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A. Bounding the function norms under the
Gaussian

Our goal in this section will be to give lower bounds on
the norms of the functions in Corth(n, k), which is a tech-
nical requirement for our results to hold (see Lemma 4.4
and Corollary 4.6). Note that when learning with respect
to L2 error, such a lower bound is necessary if we wish to
state SQ lower bounds, since if the target had small norm,
say ‖f‖D ≤ ε, then the zero function trivially achieves L2

error ε.

All inner products and norms in this section will be with
respect to the standard Gaussian, N (0, I). Since we will
fix S throughout, for our purposes the only relevant part
of the input is xS and so we drop the subscripts and let
g = gS , f = fS and x = xS , so that g and f are functions
of x ∈ Rk. Our approach will be as follows. In order to
prove a norm lower bound on f , we will prove an anticon-
centration result for g. To this end we first calculate the
second moment of g in terms of the Hermite coefficients of
φ.

Lemma A.1. Under the distributionN (0, In), let the Her-
mite representation of φ be φ(x) =

∑∞
i=0 φ̂iH̃i(x), where

H̃i(x) is the ith normalized probabilists’ Hermite polyno-
mial. Then
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Proof. We use E in this proof instead of Ex∼N (0,In) for
simplicity. Then we have
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Since x ∼ N (0, Ik), 〈α,xS〉√
k

and 〈β,xS〉√
k

are both standard

Gaussian and have correlation 〈α,β〉k , we then apply the fol-
lowing well-known property of the Hermite polynomials.
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where δi,j is the Dirac delta function.
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where wi = αiβi and θi = wiαi. Note that Assump-

tion 3.3 implies that
∑∞
i=0 φ̂i

2
< ∞ , the series above is

absolute convergent. Then,
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since we consider all distinct monomials in
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Note that

∑
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(
i
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)
is always non-negative

and is positive iff i ≥ k and i ≡ k (mod 2).

A.1. ReLU Activation

The goal of this section is to give a lower-bound of ‖f‖
for φ = ReLU under the standard Gaussian distribution
N (0, I). To this end, we prove an anti-concentration for g.
We first give a lower bound on ‖g‖ based on the Hermite
coefficients of φ. If g were bounded, this alone would im-
ply anti-concentration as in Appendix A.2. But since it is
not, we first introduce gT , where all activations are trun-
cated at some T . We pick T large enough that g and gT

behave almost identically over N (0, I). We then show a
lower bound on

∥∥gT∥∥, translate that into an anticoncentra-
tion result for gT , and finally into one for g.

Let T > 0 be some constant to be determined later. Let

ReLUT (x) = min(ReLU(x), T )

and

gT (x) =
∑
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χ(w) ReLUT

(
x · w√
k

)
.

The following lemma from (Goel et al., 2019) describes the
Hermite coefficients of ReLU.

Lemma A.2.

ReLU(x) =

∞∑
i=0

ciH̃i(x)
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2π
, c1 =
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2
,
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H2i(0) + 2iH2i−2(0)√

2π(2i)!
for i ≥ 2.

In particular, c22i = Θ(i−2.5).

We can now derive a lower bound on the norm of g.

Lemma A.3. When k is even,
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Proof. Due to Lemma A.1,
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The lemma then follows by the Stirling’s approximation,

n! ≥
√

2πn
(n
e

)n
.

and the bound on the Hermite coefficients,

c2k = Θ(k−2.5).

For the difference of g(x) and gT (x), we have

Lemma A.4.
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Proof. Let ReLUw(x) be shorthand for ReLU(x · w√
k

), and

similarly ReLUT
w. Observe that by the triangle inequality,
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where the last equality holds because for any unit vector v
and x ∼ N (0, I), x · v has the distribution N (0, 1). Now,
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∥∥2

N (0,1)
=

∫ ∞
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(x− T )2 p(x) dx,

where p(x) is the probability density function of N (0, 1).
Note that p′(x) = −xp(x). We have∫ ∞

T
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T

−x d(p(x))
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= −x p(x)
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Lemma A.5.
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2 .
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The lemma follows by a union bound.

Lemma A.6.

P [|g(x)| ≥ 1] = Ω(exp(−Θ(k))).

Proof. For large enough T = Ω(k), it holds from Lem-
mas A.3 and A.4 that∥∥gT∥∥ = Ω
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.
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Coupled with Lemma A.5, this means

P [|g(x)| ≥ 1] = Ω(exp(−Θ(k)))

for large enough T = Ω(k).

The lower bound on ‖f‖ now follows easily.

Corollary A.7.

‖f‖ = Ω(exp(−Θ(k))).

Proof. Since f = ψ ◦ g, from Lemma A.6 and the fact that
ψ is odd and increasing, we have that

‖f‖ ≥ |ψ(1)| P[g(x) ≥ 1] + |ψ(−1)| P[g(x) ≥ 1]

= ψ(1) P[|g(x)| ≥ 1]

= Ω(exp(−Θ(k))).

A.2. Sigmoid Activation

Here we consider g and f with φ(x) = σ(x) = 1
1+e−x . For

the asymptotic bound of Hermite polynomial coefficients,
we need the following theorem from (Boyd, 1984).

Theorem A.8. For a function f(z) whose convergence is
limited by simple poles at the roots of z2 = −γ2 with
residueR, the non-zero expansion coefficients {an} of f(z)
as a series of normalized Hermite functions have magni-
tudes asymptotically given by

|an| ∼ 2
5
4 π

1
2 Rn−

1
4 e−γ(2n+1)

1
2 ,

Here the normalized Hermite function {ψn(x)}n∈N is de-
fined by

ψn(z) = e−
z2

2 π−
1
4 H̃n(

√
2z).

