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Abstract

Reinforcement learning with function approxima-
tion can be unstable and even divergent, especially
when combined with off-policy learning and Bell-
man updates. In deep reinforcement learning,
these issues have been dealt with empirically by
adapting and regularizing the representation, in
particular with auxiliary tasks. This suggests that
representation learning may provide a means to
guarantee stability. In this paper, we formally
show that there are indeed nontrivial state repre-
sentations under which the canonical TD algo-
rithm is stable, even when learning off-policy. We
analyze representation learning schemes that are
based on the transition matrix of a policy, such as
proto-value functions, along three axes: approxi-
mation error, stability, and ease of estimation. In
the most general case, we show that a Schur basis
provides convergence guarantees, but is difficult
to estimate from samples. For a fixed reward func-
tion, we find that an orthogonal basis of the corre-
sponding Krylov subspace is an even better choice.
We conclude by empirically demonstrating that
these stable representations can be learned using
stochastic gradient descent, opening the door to
improved techniques for representation learning
with deep networks.

1. Introduction

Value function learning algorithms are known to demon-
strate divergent behavior under the combination of boot-
strapping, function approximation, and off-policy data, what
Sutton & Barto (2018) call the “deadly triad” (see also van
Hasselt et al., 2018). In reinforcement learning theory, it
is well-established that methods such as Q-learning and
TD(0) enjoy no general convergence guarantees under lin-
ear function approximation and off-policy data (Baird, 1995;
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Tsitsiklis & Roy, 1996). Despite this potential for failure,
Q-learning and other temporal-difference algorithms remain
the methods of choice for learning value functions in prac-
tice due to their simplicity and scalability.

In deep reinforcement learning, instability has been miti-
gated empirically through the use of auxiliary tasks, which
shape and regularize the representation that is learned by the
neural network. Methods using auxiliary tasks concurrently
optimize the value function loss and an auxiliary represen-
tation learning objective such as visual reconstruction of
observation (Jaderberg et al., 2016), latent transition and
reward prediction (Gelada et al., 2019), adversarial value
functions (Bellemare et al., 2019), or inverse kinematics
(Pathak et al., 2017). In robotics, distributional reinforce-
ment learning (Bellemare et al., 2017) in particular has
proven a surprisingly effective auxiliary task (Bodnar et al.,
2019; Vecerik et al., 2019; Cabi et al., 2019). While the
stability of such methods remains an empirical phenomenon,
it suggests that a carefully chosen representation learning al-
gorithm may provide a means towards formally guaranteed
stability of value function learning.

In this paper, we seek procedures for discovering represen-
tations that guarantee the stability of TD(0), a canonical
algorithm for estimating the value function of a policy. We
analyze the expected dynamics of TD(0), with the aim of
characterizing representations under which TD(0) is prov-
ably stable. Learning dynamics of temporal-difference meth-
ods have been studied in depth in the context of a fixed state
representation (Tsitsiklis & Roy, 1996; Borkar & Meyn,
2000; Yu & Bertsekas, 2009; Maei et al., 2009; Dalal et al.,
2017). We go one step further by considering this represen-
tation as a component that can actively be shaped, and study
stability guarantees that emerge from various representation
learning schemes.

We show that the stability of a state representation is affected
by: 1) the space of value functions it can express, and 2)
how it parameterizes this space. We find a tight connection
between stability and the geometry of the transition matrix,
enabling us to provide stability conditions for algorithms
that learn features from the transition matrix of a policy
(Dayan, 1993; Mahadevan & Maggioni, 2007; Wu et al.,
2018; Behzadian et al., 2019) and rewards (Petrik, 2007;
Parr et al., 2007). Our analysis reveals that a number of



Representations for Stable Off-Policy Reinforcement Learning

popular representation learning algorithms, including proto-
value functions, generally lead to representations that are not
stable, despite their appealing approximation characteristics.

