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Abstract

This work considers the canonical polyadic de-
composition (CPD) of tensors using proximally
regularized sketched alternating least squares al-
gorithms. First, it establishes a sublinear rate of
convergence for proximally regularized sketched
CPD algorithms under two natural conditions that
are known to be satisfied by many popular forms
of sketching. Second, it demonstrates that the iter-
ative nature of CPD algorithms can be exploited
algorithmically to choose more performant sketch-
ing rates. This is accomplished by introducing
CPD-MWU, a proximally-regularized sketched
alternating least squares algorithm that adaptively
selects the sketching rate at each iteration. On
both synthetic and real data we observe that for
noisy tensors CPD-MWU produces decomposi-
tions of comparable accuracy to the standard CPD
decomposition in less time, often half the time; for
ill-conditioned tensors, given the same time bud-
get, CPD-MWU produces decompositions with
an order-of-magnitude lower relative error. For
a representative real-world dataset CPD-MWU
produces residual errors on average 20% lower
than CPRAND-MIX and 44% lower than SPALS,
two recent sketched CPD algorithms.

1. Introduction
Tensors of ever larger sizes appear with growing frequency
in many applications including data mining (Papalexakis
et al., 2017), signal processing (Cichocki et al., 2015), video
analysis (Sobral et al., 2015), and more (Fanaee-T & Gama,
2016). Many of these applications use low-rank decomposi-
tions as a fundamental primitive in extracting latent factors
from these tensorial datasets. A recent body of work from
the machine learning, data mining, and applied mathematics
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communities has arisen that attempts to increase the scala-
bility of tensor decomposition algorithms to match the scale
of modern datasets.

There are multiple, inequivalent forms of low-rank ten-
sor decompositions. In this work, we focus on the CAN-
DECOMP/PARAFAC/canonical polyadic decomposition
(CPD) (Bro, 1997), a generalization of the matrix singu-
lar value decomposition that uncovers a small set of latent
factors describing each mode, or independent dimension,
of the tensor. A CPD comprises a collection of latent fac-
tor matrices, one for each mode. Given the three-mode
tensor X ∈ RI×J×K , we denote its factor matrices by
A ∈ RI×R,B ∈ RJ×R, and C ∈ RK×R. The correspond-
ing rank-R CPD decomposition is (Kolda & Bader, 2009)

X =
R∑
i=1

ai ◦ bi ◦ ci + E := JA,B,CK + E, (1)

where ◦ denotes the vector outer product, ai,bi and ci are
columns of the factor matrices, and E denotes the residual
error. The factor matrices are obtained by minimizing the
reconstruction error

min
A,B,C

‖X − JA,B,CK‖2F , (2)

where ‖X‖F = ijk x
2
ijk is the Frobenius norm of X .

This is a difficult optimization problem both because X is
often large, and because the problem is non-convex. Attrac-
tive algorithms for CPD decomposition are computationally
efficient and converge to critical points of the CPD objective.

The alternating least squares algorithm (ALS) is the stan-
dard workhorse algorithm for computing CP decomposi-
tions (Kolda & Bader, 2009). CPD-ALS uses an alternating
minimization approach that updates one factor matrix to
minimize the objective while fixing all the others. Each
update requires the solution of a large least squares prob-
lem: if the tensor has size n× n× n, then the cost of each
iteration is O(n3R). One popular and empirically effective
technique for accelerating CPD-ALS is the application of
randomization: by using a randomly selected subset of the
constraints of the linear systems at each iteration, i.e. by
sketching the linear systems, the computational cost of the
optimization can be greatly decreased. Both the choice of
the sampling distribution and the fraction of the constraints

√∑



Adaptive Sketching for Fast and Convergent Canonical Polyadic Decomposition

that are sampled, a.k.a. the sketching rate, are crucial to the
empirical performance of sketching-based algorithms.

Several approaches to accelerate the decomposition of large
tensors have used different forms of sketching (Battaglino
et al., 2018; Cheng et al., 2016; Sidiropoulos et al., 2014;
Tsourakakis, 2010) and recent research has demonstrated
that regularization synergises with sketching to further ac-
celerate CPD (Aggour et al., 2018) on large, dense tensors.
This line of works demonstrates empirically that if cru-
cial hyperparameters such as the sketching rate are chosen
appropriately, then accurate decompositions are obtained
efficiently. Despite the promising empirical results, little is
guaranteed about the performance of these algorithms. Do
they converge? Does the error decrease between iterations?
The answers to these questions are largely unknown. Also
their performance is sensitive to the choice of these param-
eters and the optimal choices vary significantly between
tensors (Aggour et al., 2018).

