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Abstract

We give the first superpolynomial lower bounds
for learning one-layer neural networks with re-
spect to the Gaussian distribution for a broad
class of algorithms. We prove that gradient de-
scent run on any classifier with respect to square
loss will fail to achieve small test error in poly-
nomial time. Prior work held only for gradi-
ent descent run with small batch sizes and suffi-
ciently smooth classifiers. For classification, we
give a stronger result, namely that any statisti-
cal query (SQ) algorithm (including gradient de-
scent) will fail to achieve small test error in poly-
nomial time. Our lower bounds hold for com-
monly used activations such as ReLU and sig-
moid. The core of our result relies on a novel
construction of a simple family of neural net-
works that are exactly orthogonal with respect to
all spherically symmetric distributions.

1. Introduction
A major challenge in the theory of deep learning is to un-
derstand when gradient descent can efficiently learn simple
families of neural networks. The associated optimization
problem is nonconvex and well known to be computation-
ally intractable in the worst case. For example, cyphertexts
from public-key cryptosystems can be encoded into a train-
ing set labeled by simple neural networks (Klivans & Sher-
stov, 2009), implying that the corresponding learning prob-
lem is as hard as breaking cryptographic primitives. These
hardness results, however, rely on discrete representations
and produce relatively unrealistic joint distributions.
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Our Results. In this paper we give the first superpolyno-
mial lower bounds for learning neural networks using gra-
dient descent in arguably the simplest possible setting: we
assume the marginal distribution is a spherical Gaussian,
the labels are noiseless and are exactly equal to the out-
put of a one-layer neural network (a linear combination of
say ReLU or sigmoid activations), and the goal is to output
a classifier whose test error (measured by square-loss) is
small. We prove—unconditionally—that gradient descent
fails to produce a classifier with small square-loss if it is
required to run in polynomial time in the dimension. Our
lower bound depends only on the algorithm used (gradient
descent) and not on the architecture of the underlying clas-
sifier. That is, our results imply that current popular heuris-
tics such as running gradient descent on an overparame-
terized network (for example, working in the NTK regime
(Jacot et al., 2018)) will require superpolynomial time to
achieve small test error.

Statistical Queries. We prove our lower bounds in the
now well-studied statistical query (SQ) model of (Kearns,
1998) that captures most learning algorithms used in
practice. For a loss function ` and a hypothesis hθ
parameterized by θ, the true population loss with re-
spect to joint distribution D on X × Y is given by
E(x,y)∼D[`(hθ(x), y)], and the gradient with respect to θ
is given by E(x,y)∼D[`′(hθ(x), y)∇θhθ(x)]. In the SQ
model, we specify a query function φ(x, y) and receive
an estimate of |E(x,y)∼D[φ(x, y)]| to within some tolerance
parameter τ . An important special class of queries are cor-
relational or inner-product queries, where the query func-
tion φ is defined only on X and we receive an estimate of
|E(x,y)∼D[φ(x) · y]| within some tolerance τ . It is not dif-
ficult to see that (1) the gradient of a population loss can
be approximated to within τ using statistical queries of tol-
erance τ and (2) for square-loss only inner-product queries
are required.

Since the convergence analysis of gradient descent holds
given sufficiently strong approximations of the gradient,
lower bounds for learning in the SQ model (Kearns, 1998;
Blum et al., 1994; Szörényi, 2009; Feldman, 2012; 2017)
directly imply unconditional lower bounds on the running
time for gradient descent to achieve small error. We give
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the first superpolynomial lower bounds for learning one-
layer networks with respect to any Gaussian distribution
for any SQ algorithm that uses inner product queries:

Theorem 1.1 (informal). Let C be a class of real-valued
concepts defined by one-layer single-output neural net-
works with input dimension n andm hidden units (ReLU or
sigmoid); i.e., functions of the form f(x) =

∑m
i=1 aiσ(wi ·

x). Then learning C under the standard GaussianN (0, In)
in the SQ model with inner-product queries requires
nΩ(logm) queries for any tolerance τ = n−Ω(logm).

In particular, this rules out any approach for learning one-
layer neural networks in polynomial-time that performs
gradient descent on any polynomial-size classifier with re-
spect to square-loss or logistic loss. For classification, we
obtain significantly stronger results and rule out general SQ
algorithms that run in polynomial-time (e.g., gradient de-
scent with respect to any polynomial-size classifier and any
polynomial-time computable loss). In this setting, our la-
bels are {±1} and correspond to the softmax of an unknown
one-layer neural network. We prove the following:

Theorem 1.2 (informal). Let C be a class of real-valued
concepts defined by a one-layer neural network in n di-
mensions with m hidden units (ReLU or sigmoid) feeding
into any odd, real-valued output node with range [−1, 1].
Let D′ be a distribution on Rn × {±1} such that the
marginal on Rn is the standard Gaussian N (0, In), and
E[Y |X] = c(X) for some c ∈ C. For some b, C > 0
and ε = Cm−b, outputting a classifier f : Rn → {±1}
with P(X,Y )∼D′ [f(X) 6= Y ] ≤ 1/2 − ε requires nΩ(logm)

statistical queries of tolerance n−Ω(logm).

