r2 φ

′(. . .)
∑d
r1=1 v̂

2,(0)
r2r1 φ

′(. . .)δv̂
1,(k)
r1r0 φ

′(. . .)x.

If we assume power-law dependencies for all Σ-terms, i.e.

Σ
(k)
d,∅ ∝ d

q
(k)

Σ,∅ , Σ
(k)
d,a ∝ d

q
(k)
Σ,a and so on, using heuristic rules

mentioned in Section 3, from (21) we get the following:

q(k+1)
w = max(q(k)

w , q̃w + (H + 1)qσ+

+ max(q
(k)
Σ,∅, q

(k)
Σ,a, q

(k)
Σ,v1 , q

(k)
Σ,v2 , . . . , q

(k)
Σ,av1v2)).

First consider Σ
(k)
d,av1v2 . This term is a product of two sums

with d terms each. Since each sum cannot grow faster than
d, we get the following upper bound:

q
(k)
Σ,av1v2 ≤ q(k)

a + 2q(k)
v + 2.

Similar upper bounds hold for all other Σ-terms; in particu-
lar, we have:

q
(k)
Σ,v1v2 ≤ 2q(k)

v +2, max(q
(k)
Σ,v2a, q

(k)
Σ,av1) ≤ q(k)

a +q(k)
v +2.

For Σ
(k)
d,∅ we compute the corresponding exponent exactly:

q
(k)
Σ,∅ = 1. In this case both sums are the sums of asymp-

totically independent terms with zero mean. Indeed, we
have:

Σ
(k)
d,∅ =

d∑
r2=1

â(0)
r2 φ

′(f̂2,(k)
r2 (x))×

×
d∑

r1=1

v̂2,(0)
r2r1 φ

′(f̂1,(k)
r1 (x))v̂1,(0)

r1r0 φ
′((ŵ(0)

r0 + δŵ(k)
r0 )Tx)x ∼

∼
d∑

r2=1

â(0)
r2 φ

′(f̂2,(0)
r2 (x))×

×
d∑

r1=1

v̂2,(0)
r2r1 φ

′(f̂1,(0)
r1 (x))v̂1,(0)

r1r0 φ
′(ŵ(0),T

r0 x)x,

where the asymptotic equivalence takes place, because by
the induction hypothesis q(k)

a/w ≤ −H/2 < 0 and q(k)
v ≤

(1−H)/2 < 0.

Finally, let us consider ”linear” terms, i.e. Σ
(k)
d,a, Σ

(k)
d,v1 ,

Σ
(k)
d,v2 . We consider Σ

(k)
d,a for simplicity; two other terms can

be analysed in a similar manner. Here we have a similar
asymptotic relation as we had for Σ

(k)
d,∅:

Σ
(k)
d,a =

d∑
r2=1

δâ(k)
r2 φ

′(f̂2,(k)
r2 (x))×

×
d∑

r1=1

v̂2,(0)
r2r1 φ

′(f̂1,(k)
r1 (x))v̂1,(0)

r1r0 φ
′((ŵ(0)

r0 + δŵ(k)
r0 )Tx)x ∼

∼
d∑

r2=1

δâ(k)
r2 φ

′(f̂2,(0)
r2 (x))×

×
d∑

r1=1

v̂2,(0)
r2r1 φ

′(f̂1,(0)
r1 (x))v̂1,(0)

r1r0 φ
′(ŵ(0),T

r0 x)x.

Let us now recall the gradient step for δâ(k):

δâ(k)
r2 = δâ(k−1)

r2 − η̂aσ3E∇(k−1)
f ` ×

×φ

(
d∑

r1=1

(v̂2,(0)
r2r1 + δv̂2,(k−1)

r2r1 )φ(f̂1,(k−1)
r1 (x))

)
.
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Since by the induction hypothesis q(k−1)
v ≤ (1−H)/2 < 0,

δâ
(k)
r2 depends on v̂2,(0)

r2r1 , even as d → ∞. This means that
the sum over r2 in the definition of Σ

(k)
d,a above grows as d,

while the sum over r1 still grows as d1/2, as was the case
for Σ

(k)
d,∅. Hence

q
(k)
Σ,a/v1/v2 = q

(k)
a/v1/v2 + 3/2.

Finally, for H = 2 we get the following:

q(k+1)
w = max(q(k)

w , q̃w + (H + 1)qσ+

+ max(q
(k)
Σ,∅, q

(k)
Σ,a, q

(k)
Σ,v1 , q

(k)
Σ,v2 , . . . , q

(k)
Σ,av1v2)) ≤

≤ max(q(k)
w , q̃w+(H+1)qσ+max(1, q(k)

a +3/2, q(k)
v +3/2,

q(k)
a + q(k)

v + 2, 2q(k)
v + 2, q(k)

a + 2q(k)
v + 2)) =

= max(q(k)
w , q̃w + (H + 1)qσ+

+max(1, q(k)
a +3/2, q(k)

v +3/2, q(k)
a +q(k)

v +2, 2q(k)
v +2)),

where the last equality comes from the fact that q(k)
a/v/w < 0

by the induction hypothesis. Directly extending this tech-
nique to the case of H ≥ 2 results in the first inequality of
(20).