In this work, we focus on sketched CPD-ALS algorithms in
particular, for which no prior works address the important
question of hyperparameter selection, and no prior works
establish that these algorithms converge or even that the
approximation error decreases. This work addresses both of
these questions; the main contributions are summarized as
follows.

1. We provide the most complete theory available in the
sketched CPD-ALS literature. Theorem 1 states intu-
itive conditions under which the objective is guaranteed
to decrease between iterations of sketched ALS, and is
leveraged in Theorem 2 to provide the first guarantee
on the convergence of sketched CPD-ALS. It quantifies
an analog of the phenomenon that one sees with SGD—
that one must increase the accuracy of the gradient
estimate in order to guarantee convergence—and iden-
tifies exactly what should be preserved by sketching to
ensure convergence.

2. Theorem 2 implies that convergence is guaranteed if
the sketching rates are large enough, but finding sketch-
ing rates which satisfy these conditions requires expen-
sive computations. We introduce a novel heuristic,
CPD-MWU, which dynamically adjusts the sketching
rate to ensure convergence with much less computation.
CPD-MWU also greatly ameliorates the problem of
hyperparameter selection: instead of requiring the user
to select one sketching rate that is appropriate over all
iterations of ALS, they can provide a set of hyperparam-
eters varying over multiple orders of magnitude, and
CPD-MWU will adapt to use an appropriate sketching
rate over the course of the optimization.

3. We experimentally show, using real and synthetic data
sets, that CPD-MWU has superior runtime-vs-accuracy

tradeoffs to prior sketched CPD-ALS algorithms even
when the sketching rates of the latter are selected using
a priori knowledge of the best fixed sketching rate.

We review the proximally regularized sketched CPD-ALS
algorithm in § 2, and present our results on the convergence
of this algorithm; proofs are provided in the supplementary
material. The CPD-MWU algorithm is presented in § 3. In
§ 4 we discuss the related works. In § 5, we empirically
evaluate CPD-MWU on synthetic and real datasets. We
discuss and conclude our work in § 6.

1.1. Notation

We adopt the notation of (Kolda & Bader, 2009), in which
cursive, bold capital letters (e..g, X ) denote tensors, roman
bold capital letters (e.g., A) denote matrices, and capital
letters with a subscript (e.g., X(i)) denote an unfolding
or matricization of a tensor in that mode (Kolda & Bader,
2009). E.g., X(1) ∈ RI×JK represents the unfolding of X
in the first mode. The Khatri-Rao product is represented
by the symbol � (Kolda & Bader, 2009). Let PA denote
the orthogonal projector onto the column span of the matrix
A. For notational convenience we work with a third-order
tensor X ∈ RI×J×K , but the results generalize in a straight-
forward manner to higher-order tensors. Throughout we let
F denote the squared reconstruction error, F (A,B,C) =
‖X − JA,B,CK‖2F .

2. Proximally Regularized Sketched
CPD-ALS

Alternating least squares (ALS) approaches are the most
widely-used class of algorithms for obtaining CPDs, due
to their simplicity and performance in practice (Bro, 1997;
Kolda & Bader, 2009): these methods are so named because
when two factor matrices are fixed, the third can be updated
to decrease F by solving a linear system. The canonical
CPD-ALS algorithm repeated solves the following series of
linear systems until convergence:

At+1 = argminA F (A,Bt,Ct)

= argminA ‖X(1) −A(Ct �Bt)
T ‖F

Bt+1 = argminB F (At+1,B,Ct)

= argminB ‖X(2) −B(Ct �At+1)T ‖F
Ct+1 = argminC F (At+1,Bt+1,C)

= argminC ‖X(3) −C(Bt+1 �At+1)T ‖F .

(3)

This algorithm is simple and has the property that F is
non-increasing throughout, but has the drawback that each
iteration requires solving large, potentially ill-conditioned
linear systems.

Ill-conditioning can be mitigated by adding proximal regu-
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larization to each inner solve in (3); prior work has shown
that this modification does not change the local optima of
the optimization process (Li et al., 2013), and that proximal
regularization is particularly effective at accelerating conver-
gence when decomposing ill-conditioned tensors (Aggour
et al., 2018).

The cost of the inner solves can be reduced by observing
that the CPD systems (3) are often overconstrained: the
matricizations of X often have many more columns than
rows. For example, X(1) ∈ RI×JK , while A ∈ RI×R,
so each row of A has only R degrees of freedom but is
constrained by JK � R equations. Because of this fact,
one can obtain approximate solutions by updating the factor
matrices using smaller systems comprising subsets of the
original constraints. We model this sampling procedure
by multiplication from the right with a random sketching
matrix St+1 that selects st+1JK columns randomly without√
replacement then scales them by st+1. The scalar st+1 is
in (0, 1] and is called the sketching rate.