The above lower bound for classification rules out the com-
monly used approach of training a polynomial-size, real-
valued neural network using gradient descent (with respect
to any polynomial-time computable loss) and then taking
the sign of the output of the resulting network.

Our techniques. At the core of all SQ lower bounds is
the construction of a family of functions that are pairwise
approximately orthogonal with respect to the underlying
marginal distribution. Typically, these constructions embed
2n parity functions over the discrete hypercube {−1, 1}n.
Since parity functions are perfectly orthogonal, the result-
ing lower bound can be quite strong. Here we wish to
give lower bounds for more natural families of distribu-
tions, namely Gaussians, and it is unclear how to embed
parity.

Instead, we use an alternate construction. For activation
functions φ, ψ : R→ R, define

fS(x) = ψ

 ∑
w∈{−1,1}k

χ(w)φ

(
w · xS√

k

) .

Enumerating over every S ⊆ [n] of size k gives a family
of functions of size nO(k). Here xS denotes the vector of
xi for i ∈ S (typically we choose k = logm to produce a
family of one-layer neural networks with m hidden units).
Each of the 2k = m inner weight vectors are all of unit
norm, and all of the m outer weights have absolute value
one. Note also that our construction uses activations with
zero bias term.

We give a complete characterization of the class of nonlin-
ear activations for which these functions are orthogonal. In
particular, the family is orthogonal for any activation with
a nonzero Hermite coefficient of degree k or higher.

Apart from showing orthogonality, we must also prove that
functions in these classes are nontrivial (i.e., are not expo-
nentially close to the constant zero function). This reduces
to proving certain lower bounds on the norms of one-layer
neural networks. The analysis requires tools from Hermite
and complex analysis.

SQ Lower Bounds for Real-Valued Functions. An-
other major challenge is that our function family is real-
valued as opposed to boolean. Given an orthogonal fam-
ily of (deterministic) boolean functions, it is straightfor-
ward to apply known results and obtain general SQ lower
bounds for learning with respect to 0/1 loss. For the case
of real-valued functions, the situation is considerably more
complicated. For example, the class of orthogonal Hermite
polynomials on n variables of degree d has size nO(d), yet
there is an SQ algorithm due to (Andoni et al., 2014) that
learns this class with respect to the Gaussian distribution in
time 2O(d). More recent work due to (Andoni et al., 2019)
shows that Hermite polynomials can be learned by an SQ
algorithm in time polynomial in n and log d.

As such, it is impossible to rule out general polynomial-
time SQ algorithms for learning real-valued functions
based solely on orthogonal function families. Fortunately,
it is not difficult to see that the SQ reductions due to
(Szörényi, 2009) hold in the real-valued setting as long as
the learning algorithm uses only inner-product queries (and
the norms of the functions are sufficiently large). Since per-
forming gradient descent with respect to square-loss or lo-
gistic loss can be implemented using inner-product queries,
we obtain our first set of desired results1.

Still, we would like rule out general SQ algorithms for
learning simple classes of neural networks. To that end,
we consider the classification problem for one-layer neu-
ral networks and output labels after performing a softmax
on a one-layer network. Concretely, consider a distribu-
tion on Rn × {−1, 1} where E[Y |X] = σ(c(X)) for some

1The algorithms of (Andoni et al., 2014) and (Andoni et al.,
2019) do not use inner-product queries.



Superpolynomial Lower Bounds for Learning One-Layer Neural Networks using Gradient Descent

c ∈ C and σ : R→ [−1, 1] (for example, σ could be tanh).
We describe two goals. The first is to estimate the con-
ditional mean function, i.e., output a classifier h such that
E[(h(x)− c(x))2] ≤ ε. The second is to directly minimize
classification loss, i.e., output a boolean classifier h such
that PX,Y∼D[h(X) 6= Y ] ≤ 1/2− ε.

We give superpolynomial lower bounds for both of these
problems in the general SQ model by making a new con-
nection to probabilistic concepts, a learning model due to
(Kearns & Schapire, 1994). Our key theorem gives a su-
perpolynomial SQ lower bound for the problem of distin-
guishing probabilistic concepts induced by our one-layer
neural networks from truly random labels. A final com-
plication we overcome is that we must prove orthogonality
and norm bounds on one-layer neural networks that have
been composed with a nonlinear activation (e.g., tanh).

SGD and Gradient Descent Plus Noise. It is easy to
see that our results also imply lower bounds for algorithms
where the learner adds noise to the estimate of the gradient
(e.g., Langevin dynamics). On the other hand, for technical
reasons, it is known that SGD is not a statistical query algo-
rithm (because it examines training points individually) and
does not fall into our framework. That said, recent work by
(Abbe & Sandon, 2020) shows that SGD is universal in the
sense that it can encode all polynomial-time learners. This
implies that proving unconditional lower bounds for SGD
would give a proof that P 6= NP. Thus, we cannot hope to
prove unconditional lower bounds on SGD (unless we can
prove P 6= NP).