Applying the similar technique to qa and qv we get the
following:

q(k+1)
a ≤ max

(
q(k)
a , q̃a + (H + 1)qσ+

+ max

(
H

2
,
H + 1

2
+ q(k)

w ,
H + 1

2
+ q(k)

v ,

H + q(k)
w + q(k)

v , H + 2q(k)
v

))
≤

≤ max

(
−H

2
,−H

2
+ max

(
0,

1

2
+ q(k)

w ,
1

2
+ q(k)

v ,

H

2
+ q(k)

w + q(k)
v ,

H

2
+ 2q(k)

v

))
≤

≤ max

(
−H

2
,−H

2
+ max

(
0,

1−H
2

,
2−H

2
,

1−H
2

,
2−H

2

))
= −H

2
,

q(k+1)
v ≤ max

(
q(k)
v , q̃v + (H + 1)qσ+

+ max

(
H − 1

2
,
H

2
+ q(k)

a ,
H

2
+ q(k)

w ,
H

2
+ q(k)

v ,

H−1+q(k)
a +q(k)

w , H−1+q(k)
w +q(k)

v , H−1+q(k)
a +q(k)

v

))
≤

≤ max

(
1−H

2
,

1−H
2

+ max

(
0,

1

2
+ q(k)

a ,
1

2
+ q(k)

w ,

1

2
+ q(k)

v ,
H − 1

2
+ q(k)

a + q(k)
w ,

H − 1

2
+ q(k)

w + q(k)
v ,

H − 1

2
+ q(k)

a + q(k)
v

))
≤

≤ max

(
1−H

2
,

1−H
2

+ max

(
0,

1−H
2

,
1−H

2
,

2−H
2

,
−1−H

2
,−H

2
,−H

2

))
=

1−H
2

,

for all h ∈ [H]. The difference between qa/w and qv comes
from the fact that the gradient step for δv̂h has H − 1 sums
instead of H .

Summing up, we have proven by induction that ∀k ≥ 1

q
(k)
a/w ≤ q

(1)
a/w = −H/2 < 0 and q

(k)
v ≤ q

(1)
v = (1 −

H)/2 < 0. Hence due to (18), q(k)
f,Θh

< 0, hence all compo-

nents of decomposition (16) vanish and limd→∞ f
(k)
d = 0.

H. Comparing scalings for small learning
rates

As we have noted in Section 3, the MF limit provides the
most accurate approximation for a finite-width reference
network. However as we demonstrate here the NTK limit
becomes the most accurate approximation for a finite-width
reference network if learning rates are sufficiently small and
the number of training steps is fixed.

Figure 3 shows results for two different setups: training a
one hidden layer net with gradient descent for 50 epochs
with reference learning rates η∗a = η∗w = 0.02 (the same
setup as in Figure 1 of Section 3 of the main text) and the
same setup but with η∗a = η∗w = 0.0002. As one can see,
MF and intermediate limits do not preserve the variance of
the CE loss but the NTK limit does.

In Section 3 we have argued that the MF limit provides a
better approximation for a finite-width reference net, be-
cause all terms of decomposition (6) are preserved, however,
as we have previously observed in SM C, the term f

(k)
d,∅ is

not strictly preserved but approaches a non-zero constant
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for large d. As we observe in the right plot of the bottom
row, the width 216 = 65536 is not yet enough for f (k)

d,∅ to
reach its asymptotics for the MF limit if learning rates are
small: see blue solid curve. Nevertheless, for large learn-
ing rates (right plot of the top row) this term does reach its
asymptotics.

However one of the decomposition term vanishes for the
NTK limit but for the MF limit it does not: f (k)

d,aw. Let us
rewrite the definition of this term here:

f
(k)
d,aw(x) = σ

d∑
r=1

δâ(k)
r φ′(. . .)δŵ(k),T

r x.

This term depends quadratically on weight increments and
each weight increment is proportional to a corresponding
learning rate. Hence this term grows quadratically with
learning rates. By the same logic, terms f (k)

d,a and f (k)
d,w grow

linearly with learning rates and f
(k)
d,∅ has no polynomial

dependence on learning rates. This reasoning implies that
the term f

(k)
d,aw vanishes faster than others as learning rates

go to zero. Hence the effect of non-preserving this term
becomes negligible if learning rates are small. Because
of this, the advantage of the MF limit over the NTK limit
disappears for sufficiently small learning rates. This effect
is clearly shown in the right column of Figure 3. For large
learning rates (top row) the term f

(k)
d,aw is the second-largest

term in decomposition (6) of the reference network: see
a dash-dot curve, however it becomes negligible for one
hundred times smaller learning rates (bottom row).

I. Experiments for other setups
As was noted in Section A, in the present work we typi-
cally train a network using a full-batch gradient descent (or
RMSProp) for 50 epochs (or equivalently, training steps)
on a subset of CIFAR2 of size 1000. The reason for this
is that our theory is developed for binary classification, it
assumes exact gradient computations, and because training
up to convergence is not necessary for our framework.