Combined with proximal regularization, we obtain the regu-
larized sketched ALS algorithm proposed in (Aggour et al.,
2018), which takes At+1 to be the minimizer of

‖ X(1) −A(Ct �Bt)
T St+1‖2F + λ‖A−At‖2F (4)

( )
and updates B and C analogously. The distribution of the
random sketching matrix St+1 may vary; depending on the
application, users may employ standard choices such as
the uniform column sampling scheme described previously,
sampling according to an importance distribution over the
columns of (Ct �Bt)

T , or CountSketch sampling (Wang
et al., 2017). The sketching rates st may change between
iterations of regularized sketched CPD-ALS; in this paper
we consider λ to be fixed.

2.1. Convergence of Proximally Regularized Sketched
CPD-ALS

Recent works that introduce sketched CPD-ALS algorithms
provide per-iteration guarantees on the quality of the factor
matrices that state, with high probability,

F (At+1,Bt,Ct) ≤ (1 + ε) min
A

F (A,Bt,Ct),

when the sketching rate is sufficiently high (Cheng et al.,
2016; Battaglino et al., 2018). Analogous guarantees hold
for the other two factor matrices.

Such guarantees are non-informative in the context of CPD-
ALS algorithms, because it is not clear that convergence
will occur even if guarantees of this form hold for ε very
small. Even if the goal is relaxed to simply ensuring that
the objective decreases at each iteration, these guarantees
are weak: if minA F (A,Bt,Ct) is not much smaller than
F (At,Bt,Ct), then the factor matrix At+1 obtained using

sketching can in fact increase F . Unfortunately, this can
occur even when the factor matrices are far from converging
to a local minimum of F .

Our first result guarantees that, in fact, sketched CPD-ALS
will achieve a decrease in the objective with high probability
when the sketching rate is sufficiently high.

Theorem 1 (Sufficient Decrease) Fix a failure probabil-
ity δ ∈ (0, 1) and a precision εt+1 ∈ (0, 1), a regu-
larization parameter λ = O(σmin(Ct � Bt)), and let
R = X − JAt,Bt,CtK be the residual tensor after step
t. If St+1 samples columns uniformly at random( with or)
without replacement so that st+1IJK = Ω µR

νε2 log R
δ 2δ ,

then At+1, the solution to the sketched ridge regression
problem (4), satisfies

F (At+1,Bt,Ct) ≤ F (At,Bt,Ct)

− (1− εt+1)‖Ct �Bt‖−22 ‖∇AF (At,Bt,Ct)‖2F
(5)

with probability at least 1−δ with respect to the randomness
in the sketching matrix St+1. Here, µ is the row coherence
of Ct �Bt and ν ∈ (0, 1] is the relative squared Frobenius
norm of the projection of the residual tensor onto the span
of Ct � Bt (see the supplementary material for precise
definitions of µ and ν).

Analogous results hold for the updates of the B and C
factor matrices. Conditions under which sufficient decrease
is guaranteed for several other common forms of sketching
are given in the supplementary material. Sufficient decrease
is guaranteed even if no proximal regularization is used,
i.e. λ = 0. Thus Theorem 1 implies that prior sketched
ALS algorithms do decrease the objective function when
the sketching rates are sufficiently high.

The second goal in the analysis of CPD-ALS algorithms is
to guarantee convergence to an approximate critical point of
the objective (2). To facilitate this, we make the following
assumptions. The first is standard. The second simply
requires that the sketching rates are selected to ensure that
the amount of decrease is bounded below at each iteration.
This assumption holds when the sketching rate is selected
to satisfy the sample complexity given by Theorem 1.

Assumption 1 (Bounded Iterates) The gradients of F
with respect to (w.r.t.) A, B, and C are L-Lipschitz along
the solution path, e.g.

‖∇AF (At+1,Bt,Ct)−∇AF (At,Bt,Ct)‖F
≤ L‖At+1 −At‖F ,

and similarly for the gradients w.r.t. B and C.