Independent Work. Independently, Diakonikolas et al.
(Diakonikolas et al., 2020) have given stronger correla-
tional SQ lower bounds for the same class of functions
with respect to the Gaussian distribution. Their bounds are
exponential in the number of hidden units while ours are
quasipolynomial. We can plug in their result and obtain ex-
ponential general SQ lower bounds for the associated prob-
abilistic concept using our framework.

Related Work. There is a large literature of results prov-
ing hardness results (or unconditional lower bounds in
some cases) for learning various classes of neural networks
(Blum & Rivest, 1989; Vu, 1998; Klivans & Sherstov,
2009; Livni et al., 2014; Goel et al., 2017).

The most relevant prior work is due to (Song et al., 2017),
who addressed learning one-layer neural networks under
logconcave distributions using Lipschitz queries. Specifi-
cally, let n be the input dimension, and letm be the number
of hidden s-Lipschitz sigmoid units. For m = Õ(s

√
n),

they construct a family of neural networks such that any
learner using λ-Lipschitz queries with tolerance greater
than Ω(1/(s2n)) needs at least 2Ω(n)/(λs2) queries.

Roughly speaking, their lower bounds hold for λ-Lipschitz
queries due to the composition of their one-layer neural
networks with a δ-function in order make the family more
“boolean.” Because of their restriction on the tolerance pa-
rameter, they cannot rule out gradient descent with large
batch sizes. Further, the slope of the activations they re-
quire in their constructions scales inversely with the Lips-
chitz and tolerance parameters.

To contrast with (Song et al., 2017), note that our lower
bounds hold for any inverse-polynomial tolerance param-
eter (i.e., will hold for polynomially-large batch sizes), do
not require a Lipschitz constraint on the queries, and use
only standard 1-Lipschitz ReLU and/or sigmoid activations
(with zero bias) for the construction of the hard family. Our
lower bounds are typically quasipolynomial in the num-
ber of hidden units; improving this to an exponential lower
bound is an interesting open question. Both of our models
capture square-loss and logistic loss.

In terms of techniques, (Song et al., 2017) build an orthogo-
nal function family using univariate, periodic “wave” func-
tions. Our construction takes a different approach, adding
and subtracting activation functions with respect to over-
lapping “masks.” Finally, aside from the (black-box) use
of a theorem from complex analysis, our construction and
analysis are considerably simpler than the proof in (Song
et al., 2017).

A follow-up work (Vempala & Wilmes, 2019) gave SQ
lower bounds for learning classes of degree d orthogonal
polynomials in n variables with respect to the uniform dis-
tribution on the unit sphere (as opposed to Gaussians) using
inner product queries of bounded tolerance (roughly 1/nd).
To obtain superpolynomial lower bounds, each function
in the family requires superpolynomial description length
(their polynomials also take on very small values, 1/nd,
with high probability).

Shamir (Shamir, 2018) (see also the related work of
(Shalev-Shwartz et al., 2017)) proves hardness results (and
lower bounds) for learning neural networks using gradient
descent with respect to square-loss. His results are sepa-
rated into two categories: (1) hardness for learning “natu-
ral” target families (one layer ReLU networks) or (2) lower
bounds for “natural” input distributions (Gaussians). We
achieve lower bounds for learning problems with both nat-
ural target families and natural input distributions. Addi-
tionally, our lower bounds hold for any nonlinear activa-
tions (as opposed to just ReLUs) and for broader classes of
algorithms (SQ).

Recent work due to (Goel et al., 2019) gives hardness
results for learning a ReLU with respect to Gaussian
distributions. Their results require the learner to output
a single ReLU as its output hypothesis and require the
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learner to succeed in the agnostic model of learning.
(Klivans & Kothari, 2014) prove hardness results for
learning a threshold function with respect to Gaussian
distributions, but they also require the learner to succeed
in the agnostic model. Very recent work due to Daniely
and Vardi (Daniely & Vardi, 2020) gives hardness results
for learning randomly chosen two-layer networks. The
hard distributions in their case are not Gaussians, and they
require a nonlinear clipping output activation.

Positive Results. Many recent works give algorithms
for learning one-layer ReLU networks using gradient de-
scent with respect to Gaussians under various assumptions
(Zhong et al., 2017; Zhang et al., 2017; Brutzkus & Glober-
son, 2017; Zhang et al., 2019) or use tensor methods (Jan-
zamin et al., 2015; Ge et al., 2018). These results depend on
the hidden weight vectors being sufficiently orthogonal, or
the coefficients in the second layer being positive, or both.
Our lower bounds explain why these types of assumptions
are necessary.

2. Preliminaries
We use [n] to denote the set {1, . . . , n}, and S ⊆k T to
indicate that S is a k-element subset of T . We denote eu-
clidean inner products between vectors u and v by u · v.
We denote the element-wise product of vectors u and v by
u ◦ v, that is, u ◦ v is the vector (u1v1, . . . , unvn).

Let X be an arbitrary domain, and let D be a distribu-
tion on X . Given two functions f, g : X → R, we
define their L2 inner product with respect to D to be
〈f, g〉D = ED[fg]. The corresponding L2 norm is given
by ‖f‖D =

√
〈f, f〉D =

√
ED[f2].