As special cases of a more general framework, we study two
classes of stable representations. The first class consists of
representations that are approximately invariant under the
transition dynamics (Parr et al., 2008), while the second con-
sists of representations that remain stable under reparameter-
ization. From this study, we find that stable representations
can be obtained from common matrix decompositions and
furthermore, as solutions of simple iterative optimization
procedures. Empirically, we find that different procedures
trade off learnability, stability, and approximation error. In
the large data regime, the Schur decomposition and a vari-
ant of the Krylov basis (Petrik, 2007) emerge as reliable
techniques for obtaining a stable representation.

We conclude by demonstrating that these techniques can be
operationalized using stochastic gradient descent on losses.
We show that the Schur decomposition arises from the task
of predicting the expectation of one’s own features at the
next time step, whereas a variant of the Krylov basis arises as
from the task of predicting future expected rewards. This is
particularly significant, as both of these auxiliary tasks have
in fact been heuristically proposed in prior work (Francois-
Lavet et al., 2018; Gelada et al., 2019). Our result confirms
the validity of these auxiliary tasks, not only for improving
approximation error but, more importantly, for taming the
famed instabilities of off-policy learning.

2. Background

We consider a Markov decision process (MDP) M =
(S, A, P,r,p,7y) on a finite state space S and finite ac-
tion space .A. The state transition distribution is given by
P:Sx A— A(S), the reward functionr : S X A — R,
the initial state distribution p € A(S), and the discount
factor v € [0,1). We write H = S x A with |H| = n, and
treat real-valued functions of state and action as vectors in
R™.

A stochastic policy 7 : § — A(A) induces a Markov
chain on H with transition matrix P™ € R"*". The value
function Q™ € R" for a policy 7 is the expected return
conditioned on the starting state-action pair,

Q" (si,a;) = Ex {Z’Ytr(stvat) |50 = si,a0 = a;|.
>0

The value function also satisfies Bellman’s equation; in
vector notation (Puterman, 1994),

Qﬂ' =r + ,YPTFQW

from which we recover the concise Q™ = (I —yP™)~1r.

2.1. Approximate Policy Evaluation

Approximate policy evaluation is the problem of estimat-
ing Q™ from a family of value functions {Qp}gcra given
a distribution of transitions (s, a,r, s") ~ &(s,a)P(s'|s,a)
(c.f. Bertsekas, 2011). We refer to £ € A(H) as the data
distribution, and define = € R™*™ a diagonal matrix with
the elements of ¢ on the diagonal. If the data distribu-
tion is the stationary distribution of P™, the data is on-
policy and off-policy otherwise. We equip R with the inner
product and norm that is induced by the data distribution:
(v1,v2)= = v{ Zvy. Most concepts from Euclidean inner
products extend to this setting; see Appendix A for a review.

We consider a two-stage procedure for estimating value
functions (Levine et al., 2017; Chung et al., 2019; Bertsekas,
2018). We first learn a representation, a d-dimensional
mapping ¢ : H — RY, through an explicit representation
learning step. After a representation is learned, approximate
policy evaluation is performed with the family of value func-
tions linear in the representation ¢: Qg(s,a) = 07 ¢(s, a),
where § € R? is a vector of weights.

The representation corresponds to a matrix ® € R™*¢
whose rows are the vectors ¢(s, a) for different state-action
pairs (s, a). For clarity of presentation, we assume that ®
has full rank. A representation is orthogonal if ®TZ® = I;
these correspond to features which are normalized and un-
correlated. We write Span(®) to denote the subspace of
value functions expressible using ®, and denote II the or-
thogonal projection operator onto Span(®), with closed
form Il = (¢ T=P) 10 =,

2.2. Temporal Difference Methods

TD fixed-point methods are a popular class of methods for
approximate policy evaluation that attempt to find value
functions that satisfy Q = II77(Q (Bradtke & Barto, 1996;
Gordon, 1995; Maei et al., 2009; Dann et al., 2014). If IIT™
has a fixed-point, the solution is unique (Lagoudakis & Parr,
2003) and can be expressed as