Assumption 2 (Sufficient Decrease) For each value of t
from 1 to T , the sketching and regularization parameters
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st+1 and λ are selected so that sufficient decrease (5)
is achieved during the updates from (At,Bt,Ct) to
(At+1,Bt+1,Ct+1) with probability at least 1 − δ. Also,
the constants of sufficient decrease,{

ct+1 = (1− εt+1) min ‖Ct �Bt‖−22 , }
‖Ct �At+1‖−22 , ‖Bt+1 �At+1‖−22

in (5) satisfy 1 + maxT 1
λ t=1 ≤ Rc .

t

Standard results imply that proximal gradient algorithms
converge to approximate critical points of non-convex func-
tions at a sublinear rate because of the sufficient decrease
condition (Beck, 2017). Theorem 1 guarantees sufficient de-
crease, so Assumption 2 is satisfiable. By adapting the
standard arguments slightly to account for the fact that
CPD-ALS is a Gauss-Seidel algorithm instead of a gradient
method, and using the two above assumptions, we obtain
that sketched CPD-ALS converges with at least the same
sublinear rate.

Theorem 2 If Assumptions 1 and 2 are satisfied, then af-
ter T iterations, proximally regularized sketched CPD-ALS
reaches an O(T−1/2)-approximate critical point with prob-
ability at least (1− δ)T : √

C ′F (A0,B0,C0)
min ‖∇F (At,Bt,Ct)‖F ≤ ,

1≤t≤T T

where C ′ is at most 12RL2.

Theorem 2 is quite general, as it applies to all forms of
sketching as long as the sketching and regularization param-
eters selected at each iteration satisfy the sufficient decrease
condition. In the analysis of even deterministic tensor de-
composition algorithms, it is common practice to assume
a-priori that the sequence of factor matrices is bounded (Xu
& Yin, 2013); we do the same, and because F is a smooth
function, this implies that its gradients are indeed Lipschitz
along the solution path.

These two results ensure that there exist choices of sketch-
ing rates st such that sketched regularized CPD-ALS will
converge sublinearly, but in practice estimating the relevant
properties to determine appropriate st+1 at each iterate is
costly, and the theory provides pessimistic estimates. It is
preferable to choose the sketching parameters at each itera-
tion in a way that adapts to the given tensor. The remaining
portion of this work addresses this problem.

3. Adaptive Sketching Rate Selection
As suggested by Theorem 1, the performance of sketched
ALS algorithms is sensitive to the sketching rate st+1:

Algorithm 1 CPD-MULTIPLICATIVE WEIGHTS UPDATE

Inputs: X , sketching rates {si}Ni=1, regularization λ, up-
date probability ε, momentum η

Outputs: A,B,C
1: wi,0 ← 1, i = 1, . . . , N
2: Random initialization of A0,B0,C0

3: for t← 0, . . . ,∞ do
4: s← si with probability proportional to wi,t
5: At+1 ← RS_LS(At,Bt,Ct,X(1), λ, s) . solve

the ridge regression problem (4)
6: Bt+1 ← RS_LS(Bt,At+1,Ct,X(2), λ, s)
7: Ct+1 ← RS_LS(Ct,Bt+1,At+1,X(3), λ, s)
8: if Bern(ε) = 1 then
9: wi,t+1 ← computed as in (7), i = 1, . . . , N

10: else
11: wi,t+1 ← wi,t, i = 1, . . . , N
12: end if
13: if convergence criterion is satisfied then
14: A← At+1, B← Bt+1, C← Ct+1

15: end if
16: end for

overly aggressive sketching can lead to poor convergence
due to under-sampling of the tensor, while overly conserva-
tive sketching can increase the runtime. Further, the range of
sketching rates that guarantee decrease in the CPD objective
are determined by the type of sketching and the properties of
the linear system at each iteration, so may change between
iterations. These properties, e.g. coherence or conditioning,
are expensive to compute at each iteration.

3.1. Sketching Rate Selection via Multiplicative
Weights Updates

To address the challenge of inexpensively selecting sketch-
ing rates appropriately at each iteration, observe that the
aim of sketching CPD-ALS is to maximize the rate of de-
crease in the objective while minimizing the computational
cost of each iteration. Accordingly, we define the loss of a
sketching rate s at iteration t to be

‖X−JAt+1,Bt+1,Ct+1K‖F − ‖X−JAt,Bt,CtK‖F
`t(s) = ,

runtime(t)‖X‖F
(6)

where runtime(t) is the time in seconds that it takes to finish
the iteration, and the factor matrices at t+ 1 are computed
using regularized sketched ALS with sketching rate s. If
progress was made towards convergence and the runtime
was small, `t(s) is a large negative number, indicating that
s performed well during this iteration. Intuitively, knowing
which sketching rates performed well during earlier itera-
tions gives us knowledge of which sketching rates we can
expect to perform well on the next iteration.