A real-valued concept on Rn is a function c : Rn → R. We
denote the induced labeled distribution on Rn × R, i.e. the
distribution of (x, c(x)) for x ∼ D, by Dc. A probabilistic
concept, or p-concept, on X is a concept that maps each
point x to a random {±1}-valued label in such a way that
E[Y |X] = c(X) for a fixed function c : Rn → [−1, 1],
known as the conditional mean function. Given a distribu-
tion D on the domain, we abuse Dc to denote the induced
labeled distribution on X × {±1} such that the marginal
distribution on Rn is D and E[Y |X] = c(X) (equivalently
the label is +1 with probability 1+c(x)

2 and −1 otherwise).

The SQ model A statistical query is specified by a query
function h : Rd × Y → R. The SQ model allows ac-
cess to an SQ oracle that accepts a query h of specified
tolerance τ , and responds with a value in [Ex,y[h(x, y)] −
τ,Ex,y[h(x, y)] + τ ].2 To disallow arbitrary scaling, we

2In the SQ literature, this is referred to as the STAT oracle.
A variant called VSTAT is also sometimes used, known to be

will require that for each y, the function x 7→ h(x, y)
has norm at most 1. In the real-valued setting, a query h
is called a correlational or inner product query if it is of
the form h(x, y) = g(x) · y for some function g, so that
EDc

[h] = ED[gc] = 〈g, c〉D. Here we assume ‖g‖ ≤ 1
when stating lower bounds, again to disallow arbitrary scal-
ing.

Gradient descent with respect to squared loss is captured
by inner product queries, since the gradient is given by

Ex,y[∇θ(hθ(x)− y)2] = Ex,y[2(hθ(x)− y)∇θhθ(x)]

= 2Ex[hθ(x)∇θhθ(x)]

− 2Ex,y[y∇θhθ(x)].

Here the first term can be estimated directly using knowl-
edge of the distribution, while the latter is a vector each of
whose elements is an inner product query.

We now formally define the learning problems we consider.

Definition 2.1 (SQ learning of real-valued concepts using
inner product queries). Let C be a class of p-concepts over
a domain X , and let D be a distribution on X . We say that
a learner learns C with respect to D up to L2 error ε using
inner product quiers (equivalently squared loss ε2) if, given
only SQ oracle access to Dc for some unknown c ∈ C,
and using only inner product queries, it is able to output
c̃ : X → [−1, 1] such that ‖c− c̃‖D ≤ ε.

For the classification setting, we consider two different no-
tions of learning p-concepts. One is learning the target up
to small L2 error, to be thought of as a strong form of learn-
ing. The other, weaker form, is achieving a nontrivial inner
product (i.e. unnormalized correlation) with the target. We
prove lower bounds on both in order to capture different
learning goals.

Definition 2.2 (SQ learning of p-concepts). Let C be a class
of p-concepts over a domain X , and let D be a distribution
on X . We say that a learner learns C with respect to D
up to L2 error ε if, given only SQ oracle access to Dc for
some unknown c ∈ C, and using arbitrary queries, it is able
to output c̃ : X → [−1, 1] such that ‖c − c̃‖D ≤ ε. We
say that a learner weakly learns C with respect to D with
advantage ε if it is able to output c̃ : X → [−1, 1] such that
〈c̃, c〉D ≥ ε.

Note that the best achievable advantage is Ex∼D[|c(x)|],
achieved by c̃(x) = sign(c(x)). Note also that ‖c‖2D ≤
ED[|c|] ≤ ‖c‖D, and therefore a norm lower bound on
functions in C implies an upper bound on the achievable
advantage.

equivalent up to small polynomial factors (Feldman, 2017). While
it makes no substantive difference to our superpolynomial lower
bounds, our arguments can be extended to VSTAT as well.
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Remark 2.3 (Learning with L2 error implies weak learn-
ing). If the functions in our class satisfy a norm lower
bound, say ‖c‖2D ≥ (1 + α)ε2, then a simple calculation
shows that learning with L2 error ε implies weak learning
with advantage αε2/2.

Our definition of weak learning also captures the stan-
dard boolean sense of weak learning, in which the learner
is required to output a boolean hypothesis with 0/1 loss
bounded away from 1/2. Indeed, by an easy calculation,
the 0/1 loss of a function f : X → {±1} satisfies

P(x,y)∼Dc
[f(x) 6= y] =

1

2
− 〈c, f〉D

2
.

The difficulty of learning a concept class in the SQ model is
captured by a parameter known as the statistical dimension
of the class.

Definition 2.4 (Statistical dimension). Let C be a concept
class of either real-valued concepts or p-concepts (i.e. their
corresponding conditional mean functions) on a domainX ,
and let D be a distribution on X . The (un-normalized) cor-
relation of two concepts c, c′ ∈ C under D is |〈c, c′〉D|.3
The average correlation of C is defined to be

ρD(C) =
1

|C|2
∑
c,c′∈C

|〈c, c′〉D|.