05, = (PTE(I — yP™)®) a7y

We study TD(0), the canonical update rule to discover this
fixed point. With a step size n > 0 and transitions sampled
(s,a,r,8,a") ~ &(s,a)P(s'|s,a)m(a’|s"), TD(0) takes the
update

Okt1 = 0=V Qe (5,a) (Qe, (s, a) — (1 +7Q, (S/, a/))) :

In matrix form, this corresponds to an expected update over
all state-action pairs:

Ori1 =0k —n (RTEI —P™)®O, — @ "Zr). (1)

With appropriately chosen decay of the step size, the stochas-
tic update will converge if the expected update converges
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(Benveniste et al., 1990; Tsitsiklis & Roy, 1996). However,
these updates are not the gradient of any well-defined ob-
jective function except in special circumstances (Barnard,
1993; Ollivier, 2018), and hence do not inherit convergence
properties from the classical optimization literature. The
main aim of this paper is to provide conditions on the rep-
resentation matrix ® under which the update is convergent.
We are especially interested in schemes that are convergent
independent of the data distribution &.

We will characterize the stability of TD(0) and a representa-
tion through the spectrum of relevant matrices. For a matrix
A € RFXE the spectrum is the set of eigenvalues of A,
written as Spec(A4) = {\1,..., Az} C C. The spectral ra-
dius p(A) denotes the maximum magnitude of eigenvalues.
Stochastic transition matrices P™ satisfy p(P™) = 1. We
consider a potentially nonsymmetric matrix A € R¥*¥ to
be positive definite if all non-zero vectors 2 € R* satisfy
(x, Az) > 0.

2.3. Representation Learning

In reinforcement learning, a large class of methods have fo-
cused on constructing a representation ® from the transition
and reward functions, beginning perhaps with proto-value
functions (Mahadevan & Maggioni, 2007). Involving P™
and r in the representation learning process is natural, since
the value function Q™ is itself constructed from these two
objects. As we shall later see, the stability criteria for these
are also simple and coherent. Additionally, there is a large
body of literature on the ease (or difficulty) with which
these methods can be estimated from samples, and by proxy
are amenable to gradient-descent schemes. Here we review
the most common of these representation learning methods
along with a few obvious extensions. Table 1 shows how
their construction arises from different matrix operations on
P7™ and, in the case of the Krylov basis, of r.

Laplacian Representations: Proto-value functions (Ma-
hadevan & Maggioni, 2007) capture the high-level struc-
ture of an environment, using the bottom eigenvectors of
the normalized Laplacian of an undirected graph formed
from environment transitions. This formalism extends to
reversible Markov chains with on-policy data, but does not
generalize to directional transitions, stochastic dynamics,
and off-policy data. In the general setting, the Laplacian
representation (Wu et al., 2018) uses the top eigenvectors of
the symmetrized transition matrix (EigSymm) . We demon-
strate in Section 4.3 that when data is off-policy, modifying
the representation to omit eigenvectors whose eigenvalues
exceed a threshold can provide strong stability guarantees.

Singular Vector Representations: Representations using
singular vectors have been well-studied in representation
learning for RL, because they are expressive and often yield
strong performance guarantees. Fast Feature Selection (Be-

DECOMPOSITION
EIG(P™)
EIG((P™ +E7'P"'5))
EIG((P™ +E7'P"TE))

REPRESENTATION

PROTO-VALUE FUNCTIONS !
LAPLACIAN (EIGSYMM)
SAFE EIGSYMM 2

SVD SVD(P™)
SVD OF SUCCESSOR REP. SVD((I —yP™)™)
SCHUR SCHUR(P™)

{r,P"r,... (P”)dilr}
ORTHOG(K4(P™, 1))