In this vein, the CPD-MWU algorithm presented in Listing 1



η`t(si) 
wi,t+1 = wi,t exp − for i = 1, . . . , N, (7)
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employs a label efficient forecasting scheme (Cesa-Bianchi 
& Gábor, 2006) to dynamically select an appropriate sketch-
ing rate at each iteration. 

The algorithm takes as input a set of N possible values for 
the sketching rate: this collection is assumed to be suffi-
ciently diverse to contain well-performing sketching rates at 
each iteration of ALS. A weight wi,t is associated with each 
sketching rate si, initialized to one, and is updated as the 
algorithm progresses to track the performance of that rate as 
determined by `t (si). At each iteration, the sketching rate 
used to update the factor parameters is sampled from the N 
choices with probability proportional to its weight. 

It would be inefficient to update the weights of all sketching 
rates at each iteration, as evaluating their losses requires 
N iterations of regularized sketched ALS. Hence we infre-
quently update the weights using the label efficient updating 
scheme of (Cesa-Bianchi & Gábor, 2006): at each iteration, 
with probability ε all weights are multiplicatively updated, � � 

and with probability 1 − ε the weights are unchanged, 
wi,t+1 = wi,t for all i. Here 0 < ε < 1 determines the 
update frequency, and η > 0 determines the aggressiveness 
of the weight updates. 

The computational cost of CPD-MWU using N sketching 
rates, amortized over N iterations, is O((ŝ + εNs)IJKR), 
where ŝ is the average of the si selected during those N 
iterations and s is the mean of the si. In practice we choose 
ε < 1 O   N so the cost is ((ŝ + s)IJKR). The complexity 
of a single iteration of traditional or regularized CPD-ALS 
is O(IJKR), so the CPD-MWU algorithm is significantly 
more computationally efficient per iteration when the av-
erage of the sketching rates is small and ŝ is also small. 
The factor ŝ implicitly captures the unavoidable fact that 
the ranges of sketching rates that deliver good performance 
changes over time: in particular, we can expect that near 
convergence, ŝ approaches unity. 

The experimental evaluations conducted in § 5 show that 
CPD-MWU provides a desirable accuracy-time trade-off 
in practice. The supplementary material provides a regret 
bound guarantee for a modified, more expensive, version of 
CPD-MWU. 

4. Related Work 
Early work on fast randomized tensor decomposition fo-
cused on entry-wise sparsification (Tsourakakis, 2010; 
Nguyen et al., 2015), then several groups investigated 
sketched ALS algorithms (Bhojanapalli & Sanghavi, 2015; 
Reynolds et al., 2016; Wang et al., 2015; Yu et al., 2015; 
Vervliet & De Lathauwer, 2016; Song et al., 2016; Cheng 

et al., 2016). More recently, two groups within the data 
mining community (Gujral et al., 2018; Yang et al., 2018) 
refined the earlier ParCube system (Papalexakis et al., 2012) 
that uses a block-sampling approach to enhance the scal-
ability of CP decomposition, and (Battaglino et al., 2018) 
proposed two sketching approaches for ALS. Most of these 
works do not provide guarantees on the convergence to crit-
ical points of the CPD objective. One exception, (Wang 
et al., 2015), provides strong convergence guarantees for a 
sketched tensor power method, which (Cheng et al., 2016) 
argues is less efficient than sketched ALS. 

Of these works, the most closely related to our approach 
are (Cheng et al., 2016; Battaglino et al., 2018; Aggour 
et al., 2018). In (Cheng et al., 2016), Cheng et al. in-
troduce the SPALS algorithm, which accelerates ALS by 
sampling rows of the Khatri-Rao product with probability 
proportional to their statistical leverage scores (Cheng et al., 
2016). In (Battaglino et al., 2018), Battaglino et al. propose 
two sketching approaches for CPD-ALS, CPRAND and 
CPRAND-MIX. CPRAND samples rows of the Khatri-Rao 
product uniformly at random; the CPRAND-MIX algorithm 
first mixes the modes of an input tensor to make the tensor 
incoherent, before applying CPRAND. In (Aggour et al., 
2018), Aggour et al. demonstrated that regularization works 
with sketching to further accelerate the convergence of ALS. 

Although these prior works applied sketching to interpolate 
between accuracy and efficiency at each step of ALS, they 
propose using a fixed sketching rate throughout the opti-
mization process (Wang et al., 2015; Cheng et al., 2016; 
Battaglino et al., 2018; Song et al., 2018; Aggour et al., 
2018). To our knowledge, CPD-MWU is the first algorithm 
that adaptively chooses the sketching rates to increase the 
speed of convergence of the ALS procedure. 