The statistical dimension on average at threshold γ,
SDAD(C, γ), is the largest d such that for all C′ ⊆ C with
|C′| ≥ |C|/d, ρD(C′) ≤ γ.

Remark 2.5. For any general and large concept class C∗
(such as all one-layer neural nets), we may consider a spe-
cific subclass C ⊆ C∗ and prove lower bounds on learning
C in terms of the SDA of C. These lower bounds extend to
C∗ because if it is hard to learn a subset, then it is hard to
learn the whole class.

We will mainly be interested in the statistical dimension in
a setting where bounds on pairwise correlations are known.
In that case the following lemma holds.

Lemma 2.6 (adapted from (Feldman et al., 2017), Lemma
3.10). Suppose a concept class C has pairwise correlation
γ, i.e. |〈c, c′〉D| ≤ γ for c 6= c′ ∈ C, and squared norm
at most β, i.e. ‖c‖2D ≤ β for all c ∈ C. Then for any
γ′ > 0, SDAD(C, γ + γ′) ≥ |C| γ

′

β−γ . In particular, if C
is a class of orthogonal concepts (i.e. γ = 0) with squared
norm bounded by β, then SDA(C, γ′) ≥ |C|γ

′

β .
3In the p-concept setting, it is instructive to note that in the

notation of (Feldman et al., 2017), this correlation is precisely
the distributional correlation χD0(Dc, Dc′) of the induced la-
beled distributions Dc and Dc′ under the reference distribution
D0 = D ×Unif{±1}.

Proof. Let d = |C| γ
′

β−γ , and observe that for any subset

C′ ⊆ C satisfying |C′| ≥ |C|/d = β−γ
γ′ ,

ρD(C′) =
1

|C|2
∑
c,c′∈C

|〈c, c′〉D|

≤ 1

|C′|2
(|C′|β + (|C′|2 − |C′|)γ)

= γ +
β − γ
|C′|

= γ + γ′.

3. Orthogonal Family of Neural Networks
We consider neural networks with one hidden layer with
activation function φ : R → R, and with one output node
that has some activation functionψ : R→ R. If we take the
input dimension to be n and the number of hidden nodes to
bem, then such a neural network is a function f : Rn → R
given by

f(x) = ψ

(
m∑
i=1

aiφ(wi · x)

)
,

where wi ∈ Rn are the weights feeding into the ith hidden
node, and ai ∈ R are the weights feeding into the output
node. If ψ takes values in [−1, 1], we may also view f
as defining a p-concept in terms of its conditional mean
function.

For our construction, we need our functions to be orthog-
onal, and we need a lower bound on their norms. For the
first property we only need the distribution on the domain
to satisfy a relaxed kind of spherical symmetry that we term
sign-symmetry, which says that the distribution must look
identical on all orthants. To lower bound the norms, we
need to assume that the distribution is Gaussian N (0, I).

Assumption 3.1 (Sign-symmetry). For any z ∈ {±1}n
and x ∈ Rn, let x ◦ z denote (x1z1, . . . , xnzn). A distribu-
tion D on Rn is sign-symmetric if for any z ∈ {±1}n and
x drawn from D, x and x ◦ z have the same distribution D.

Assumption 3.2 (Odd outer activation). The outer activa-
tion ψ is an odd, increasing function, i.e. ψ(−x) = −ψ(x).

Note that ψ could be the identity function.

Assumption 3.3 (Inner activation). The inner activation
φ ∈ L2(N (0, I)).

The construction of our orthogonal family of neural net-
works is simple and exploits sign-symmetry.

Definition 3.4 (Family of Orthogonal Neural Networks).
Let the domain be Rn, let φ : R→ R be any well-behaved
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activation function, and let ψ : R→ R be any odd function.
For an index set S ⊆ [n], let xS ∈ R|S| denote the vector
of xi for i ∈ S. Fix any k > 0. For any sign-pattern z ∈
{±1}k, let χ(z) denote the parity

∏
i zi. For any index set

S ⊆k [n], define a one-layer neural network with m = 2k

hidden nodes,

gS(x) =
∑

w∈{−1,1}k
χ(w)φ

(
w · xS√

k

)
fS(x) = ψ (gS(x)) .

Our orthogonal family is

Corth(n, k) = {fS | S ⊆k [n]}.

Notice that the size of this family is
(
n
k

)
= nΘ(k) (for ap-

propriate k), which is nΘ(logm) in terms of m. We will
take k = Θ(log n), so that m = poly(n) and thus the neu-
ral networks are poly(n)-sized, and the size of the family
is nΘ(logn), i.e. quasipolynomial in n.

We now prove that our functions are orthogonal under any
sign-symmetric distribution.

Theorem 3.5. Let the domain be Rn, and let D be a sign-
symmetric distribution on Rn. Fix any k > 0. Then
〈fS , fT 〉D = 0 for any two distinct fS , fT ∈ Corth(n, k).

Proof. For the proof, the key property of our construction
that we will use is the following: for any sign-pattern z ∈
{±1}n and any x ∈ Rn,

fS(x ◦ z) = χS(z)fS(x), (1)

where χS(z) =
∏
i∈S zi = χ(zS) is the parity on S of z.