KRYLOV BASIS
ORTHOG KRYLOV BASIS

Table 1. Representation learning algorithms that learn features
from the transition matrix and rewards. EIG is the spectral eigende-
composition, SVD the singular value decomposition, SCHUR the
Schur decomposition, and ORTHOG an arbitrary orthogonal basis.
! Only defined for reversible Markov chains with on-policy data.
2 Discards a partial set of features (see Section 4.3).

hzadian et al., 2019) uses the top left singular vectors of the
transition matrix as features. Similarly, Stachenfeld et al.
(2014) and Machado et al. (2018) use the top left singular
vectors of the successor representation (Dayan, 1993), a
time-based representation which predicts future state visita-
tions: ¥ = (I — vP™)~1. We discover in Section 3.4 that
the SVD objective of minimizing the norm of approximation
error fails to preserve the spectral properties of transition
matrices needed for stability, and can induce divergent be-
havior in TD(0) . In contrast, we show that decompositions
constrained to preserve the spectrum of the transition matrix,
such as the Schur decomposition, guarantee stability and
performance.

Reward-Informed Methods: If the reward structure of the
problem is known apriori, a representation can focus its
capacity on modelling future rewards and how they diffuse
through the environment. Towards this goal, Petrik (2007)
suggested the Krylov basis generated by P™ and r as fea-
tures. Bellman Error Basis Functions (BEBFs) (Parr et al.,
2007) iteratively builds a representation by adding the Bell-
man error for the best solution found so far as a new feature.
Parr et al. (2008) show that under certain initial conditions
for BEBFs, both representations span the Krylov subspace
KCq(P™, r) generated by rewards. Although no general guar-
antees exist for arbitrary rewards, we discover that when
rewards are easily predictable, orthogonal representations
that span this Krylov subspace have stability guarantees.

3. Stability Analysis of Arbitrary
Representations

To begin, we study the stability of TD(0) given an arbitrary
representation. For conciseness, we call TD(0) the algorithm
whose expected update is described by equation 1; this is an
algorithm which may or may not be off-policy (according to
= and P7), and learns a linear approximation of the value
function Q™ using features ®. The following formalizes our
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notion of stability.

Definition 3.1. TD(0) is stable if there is a step-size n > 0
such that when taking updates according to equation I from
any 0y € R% we have limy,_, o 0, = 0% -

3.1. Learning Dynamics

For a sufficiently small step-size 7, the discrete update of
equation 1 behaves like the continuous-time dynamical sys-
tem

0

a(at —0rp) = —As (0 — 07p), (2)
whose behaviour is driven by the iteration matrix
Ap = dTE(I — yP™)D.

Put another way, the learned parameters 6 evolve approx-
imately according to the linear dynamical system defined
by the iteration matrix Ag. As might be expected, TD(0) is
stable if this linear dynamical system is globally stable in
the usual sense (Borkar & Meyn, 2000).

The iteration matrix — and as we shall see, the global sta-
bility of the linear dynamical system — depends on the data
distribution, the representation, and, to a lesser extent, on
the discount factor. It does not, however, depend on the
reward function, which only affects the accuracy of the TD
fixed-point solution 67 ,.

3.2. Stability Criteria

To understand the behaviour of TD(0), it is useful to contrast
it with gradient descent on a weighted squared loss

U0) = (20 —y)"E(20 ~y),

where y is a vector of supervised targets. Gradient descent
on /() also corresponds to a linear dynamical system, al-
beit one whose iteration matrix is symmetric and positive
definite. The behaviour of TD(0) is complicated by the fact
that Ag is not guaranteed to be positive definite or symmet-
ric, as the matrix ZP7 itself is in general neither. In fact,
the documented good behaviour of TD(0) arises in contexts
where Ag itself is closer to a gradient descent iteration ma-
trix: positive definite when the data distribution is on-policy
(Tsitsiklis & Roy, 1996), and symmetric when the Markov
chain described by P7 is reversible (Ollivier, 2018).