5. Experimental Evaluation 
Experiments were conducted on both synthetic and real, 
small and large datasets to illustrate that: (1) adaptive se-
lection of the sketching rate improves performance over 
prior sketched ALS algorithms by decreasing the runtime 
and/or reducing the final residual error, and (2) the decom-
positions obtained perform on par with those obtained via 
conventional ALS when used in downstream data mining 
tasks. 

Large-scale synthetic tensors were generated to evaluate 
the impact of adaptive sketching rate selection on CPD 
runtime and residual error, and the impact of the quantity 
of the sketching rates. To demonstrate performance on 
real datasets, a moderately-sized video was decomposed 
for background subtraction, and a small knowledge base 
was decomposed. The large synthetic and moderately-sized 
video datasets were decomposed in a distributed setting, 
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while the small knowledge base was decomposed in shared 
memory. 

For the distributed evaluations, each algorithm was imple-
mented in Python using Apache Spark (Zaharia et al., 2010) 
to ensure consistency across the comparisons, as Spark is 
the de facto standard for implementing Big Data analytics 
on commodity hardware. For the small dataset, each algo-
rithm was implemented in Python to also ensure consistency 
of comparison. 

Synthetic tensors were generated to gauge the influence of 
noise and conditioning of the factor matrices on the perfor-
mance of CPD-MWU. We used the methodology described 
in (Tomasi & Bro, 2006; Acar et al., 2011) to synthesize 
tensors with hetero- and/or homoskedastic noise. We further 
synthesized ill-conditioned tensors (tensors with collinear 
factor matrices) following the methodology described in 
(Kiers et al., 1999). Each synthetic tensor is rank-5 and 
in R366×366×100,000, split evenly in the 3rd mode into 20K 
slices for distributed processing in Spark. 

5.1. Setup 

We compare CPD-MWU to a traditional CPD-ALS im-
plementation (denoted by ‘CPD-ALS’) (Aggour & Yener, 
2016) and a regularized, sketched CPD-ALS using a man-
ually tuned static sketching rate (denoted by ‘Sketched 
CPD’) (Aggour et al., 2018). We also compare to a heuristic 
that selects from the same N sketching rates as CPD-MWU, 
but randomly; this proved much less effective than CPD-
MWU (the results are available in the supplementary mate-
rial). Uniform random sampling was used to select rows of 
the Khatri-Rao product for both Sketched CPD and CPD-
MWU. Row norm-weighted sampling was also investigated, 
but proved less effective than uniform random sampling. 
We quantify the performance of CPD-MWU in terms of 
both runtime and final relative residual error, defined as the 
normalized Frobenius norm error of the factorization, 

Five sketching rates were used for the CPD-MWU ex-
periments, with four rates linearly spaced in the interval 
[10−6 , 10−4]. The fifth sketching rate was set to 1 so that 
CPD-MWU could use the full tensor if it determined that 
to be advantageous. We observed that the performance is 
robust to the choice of η and used the value of 2 for our 
experiments; we set ε to 0.15, which is smaller than 1

N , to 
amortize the costs of the solves as described in the discus-
sion following Listing 1. 

For each synthetic experiment we generated 10 distinct 
tensors with the relevant properties and evaluated each 3 
times with different initial conditions (using the same initial 

conditions for the same run of each algorithm). Results are 
averaged across the 30 runs for each tensor type. Each of 
the real datasets was decomposed 10 times using different 
initial conditions in each run. 

5.2. Results 

5.2.1. IMPROVED UNTIME R

Although CPD-MWU as set forth in Algorithm 1 uses 
proximal regularization, previous research has shown that 
Tikhonov regularization is effective for accelerating the 
decomposition of noisy tensors when used with sketch-
ing (Aggour et al., 2018). Hence we also investigated the 
performance of CPD-MWU when Tikhonov regularization 
is substituted for proximal regularization, comparing to the 
performance of standard ALS and Sketched CPD (with 
λ=0.001 and sketching rate s = 10−4). These regulariza-
tion and sketching parameters were chosen for Sketched 
CPD by conducting an expensive grid search to identify a 
pairing that gives the fastest runtime and lowest residual 
error. Table 1 shows the means and standard deviations 
of the residual error and runtimes across 30 noisy tensor 
experiments. 

� Std(�) Time Std(Time) 
CPD-ALS 0.3817 1.79*10−3 526.94 133.05 

Sketched CPD 0.3808 5.96*10−7 214.51 23.44 
CPD-MWU 0.3808 8.59*10−7 185.67 34.42 

Table 1. Average and standard deviation of runtime (in seconds) 
and residual error � across 30 noisy tensor decompositions per data 
point. 