Indeed, observe first that

gS(x ◦ z) =
∑

w∈{−1,1}k
χ(w)φ

(
w · (x ◦ z)S√

k

)

=
∑

w∈{−1,1}k
χ(w)φ

(
(w ◦ zS) · xS√

k

)

=
∑

w∈{−1,1}k
χ(w ◦ zS)χ(zS)φ

(
(w ◦ zS) · xS√

k

)

= χ(zS)
∑

w∈{−1,1}k
χ(w)φ

(
w · xS√

k

)
(replacing w ◦ zS with w)

= χ(zS)gS(x).

The property then follows since ψ is odd and ψ(av) =
aψ(v) for any a ∈ {±1} and v ∈ R.

Consider fS and fT for any two distinct S, T ⊆k [n].
Recall that by the definition of sign-symmetry, for any

z ∈ {±1}n and x drawn from D, x and x ◦ z has the same
distribution. Using this and Eq. (1), we have

〈fS , fT 〉D = Ex∼D[fS(x)fT (x)]

= Ez∼{±1}n Ex∼D[fS(x ◦ z)fT (x ◦ z)]
(sign-symmetry)

= Ez∼{±1}n Ex∼D[χS(z)fS(x)χT (z)fT (x)]
(Eq. (1))

= Ex∼D
[
fS(x)fT (x) Ez∼{±1}nχS(z)χT (z)

]
= 0,

since Ez∼{±1}nχS(z)χT (z) = 0 for any two distinct pari-
ties χS , χT .

Remark 3.6. Our proof actually shows that any family of
functions satisfying Eq. (1) is an orthogonal family under
any sign-symmetric distribution.

We still need to establish that our functions are nonzero.
For this we need to specialize to the Gaussian distribution,
as well as consider specific activation functions (a simi-
lar analysis can in principle be carried out for other sign-
symmetric distributions). For any n and k, it follows from
Lemma A.1 that if the inner activation φ has a nonzero Her-
mite coefficient of degree k or higher, then the functions
in Corth(n, k) are nonzero. The sigmoid, ReLU and sign
functions all satisfy this property.

Corollary 3.7. Let the domain be Rn, and let D be any
sign-symmetric distribution on Rn. For any γ > 0,

SDAD(Corth(n, k), γ) ≥ |Corth(n, k)|γ =

(
n

k

)
γ.

Here we also assume that all c ∈ Corth(n, k) are nonzero
for our distribution D.

Proof. Follows from Theorem 3.5 and Lemma 2.6, using a
loose upper bound of 1 on the squared norm.

We also need to prove norm lower bounds on our func-
tions for our notions of learning to be meaningful. In Ap-
pendix A, we prove the following.

Theorem 3.8. Let the inner activation function φ be ReLU
or sigmoid, and let the outer activation function ψ be any
odd, increasing, continuous function. Let the underlying
distribution D be N (0, In). Then ‖fS‖ = Ω(e−Θ(k)),
where the hidden constants depend on ψ and φ, for any
fS ∈ Corth(n, k).

With this in hand, we now state our main SQ lower bounds.

Theorem 3.9. Let the input dimension be n, and let the
underlying distribution be N (0, In). Consider Corth(n, k)
instantiated with φ = ReLU or sigmoid and ψ any odd,
increasing function (including the identity function), and
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let m = 2k be the hidden layer size of each neural net.
Let A be an SQ learner using only inner product queries
of tolerance τ . For any k ∈ N, there exists τ = 1/n−Θ(k)

such that A requires at least nΩ(k) queries of tolerance τ
to learn Corth(n, k) with advantage 1/ exp(k).

In particular, there exist k = Θ(log n) and τ = 1/nΘ(logn)

such that A requires at least nΩ(logn) queries of tolerance
τ to learn Corth(n, k) with advantage 1/ poly(n). In this
case m = poly(n), so that each function in the family has
polynomial size. This is our main superpolynomial lower
bound.

Proof. The proof amounts to careful choices of the param-
eters ε, γ and τ in Corollary 3.7 and Corollary 4.6. Recall
that SDA(Corth(n, k), γ) ≥ nΘ(k)γ. We pick γ = n−Θ(k)

appropriately such that d = SDA(Corth(n, k), γ) is still
nΘ(k). Theorem 3.8 gives us a norm lower bound of
exp(−Θ(k)), allowing us to take ε = exp(−Θ(k)) and
τ =
√
γ = n−Θ(k) in Corollary 4.6.

4. SQ Lower Bounds
SQ Lower Bounds for Real-valued Functions Prior
work (Szörényi, 2009; Feldman, 2012) has already estab-
lished the following fundamental result, which we phrase
in terms of our definition of statistical dimension. For the
reader’s convenience, we include a proof in Appendix B.

Theorem 4.1. Let D be a distribution on X , and let C
be a real-valued concept class over a domain X such that
‖c‖D > ε for all c ∈ C. Consider any SQ learner that is al-
lowed to make only inner product queries to an SQ oracle
for the labeled distribution Dc for some unknown c ∈ C.
Let d = SDAD(C, γ). Then any such SQ learner needs
at least Ω(d) queries of tolerance

√
γ to learn C up to L2

error ε.