Applying this to f(x) = e−
x2

2 σ(
√

2x) and translating the
Hermite coefficients for the series in terms of Hermite func-
tions to those in terms of Hermite polynomials, we have

Lemma A.9.

σ(x) =

∞∑
i=0

ciH̃i(x),

where c0 = 0.5, c2i = 0 for i ≥ 1 and all non-zero odd
terms satisfies

c2i−1 = e−Θ(
√
i).

Corollary A.10. There is an infinite increasing sequence
{ki}i∈N such that ki’s are all odd and

cki = e−Θ(
√
ki).

Proof. It follows simply from the fact that σ is not a poly-
nomial and there should be infinitely many non-zero terms
in {ck}k∈N.

Remark A.11. Experimental evidence strongly indicates
that in fact all odd Hermite coefficients of sigmoid are
nonzero and decay as above, but this is laborious to for-
mally establish. So we state our norm lower bound only
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for k ∈ {ki}i∈N (and the associated n ∈ {2ki}i∈N, since
we end up taking k = log n). Since this is nevertheless an
infinite sequence, it still establishes that no better asymp-
totic bound holds.

Similar to Lemma A.3, we can derive a lower bound of ‖g‖
for some k’s.

Lemma A.12. For k ∈ {ki}i∈N,
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Lemma A.13. For k ∈ {ki}i∈N,

P (|g(x)| ≥ 1) = Ω(exp(−Θ(k))).

Proof. Since |g(x)| ≤ 2k,

‖g‖2 = E[g(x)2] ≤ 1·P[|g(x)| ≤ 1]+(2k)2·P[|g(x)| ≥ 1],

and so
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.

The lemma then follows.

Using the same argument as Corollary A.7, we have the
following bound.

Corollary A.14.

‖f‖ = Ω(exp(−Θ(k))).

A.3. General activations

It is not hard to see that the norm analysis of ReLU and sig-
moid extends to any activation function for which a suitable
lower bound on the Hermite coefficients holds, and which
is either bounded or grows at a polynomial rate, so that un-
der the standard Gaussian it behaves essentially identically
to its truncated form. In particular, a lower bound of α−j

for any constant α < 4/e on the jth Hermite coefficient
suffices to give ‖g‖ ≥ exp(Θ(k)), by the same argument
as in Lemma A.3 and Lemma A.12. This then suffices to
give ‖f‖ ≥ exp(−Θ(k)), as above.

In fact, even a very weak lower bound on ‖f‖ yields some
superpolynomial bound on learning. Suppose we only had
‖f‖ ≥ 1/ exp(exp(Θ(k))), for instance. Then we can take
k = log log n and have ‖f‖ ≥ 1/ poly(n) and still ob-
tain a lower bound of nlog logn = nω(1) (see Theorem 3.9).
Any lower bound on ‖f‖ will be a function only of k, so a
similar argument applies.

B. SQ lower bound for real-valued functions
proof

We give a self-contained variant of the elegant proof of
(Szörényi, 2009) for the reader’s convenience. For simplic-
ity, we include the 0 function in our class C— this can only
negligibly change the SDA, and it makes the core argument
cleaner.

Theorem B.1. Let D be a distribution on X , and let C
be a real-valued concept class over a domain X such that
0 ∈ C, and ‖c‖D > ε for all c ∈ C, c 6= 0. Consider any SQ
learner that is allowed to make only inner product queries
to an SQ oracle for the labeled distribution Dc for some
unknown c ∈ C. Let d = SDAD(C, γ). Then any such SQ
learner needs at least d/2 queries of tolerance

√
γ to learn

C up to L2 error ε.

Proof. Consider the adversarial strategy where we respond
to every query h : X → R (‖h‖D ≤ 1) with 0. This
corresponds to the true expectation if the target were the 0
function. By the norm lower bound, outputting any other
c would then mean L2 error greater than ε. Thus we must
rule out all other c ∈ C.

If hk is the kth query, let Sk = {c ∈ C | 〈c, hk〉D > τ}
be the functions ruled out by our response of 0. Let Φ =
〈hk,

∑
c∈Sk

c〉D. Take τ =
√
γ, and we claim that |Sk| ≥
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|C| /d. Suppose not, then ρD(Sk) ≤ γ by Definition 2.4.

Φ ≤ ‖hk‖D

∥∥∥∥∥∑
c∈Sk

c

∥∥∥∥∥
D

≤
√ ∑
c,c′∈Sk

〈c, c′〉D

=

√
|Sk|2 ρD(Sk)

≤ √γ|Sk|,

contradicting the fact that Φ > |Sk|τ by definition of Sk.

A similar argument holds for S′k = {c ∈ C | 〈c, hk〉D <
−τ}. Thus we rule out at most a 2/d fraction of functions
with each query and hence need at least d/2 queries.

C. Further experiments
Fig. 1 shows further experiments conducted exactly as in
the Experiments section of the main paper, but with the
inner activation functions being ReLU instead of tanh.
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(a) Learning a softmax of a one-layer ReLU network

(b) Learning a linear combination of ReLUs

Figure 1. In (a) the target function is a softmax (±1 labels) of a
sum of 28 ReLU activations with n = 14; in (b) the labels are
obtained similarly but without the softmax. In both cases, we
train a 1-layer neural network with 5 · 28 = 1280 ReLU units
(hence 20481 parameters) using a training set of size 6000 and
a test set of size 1000, withe the learning rate set to 0.005 for
classification and 0.002 for regression. For (a) we take the sign of
this trained network and measure its training and testing 0/1 loss;
for (b) we measure the train and test square loss of the learned
network directly. In (a) we also plot the test error of the bayes
optimal network (sign of the target function).