Figure 1. Residual error � over time when decomposing a noisy ten-
sor. CPD-MWU converges fastest to final residual error compared 
to the other algorithms. 

While there is no significant difference in the final residual 
error when decomposing noisy tensors, there are signifi-
cant differences in the runtimes. CPD-MWU with adaptive 
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sketching is the fastest algorithm, followed by CPD with 
hand-tuned static sketching. Thus, adaptively selecting the 
sketching rate in CPD produces faster decompositions than 
a manually optimized static sketching rate, which are both 
considerably faster than traditional CPD-ALS for noisy ten-
sors. Figure 1 shows the residual error over time for a 
representative noisy tensor decomposition. 

5.2.2. IMPROVED RELATIVE RESIDUAL ERROR 

For decomposing ill-conditioned tensors, we use proxi-
mal regularization (λ=0.001) for CPD-MWU and Sketched 
CPD (Aggour et al., 2018). The Sketched CPD static sketch-
ing rate selection (s = 10−4) again required hand-tuning. 
Table 2 shows the means and standard deviations of the resid-
ual error across the 30 ill-conditioned tensor experiments. 
On average CPD-MWU produces the lowest error given the 
same time allotment. CPD-MWU produces a 10.3x lower 
final residual error compared to CPD-ALS, over an order of 
magnitude improvement. 

Table 2. Average residual error � across 30 ill-conditioned tensor 
decompositions per data point, in which the runtime was fixed to 
10 minutes. 

� Std(�) 
CPD-ALS 0.0309 4.70*10−3 

Sketched CPD 0.0149 1.33*10−2 

CPD-MWU 0.0030 7.87*10−4 

Figure 2 shows the residual error over time for a representa-
tive ill-conditioned tensor decomposition. 

Figure 2. Residual error � over time when decomposing an ex-
tremely ill-conditioned tensor (factor matrices each have column 
collinearity of 0.9). CPD-MWU converges to a significantly lower 
residual error, significantly faster, as compared to traditional CPD-
ALS. 

5.2.3. IMPACT OF QUANTITY OF SKETCHING RATES 

We next explored the impact of the quantity of sketching 
rates N on the overall performance. Every sketching rate 
must be evaluated when an update is performed (recall that 
the update frequency is determined by ε). Thus, given a 
fixed time allocation, the larger N the more time the algo-
rithm must spend updating the weights for the rates and the 
less time it can spend making progress on the decomposi-
tion. 

Figure 3 shows traditional CPD-ALS for an ill-conditioned 
tensor compared to CPD-MWU with increasing values of 
N ∈ [5, 1000]. As expected, CPD-MWU performs best 
with fewer sketching rates to draw from. N = 5 and 10 
perform similarly, and significantly outperform the same 
algorithm with more sketching rates. 

Figure 3. Residual error � over time when decomposing an ill-
conditioned tensor using CPD-MWU with increasing numbers of 
sketching rates to select from N=[5,10,50,100,500,1000]. 

5.2.4. DOWNSTREAM APPLICATION - VIDEO ANALYSIS 

Tensor decomposition is used in video analysis for, among 
other tasks, background subtraction (Sobral et al., 2015). 
Thus, as an illustrative example, we decomposed a black-
and-white video of a person sitting on a park bench 
overlooking a city (Unknown, 2018). The tensor is in 
R1,080×1,920×363 . Table 3 shows the means and standard 
deviations of a subset of both the runtimes and residual er-
rors for the decompositions of the park bench video across 
10 experiments of a rank-250 decomposition. A rank-
250 decomposition for this tensor represents only 0.064% 
of the largest possible true rank of the tensor (namely, 
min(IJ, JK, IK) (Kolda & Bader, 2009)). Results are 
shown for CPD-ALS, Sketched CPD (with hand-tuned 
s = 10−3 , λ = 0.001), and CPD-MWU. CPD-MWU pro-
duced a decomposition of similar or lower residual error in 
comparable or less time than the other algorithms. 
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Table 3. Average and standard deviation of runtime (in seconds) 
and residual error � across 10 decompositions of the park bench 
video, in which the algorithms ran until convergence. 