SQ Lower Bounds for p-concepts It turns out to be fruit-
ful to view our learning problem in terms of a decision
problem over distributions. We define the problem of dis-
tinguishing a valid labeled distribution from a randomly la-
beled one, and show a lower bound for this problem. We
then show that learning is at least as hard as distinguishing,
thereby extending the lower bound to learning as well. Our
analysis closely follows that of (Feldman et al., 2017).

Definition 4.2 (Distinguishing between labeled and uni-
formly random distributions). Let C be a class of p-
concepts over a domain X , and let D be a distribution on
X . Let D0 = Dc0 be the randomly labeled distribution
D ×Unif{±1}. Suppose we are given SQ access either to
a labeled distribution Dc for some c ∈ C such that c 6= c0
or to D0. The problem of distinguishing between labeled
and uniformly random distributions is to decide which.

Remark 4.3. Given access to Dc for some truly boolean
concept c : X → {±1}, it is easy to distinguish any other
boolean function c′ from c since ‖c− c′‖2D = 2− 2〈c, c′〉D
(which is information-theoretically optimal as a distin-
guishing criterion) can be computed using a single inner
product query. However, if c and c′ are p-concepts, ‖c‖D
and ‖c′‖D are not 1 in general and may be difficult to es-
timate. It is not obvious how best to distinguish the two,
short of directly learning the target.

Considering the distinguishing problem is useful because
if we can show that distinguishing itself is hard, then any
reasonable notion of learning will be hard as well, includ-
ing weak learning. We give simple reductions for both our
notions of learning.

Lemma 4.4 (Learning is as hard as distinguishing). Let
D be a distribution over the domain X , and let C be a p-
concept class over X . Suppose there exists either

(a) a weak SQ learner capable of learning C up to advan-
tage ε using q queries of tolerance τ , where τ ≤ ε/2; or,

(b) an SQ learner capable of learning C (assume ‖c‖D ≥
3ε for all c ∈ C) up to L2 error ε using q queries of tol-
erance τ , where τ ≤ ε2. Then there exists a distinguisher
that is able to distinguish between an unknown Dc and D0

using at most q + 1 queries of tolerance τ .

Proof. (a) Run the weak learner to obtain c̃. If c 6= c0,
we know that 〈c̃, c〉D ≥ ε, whereas if c = c0, then
〈c̃, c〉D = 0 no matter what c̃ is. A single additional query
(h(x, y) = c̃(x)y) of tolerance ε/2 distinguishes between
the two cases.

(b) Run the learner to obtain c̃. If c 6= c0, i.e. ‖c‖D ≥
3ε, we know that ‖c̃ − c‖D ≤ ε, so that by the triangle
inequality, ‖c̃‖D ≥ ‖c‖D − ‖c̃− c‖D ≥ 2ε. But if c = c0,
then ‖c̃‖D ≤ ε. An additional query (h(x, y) = c̃(x)2) of
tolerance ε2 suffices to distinguish the two cases.

We now prove the main lower bound on distinguishing.

Theorem 4.5. Let D be a distribution over the domain
X , and let C be a p-concept class over X . Then any SQ
algorithm needs at least d = SDA(C, γ) queries of toler-
ance

√
γ to distinguish betweenDc andD0 for an unknown

c ∈ C. (We will consider deterministic SQ algorithms that
always succeed, for simplicity.)

Proof. Consider any successful SQ algorithm A. Con-
sider the adversarial strategy where to every query h :
X × {−1, 1} → [−1, 1] of A (with tolerance τ =

√
γ),

we respond with ED0
[h]. We can pretend that this is a

valid answer with respect to any c ∈ C such that |EDc [h]−
ED0 [h]| ≤ τ . Our argument will be based on showing that
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each such query rules out fairly few distributions, so that
the number of queries required in total is large.

Since we assumed that A is a deterministic algorithm that
always succeeds, it eventually correctly guesses that it is
D0 that it is getting answers from. Say it takes q queries to
do so. For the kth query hk, let Sk be the set of concepts in
C that are ruled out by our response ED0

[hk]:

Sk = {c ∈ C | |EDc [h]− ED0 [h]| > τ}.

We’ll show that

(a) on the one hand, ∪qk=1Sk = C, so that
∑q
k=1 |Sk| ≥ |C|,

(b) while on the other, |Sk| ≤ |C|/d for every k. Together,
this will mean that q ≥ d.

For the first claim, suppose ∪qk=1Sk were not all of C, and
indeed say c ∈ C \ (∪qk=1Sk). This is a distribution that our
answers were consistent with throughout, yet one that A’s
solution (D0) is incorrect for. But A always succeeds, so
for it not to have ruled out this Dc is impossible.