Following a well-known result from linear system theory
(see e.g. Zadeh & Desoer, 2008), the asymptotic behavior
of TD(0) more generally depends on the eigenvalues of the
iteration matrix.

Proposition 3.1. TD(0) is stable if and only if the eigenval-
ues of the implied iteration matrix Ag have positive real
components, that is

Spec(Ag) C C, :={z: Re(z) > 0}.

We say that a particular choice of representation P is stable
Sor (P™,~,E) when Ag satisfies the above condition.

Proof. See Appendix B for all proofs. O

Whenever the transition matrix, data distribution, and dis-
count factor is evident, we will refer to ® simply as a stable
representation.

3.3. Effect of Subspace Parametrization

When measuring the approximation error that arises from a
particular representation P, it suffices to consider the sub-
space spanned by the columns of ®. It therefore makes
no difference whether these columns are orthogonal (corre-
sponding, informally speaking, to correlated features) or not.
By contrast, we now show that the stability of the learning
process does depend on how the linear subspace spanned by
® is parametrized.

Recall that ® is orthogonal if ®T=P = [. As it turns out,
the stability of an orthogonal representation is determined
by the induced transition matrix I1P™11, which describes
how next-state features affect the TD(0) value estimates.

Proposition 3.2. An orthogonal representation ® is stable
if and only if the real part of the eigenvalues of the induced
transition matrix ILP™11 is bounded above, according to

Spec(ITP™II) C {z € C: Re(z) < % }
In particular, ® is stable if p(ILP™II) < %
Although the original transition matrix satisfies the spectral
radius condition with p(P™) = 1, the induced transition

matrix can have eigenvalues beyond the stable region and
lead to learning instability.

More generally, a representation ® can be decomposed into
an orthogonal basis and reparametrization ® = ®’ R, where
®’ is an orthogonal representation spanning the same space
as ® and R € R is a reparametrization for ®. The
eigenvalues of the iteration matrix can be re-expressed as

Spec(Ag) = Spec(R" AgR) = Spec(RR " Ag).

Despite spanning the same space, ® and ®’ have iteration
matrices with different spectra: Spec(Ag) # Spec(Ag).
As a result, the stability of ® not only depends on the spec-
trum of Ag/, but also how the reparametrization R shifts
these eigenvalues. Put another way, ® may be unstable even
if its orthogonal equivalent ®’ is stable. The classical exam-
ple of divergence given by Baird (1995) can be attributed to
this phenomenon. In this example, the constructed represen-
tation expresses the same value functions as a stable tabular
representation, but parametrizes the space in an different
way and thus induces divergence.
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3.4. Singular Vector Representations

The singular value decomposition is an appealing approach
to representation learning: choosing vectors corresponding
to large singular values guarantees, in a certain measure, low
approximation error (Stachenfeld et al., 2014; Behzadian
et al., 2019). Unfortunately, as now we show, doing so may
be inimical to stability.

We denote ® gy p and ®gg the representations with the top
d left singular vectors of P™ and W as features. Recall that
these vectors arise as part of a solution to a low-rank matrix
approximation ||A — Allz. We write P™, ¥ € R™*" to
denote the corresponding rank-d approximations.
Proposition 3.3 (SVD). The representation ® gy p is stable
if and only if the low-rank approximation pr satisfies

S 1
p(PT) < 2.

Proposition 3.4 (Successor Representation). Recall that
Spec(¥) C Cy. The representation ®sp, is stable if and
only if the low-rank approximation V satisfies

Spec(¥) c C, U{0}.

Stability of a singular vector representation requires that the
low-rank approximation maintain the spectral properties of
the original matrix. This implies that such representations
are not stable in general — the SVD low-rank approximation
is chosen to minimize the norm of the error, and the spec-
trum of the approximation can deviate arbitrarily from the
original matrix (Golub & van Loan, 2013). We note that the
spectral conditions hold in the limit of almost-perfect ap-
proximation, but achieving this level of accuracy in practice
may require an impractical number of additional features.