� Std(�) Time Std(Time) 
CPD-ALS 0.4999 6.17*10−4 621.12 78.35 

Sketched CPD 0.5042 2.57*10−4 527.98 62.83 
CPD-MWU 0.5020 5.94*10−3 465.83 167.16 

5.3. Downstream Application - Knowledge Base 
Mining 

The Carnegie Mellon Never Ending Language Learning 
(NELL) repository (Carlson et al., 2010) has previously 
been analyzed using CPD (Kang et al., 2012). We developed 
single-server shared memory Python implementations of 
CPD-MWU, CPRAND, CPRAND-MIX (Battaglino et al., 
2018) and SPALS (Cheng et al., 2016), to compare the per-
formance of CPD-MWU to these ALS baselines all on the 
same platform. We also compared to an implementation 
of the first-order BrasCPD algorithm (Fu et al., 2019), a 
recent block-randomized sketched gradient algorithm for 
CPD, for comparison. From NELL, we created a tensor in 
R120×918×2,881 with a density of 2.7 × 10−4 . We assumed 
that one cannot obtain a rank 30 approximation with error 
below what is achievable by running traditional CPD-ALS 
to convergence. Therefore, we set out to determine which 
approach would achieve a target relative residual error (less 
than 0.060, as determined by running CPD-ALS to conver-
gence) in the least amount of time. Each implementation 
was configured to stop after achieving an error below the 
target threshold or after 30 minutes. 

We compared the performance of each algorithm with and 
without pre-mixing the tensor, and report the results for the 
best version of each. Here, mixing refers to a preprocess-
ing procedure that attempts to reduce the coherence of the 
tensor so that sketching is more accurate (Battaglino et al., 
2018). Each algorithm performed best with pre-mixing ex-
cept SPALS. Table 4 shows the results comparing CPD-ALS, 
CPD-MWU, CPRAND-MIX, SPALS, and BrasCPD-MIX, 
all implemented in Python. On average, CPD-MWU is 2.9x 
faster than traditional CPD-ALS with pre-mixing. Neither 
CPRAND-MIX, SPALS, or BrasCPD-MIX reach the tar-
get decomposition error, and thus end when the maximum 
execution time is reached. 

Table 4. Average and standard deviation of runtime (in seconds) 
and residual error � across 10 decompositions of the NELL knowl-
edge base extract after up to 30 minutes. 

� Std(�) Time Std(Time) 
SPALS 0.104 0.0061 1829.36 14.84 

CPRAND-MIX 0.072 0.0046 1806.70 3.50 
CPD-ALS + MIX 0.060 0.0002 1044.75 386.03 

CPD-MWU + MIX 0.058 0.0015 354.55 224.59 
BrasCPD + MIX 0.349 0.0427 1829.99 8.70 

We next ran the same experiments for considerably longer 
durations to demonstrate that the statically-sketched al-
gorithms are unable to converge, even after a substantial 
amount of time. Table 5 shows the results when the al-
gorithms run up to two hours. Note that we re-ran all of 
the algorithms, hence we report slightly different (though 
consistent) results for CPD-ALS and CPD-MWU, both of 
which converge well before the two hour limit. This is ex-
perimental evidence of the fact that the sketching rates must 
be non-static for sketched ALS algorithms to converge. 

Table 5. Average and standard deviation of runtime (in seconds) 
and residual error � across 10 decompositions of the NELL knowl-
edge base extract after up to 2 hours. 

� Std(�) Time Std(Time) 
SPALS 0.098 0.0045 7224.28 18.50 

CPRAND-MIX 0.066 0.0039 7205.37 4.03 
CPD-ALS + MIX 0.060 0.0002 1007.48 372.58 

CPD-MWU + MIX 0.058 0.0015 337.16 204.28 
BrasCPD + MIX 0.285 0.0337 7209.90 2.40 

For each of these synthetic and real data experiments, CPD-
MWU outperformed the baselines in terms of runtime and/or 
final decomposition accuracy. 

6. Conclusions & Future Work 
This work establishes the sublinear convergence rate of 
sketched CPD-ALS algorithms, and introduces CPD-MWU, 
a regularized, sketched CPD-ALS algorithm that dynam-
ically selects the sketching rate to balance computational 
efficiency and decomposition accuracy. 

Experiments on both synthetic and real datasets demonstrate 
that CPD-MWU produces lower error decompositions in 
less time than traditional CPD-ALS and prior sketched CPD-
ALS algorithms. We believe that future investigations will 
unearth more of the potential in dynamically adjusting the 
sketching rate. For example, alternative approaches could 
modify the proximal regularization at each iteration while 
using aggressive sampling throughout, or extend results 
on continuous bandit optimization problems to remove the 
requirement that the algorithm be provided with a fixed, 
finite set of sketching rates. 

CPD-MWU is available at https://github.com/ 
kaggour/CPD-MWU. 
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