In this section we experiment with modifications of our
usual setup: see Figure 4 for the case of a one hidden layer
net trained with the (stochastic) gradient descent. The top
row represents the usual case of the full-batch gradient de-
scent training for 50 epochs with unscaled reference learning
rates η∗a = η∗w = 0.02 applied to a subset of CIFAR2. For
the next row we set the batch size to 100, while keeping
the number of gradient updates. As we observe, applying
a stochastic gradient descent instead of the full-batch one
does not introduce any qualitative changes. For the third
row we take a full CIFAR2 (with training size being 10000
instead of 1000), while keeping the batch size to be 1000.
It is hard to spot any qualitative changes in this setup as
well. For the bottom row we increase the number of epochs

(training steps) by the factor of 10, while keeping the rest of
the options. In this case all plots change, which is expected
since 50 epochs of the original setup is not enough for con-
vergence of training procedure. As we observe in the center
column, in this case some of the terms of decomposition
(6) do not obey power-laws but converge to power-laws for
large d.

We also consider a multi-class classification instead of a bi-
nary one: see Figure 5. The top row corresponds to the usual
scenario of a binary classification on a subset of CIFAR2
of size 1000; it is given for the reference. The middle row
corresponds to the same scenario but on a subset of MNIST
of size 1000; MNIST has 10 classes instead of two. Com-
paring these two scenarios does not reveal any qualitative
changes.

The bottom row corresponds to the most realistic scenario
among the ones we have considered. Here we train a one
hidden layer network on a full MNIST dataset for 6000 gra-
dient steps using a mini-batch gradient descent with batches
of size 100. With this number of epochs the optimization
process nearly converges. As we see, for this scenario the
maximum width d = 216 = 65536 we were able to afford
was not enough to reach the asymptotic regime fully (center
column). This is the reason for discrepancies between nu-
merical estimates of exponents of decomposition (6) terms
and their theoretical values (right column).
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Figure 3. For small learning rates, the NTK limit approximates the reference finite-width network better than the MF limit. Top
row: scaling a reference network trained with gradient descent with (unscaled) learning rates η∗a = η∗w = 0.02. Bottom row: same with
unscaled learning rates η∗a = η∗w = 0.0002. Left: a final test cross-entropy (CE) loss as a function of width d. Center: test CE loss as a
function of training step k for a reference net and its limits. As one can see, MF and intermediate limits preserve mean CE loss but not its
variance with respect to the initialization. In contrast, the NTK limit does preserve the variance. Right: variance with respect to the data
distribution for terms of model decomposition (6) as a function of width d. When learning rates are small, f (k)

d,∅ , which contributes to

the variance, becomes the largest term in decomposition (6) and f (k)
d,aw, which vanishes in NTK and intermediate limits, becomes the

smallest. As we have noticed in Figure 2 for the MF limit f (k)

d,∅ is not exactly constant but decays approaching a constant for large d. This
is the reason for the MF limit not to preserve the variance of CE loss. Setup: We train a 1-hidden layer net on a subset of CIFAR2 (a
dataset of first two classes of CIFAR10) of size 1000 with gradient descent. We take a reference net of width d∗ = 27 = 128 and scale its
hyperparameters according to MF (blue curves), NTK (orange curves) and intermediate scalings with qσ = −3/4 (green curves, see text).
See SM A for further details.
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Figure 4. Applying a mini-batch instead of a full batch gradient descent does not introduce any qualitative changes. The same
holds for training on a larger dataset. Top row: scaling a reference network trained with a full-batch GD with (unscaled) learning rates
η∗a = η∗w = 0.02 for 50 gradient steps on a subset of CIFAR2 (a dataset of first two classes of CIFAR10) of size 1000. Second row: same
with a mini-batch GD with batches of size 100. Third row: same as the top row but on a full CIFAR2 (10000 training samples) with the
mini-batch GD with batches of size 1000. Bottom row: same as the top row but with 500 gradient steps. Left: a final test cross-entropy
(CE) loss as a function of width d. Center: variance with respect to the data distribution for terms of model decomposition (6) as a
function of width d. Right: numerical estimates for exponents of decomposition (6) terms, as well as their theoretical values (denoted by
red ticks). See SM A for further details.



Infinite-Width Limits of Neural Classifiers: Supplementary Material

Figure 5. Considering a multi-class classification instead of a binary one does not introduce any qualitative changes. Top row:
scaling a reference network trained with a full-batch GD with (unscaled) learning rates η∗a = η∗w = 0.02 for 50 gradient steps on a subset
of CIFAR2 (a dataset of first two classes of CIFAR10) of size 1000. Middle row: same for a subset of MNIST of size 1000. Bottom row:
scaling a reference network trained with SGD using batches of size 100 with (unscaled) learning rates η∗a = η∗w = 0.02 for 6000 gradient
steps on MNIST dataset. Left: a final test cross-entropy (CE) loss as a function of width d. Center: variance with respect to the data
distribution for terms of model decomposition (6) as a function of width d. Right: numerical estimates for exponents of decomposition (6)
terms, as well as their theoretical values (denoted by red ticks). See SM A for further details.