4. Representation Learning with Stability
Guarantees

Our analysis of singular vector representations show that
representations that optimize for alternative measures, such
as approximation error, may lose properties of the transition
matrix needed for stability. In this section, we study repre-
sentations that are constrained, either in expressibility or in
spectrum, to ensure stability.

4.1. Invariant Representations

We first consider representations whose induced transition
matrix preserves the eigenvalues of the transition matrix to
guarantee stability. These representations are closely linked
to invariant subspaces of value functions that are closed
under the transition dynamics of the policy.

Definition 4.1. A representation ® is P -invariant if its
corresponding linear subspace is closed under P™, that is

Span(P7®) C Span(®P).

P7T-invariant subspaces are generated by the eigenspaces of
P7™, and so invariant representations provide a natural way
to reflect the geometry of the transition matrix. For these
representations, we show that any eigenvalue of the induced
transition matrix is also an eigenvalue of the transition ma-
trix; this constraint ensures that invariant representations are
always stable.

Theorem 4.1. An orthogonal invariant representation ®
satisfies

Spec(ITPT1I) C Spec(P™) U {0}
and is therefore stable.

Parr et al. (2008) studied the quality of the TD fixed-point
solution on invariant subspaces, and found it to directly
correlate with how well the subspace models reward. Our
findings on stability emphasize the importance of their re-
sult — with invariant representations that can predict reward,
good value functions not only exist, but are also reliably
discovered by TD(0).

Although estimation of eigenvectors for a nonsymmetric
matrix is numerically unstable, finding orthogonal bases for
their eigenspaces can be done tractably, for example through
the Schur decomposition.

Definition 4.2. Ler A € C"*"™ be a complex matrix. A
Schur decomposition of A, written Schur(A), is URU 1,
where R is upper triangular and U = [uy,us, ..., u,] €
C™*™ is orthogonal. For any k, Span{uy,...u} is an
A-invariant subspace.

The Schur decomposition of P™ provides a sequence of
vectors that span invariant subspaces, and can be constructed
so that the first d basis vectors spans the top d-dimensional
eigenspace of P™. We define a representation using the first
d Schur basis vectors to be the Schur representation.

When the transition matrix is reversible and data is on-policy,
the Schur representation coincides with proto-value func-
tions, and consequently also the successor representation
(Machado et al., 2018). Unlike singular value representa-
tions, the Schur representation preserves the spectrum of
the transition matrix at every step, and always guarantees
stability.

Corollary 4.1.1. The Schur representation is invariant and
thus stable.

A partial Schur basis can be constructed through orthogonal
iteration, a generalized variant of power iteration.
Proposition 4.1 (Golub & van Loan (2013)). Let |A1| >
[A2| > -+ > |An| be the ordered eigenvalues of P™. If
INa| > |Aay1] and &g € C"*9, the sequence ®1, P, ...
generated via orthogonal iteration is

O, = ORTHOG(Span(P™ ®y,_1))
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where ORTHOG(+) finds an orthogonal basis. As k — oo,
Span(®y,) converges to the unique top eigenspace of P™.

In Section 5, we will see that the orthogonal iteration scheme
can be approximated using a loss function and a target net-
work (Mnih et al., 2015), and subsequently minimized with
stochastic gradient descent, making it a potentially impor-
tant tool for learning stable representations in practice.

4.2. Approximately Invariant Representations

In the previous section, we studied invariant representations,
which are constrained to exactly preserve the eigenvalues of
the transition matrix. We relax the notion of invariancy dis-
cuss a relaxation to approximate invariance, for which the
spectrum of the induced matrix deviates from the transition
matrix by a controlled amount, while still preserving stabil-
ity. We find that approximate invariance leads to interesting
implications for representations that span a Krylov subspace
generated by rewards (Petrik, 2007; Parr et al., 2007).