For the second claim, suppose for the sake of contradic-
tion that for some k, |Sk| > |C|/d. By Definition 2.4,
this means we know that ρD(Sk) ≤ γ. One of the key
insights in the proof of (Szörényi, 2009) is that by ex-
pressing query expectations entirely in terms of inner prod-
ucts, we gain the ability to apply simple algebraic tech-
niques. To this end, for any query function h, let ĥ(x) =
(h(x, 1)− h(x,−1))/2. Observe that for any p-concept c,

〈ĥ, c〉D = Ex∼D
[
h(x, 1)

c(x)

2

]
− Ex∼D

[
h(x,−1)

c(x)

2

]
= Ex∼D

[
h(x, 1)

1 + c(x)

2

]
+ Ex∼D

[
h(x,−1)

1− c(x)

2

]
− Ex∼D

[
h(x, 1)

1

2

]
− Ex∼D

[
h(x,−1)

1

2

]
= EDc

[h]− ED0
[h],

the difference between the query expectations wrt Dc and
D0. Here we have expanded each EDc

[h] using the fact that
the label for x is 1 with probability (1 + c(x))/2 and −1

otherwise. Thus |〈ĥk, c〉D|, where hk is the kth query, is
greater than τ for any c ∈ Sk, since Sk are precisely those
concepts ruled out by our response. We will show contra-
dictory upper and lower bounds on the following quantity:

Φ =

〈
ĥk,

∑
c∈Sk

c · sign(〈ĥk, c〉D)

〉
D

.

Note that since every query h satisfies ‖h(·, y)‖D ≤ 1 for
all y, it follows by the triangle inequality that ‖ĥ‖D ≤ 1.

So by Cauchy-Schwarz and our observation that ρD(Sk) ≤
γ,

Φ2 ≤ ‖ĥk‖2D ·

∥∥∥∥∥∑
c∈Sk

c · sign(〈ĥk, c〉)

∥∥∥∥∥
2

D

≤
∑

c,c′∈Sk

|〈c, c′〉D| = |Sk|2ρD(Sk) ≤ |Sk|2γ.

However since |〈ĥk, c〉D| > τ , we also have that Φ =∑
c∈Sk

|〈ĥk, c〉D| > |Sk|τ. Since τ =
√
γ, this contradicts

our upper bound and in turn completes the proof of our
second claim. And as noted earlier, the two claims together
imply that q ≥ d.

The final lower bounds on learning thus obtained are stated
as a corollary for convenience. The proof follows directly
from Lemma 4.4 and Theorem 4.5.
Corollary 4.6. LetD be a distribution over the domainX ,
and let C be a p-concept class overX . Let γ, τ be such that√
γ ≤ τ . Let d = SDA(C, γ).

(a) Let ε be such that τ ≤ ε2, and assume ‖c‖D ≥ 3ε for
all c ∈ C. Then any SQ learner learning C up to L2 error ε
requires at least d− 1 queries of tolerance τ .

(b) Let ε be such that τ ≤ ε/2. Then any weak SQ learner
learning C up to advantage ε requires at least d−1 queries
of tolerance τ .

5. Experiments
We include experiments for both regression and classifi-
cation. We train an overparameterized neural network on
data from our function class, using gradient descent. We
find that we are able to achieve close to zero training error,
while test error remains high. This is consistent with our
lower bound for these classes of functions.

For classification, we use a training set of size T of data
corresponding to f ∈ Corth(n, k) instantiated with φ =
tanh and ψ = tanh. We draw x ∼ N (0, In). For each
x, y is picked randomly from {±1} in such a way that
E[y|x] = f(x). Since the outer activation ψ is tanh, this
can be thought of as applying a softmax to the network’s
output, or as the Boolean label corresponding to a logit
output. We train a sum of tanh network (i.e. a network in
which the inner activation is tanh and no outer activation
is applied) on this data using gradient descent on squared
loss, threshold the output, and plot the resulting 0/1 loss.
See Fig. 1(a). This setup models a common way in which
neural networks are trained for classification problems in
practice.

For regression, we use a training set of size T of data cor-
responding to f ∈ Corth(n, k) instantiated with φ = tanh
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(a) Learning a softmax of a one-layer tanh network

(b) Learning a linear combination of tanhs

Figure 1. In (a) the target function is a softmax (±1 labels) of a
sum of 27 tanh activations with n = 14; in (b) the labels are
obtained similarly but without the softmax. In both cases, we
train a 1-layer neural network with 5 · 27 = 640 tanh units (hence
10241 parameters) using a training set of size 6000 and a test set
of size 1000, with the learning rate set to 0.01. For (a) we take the
sign of this trained network and measure its training and testing
0/1 loss; for (b) we measure the train and test square-loss of the
learned network directly. In (a) we also plot the test error of the
bayes optimal network (sign of the target function).

and ψ being the identity. We draw x ∼ N (0, In), and
y = f(x). We train a sum of tanh network on this data
using gradient descent on squared loss, which we plot in
Fig. 1(b). This setup models the natural way of using neu-
ral networks for regression problems.

In both cases, we train neural networks whose number of
parameters considerably exceeds the amount of training
data. In all our experiments, we plot the median over 10
trials and shade the inter-quartile range of the data.

Similar results hold with the inner activation φ being ReLU
instead of tanh, and are included in the supplementary ma-
terial.
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