Definition 4.3. A representation is e-invariant if

IIIP™v — P™ol|=
max <e€
vESpan(P) ||U||E

An approximately invariant representation spans a space in
which the transition dynamics are not fully closed, but ap-
proximately so, as measured by the Z-norm. We provide a
simple condition of when an e-invariant representation is sta-
ble under assumptions of diagonalizability of the transition
matrix. If P™ is diagonalizable with eigenbasis A € C"*™,
the distance between the eigenvalues of the induced transi-
tion matrix II P71l and the original transition matrix P™ can
be bounded by a function of a) ¢, the degree of approximate
invariance and b) the condition number of the eigenbasis
k=(A) = ||Allz||A™1 ||z (Trefethen & Embree, 2005).

Theorem 4.2. Let ® be an orthogonal and e-invariant rep-
resentation for (PT,~,=Z) . If PT is diagonalizable with
eigenbasis A, then ® is stable if

1—v 1

T Ry

This bound is quite stringent, especially for discount factors
close to one and ill-conditioned eigenvector bases, but may
be improved if the transition matrix has a special structure.
For the general setting when the transition matrix is not
diagonalizable, similar but more complicated bounds exist
(Shi & Wei, 2012).

Approximately invariant representations are of particular
interest when studying the Krylov subspace generated by
rewards, Kq(P™, 7).

Kq(P™,r) = Span{r, P™r, ..., (P™)% v}

Representations that span this space admit a simple form of
approximate invariancy.

Proposition 4.2. A representation spanning Kq4(P™,r) is
e-invariant if

IILP™v — Pmo|=

<e
[vll=

Where v = (I —Tl4_1)(P™)% 7, and 114_1 is a projection
onto the (d— 1)-dimensional Krylov subspace IKCq—1 (P™,1).

Orthogonal representations for this Krylov subspace are
approximately invariant if they can predict the reward at
the d + 1-th timestep well from the rewards attained in the
first d timesteps. For rewards that diffuse through the envi-
ronment rapidly and can be predicted easily, an orthogonal
basis of the Krylov space generated by rewards is approxi-
mately invariant and thus stable. Challenging environments
with sparse rewards and temporal separation however may
require a prohibitively large Krylov space to guarantee sta-
bility. Note that there is an important distinction between
orthogonal representations spanning a Krylov subspace and
the Krylov basis itself: for most practical applications, re-
wards are highly correlated and because of the challenges
of parametrization, the latter can be unstable.

4.3. Positive-Definite Representations

Invariant representations are stable because the spectrum of
the projected transitions is constrained to closely mimic the
eigenvalues of the transition matrix. What we call positive
definite representations instead guarantee stability by con-
straining the set of expressible value functions to lie within
a safe set. Positive definite representations are stable regard-
less of parametrization, unlike any family of representations
discussed so far.

Definition 4.4. The set of positive-definite value functions
Spp C R™ s

Spp={veER" | (v,P™v)z < v !|v|%}.

Note that Spp is not necessarily closed under addition. The
two-state MDP presented by Tsitsiklis & Roy (1996) where
TD(0) diverges can be interpreted through the lens of this
set. For this example, the state representation only expresses
value functions outside of Spp, which “grow” faster than
v~ 1, and consequently leads to divergence. We focus on
representations whose span falls within this set of safe value
functions.

Definition 4.5. We say that a representation is positive-
definite if
Span(®) C Spp.

Note that a positive definite representation remains so under
reparametrization, unlike the general case. In the special
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case of on-policy data, Spp = R"™ and all representations
are positive-definite (Tsitsiklis & Roy, 1996).

Theorem 4.3. A positive-definite representation ® has a
positive-definite iteration matrix Ag, and is thus stable.

The Laplacian representation, which computes the spectral
eigendecomposition of the symmetrized transition matrix

K= % (Pr+='P"TE) —UAUTE,

provides an interesting bifurcation of value functions into
those that are positive-definite and those that are not. As
a consequence of Theorem 4.3, a stable representation is
obtained by using eigenvectors corresponding to eigenvalues
smaller or equal to %

Proposition 4.3. Let \1, ..., \, be the eigenvalues of K, in
decreasing order, and uq, . . . , u,, the corresponding eigen-
vectors. Define d* as the smallest integer such that \g~ < %
For any i < n — d*, the safe Laplacian representation ®,
defined as

D = [Ugs, Ude41,-- - Ud*+i)s

is positive-definite and stable.

While including eigenvectors for larger eigenvalues does
not guarantee divergence, the basis [uq, ..., u;] fori < d*
is unstable (See appendix). When the data is on-policy, all
eigenvalues of K are below the threshold %, and the safe
Laplacian corresponds exactly to the original representation.

We finish our discussion with a cautionary point. Although
positive-definite representations admit amenable optimiza-
tion properties, such as invariance to reparametrization and
monotonic convergence, they can only express value func-
tions that satisfy a growth condition. Under on-policy sam-
pling this growth condition is nonrestrictive, but as the pol-
icy deviates from the data distribution, the expressiveness
of positive-definite representations reduces greatly.

S. Experiments

We complement our theoretical results with an experimental
evaluation, focusing on the following questions:

e How closely do the theoretical conditions we describe
match stability requirements in practice?

e (Can stable representations be learned using samples?

e Can they be learned using neural networks?

We conduct our study in the four-room domain (Sutton et al.,
1999). We augment this domain with a task where the agent
must reach the top right corner to receive a reward of +1
(Figure 1). The policy evaluation problem is to accurately

Figure 1. Left: The four room domain. Right: Data distribution
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Figure 2. Stability (left) and approximation error (right) for differ-
ent representation learning objectives. For stability, a marker is
placed at d if the first d basis vectors forms a stable representation.

estimate the value function of a near-optimal policy from
data consisting of trajectories sampled by an uniform policy.

We are interested in the usefulness of the representation
learning schemes summarized in Table 1 as a function of
the number of features d that are used. We measure both
the stability of the learned representation and its accuracy in
estimating the greedy policy with respect to the fixed value
function. We chose the latter measure as it is more infor-
mative than value approximation error when the number of
features is small. See Appendix C for full details about the
experimental setup.

Exact Representations: We first consider the quality of
the representations in exact form, assuming access to the
true transition matrix and reward function (Figure 2). We
find that the general empirical profiles for stability match
our theoretical characterizations. Singular vectors of the
successor representation have low error but are unstable
for most choices of small d. Although the Krylov basis
of rewards and its orthogonalization both have the same
estimation errors, they have drastically different stability
profiles, confirming our analysis from Section 4.2. Amongst
the proposed methods that consistently produce stable repre-
sentations, the Schur basis admits low error and with enough
features, is fully expressible. In contrast, the safe Laplacian
representation takes an irrecoverable performance hit, as it
discards the top eigenvectors of the symmetrized transition
matrix that contain reward-relevant information.
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Figure 3. Learnability. We measure the difference between the true
representation and one learned from an empirical transition matrix
constructed from samples. Left: Error with 50000 transitions
varying the number of features. Right: Error as the number of
transitions varies when learning the first 10 features.

Estimation with Samples: In practice, representations
must be learned from finite data. To test the numerical
robustness of the representation learning schemes, we con-
struct an empirical transition matrix from a variable number
of samples and learn a representation using this matrix.

We measure the difference between the subspaces spanned
by the estimated and true representation (Figure 3). We
find that estimating the Schur representation can be more
challenging than the other methods, and requires an order
of magnitude more data to accurately compute than repre-
sentations for singular vectors and spectral decompositions.
This is a well-known problem in numerical linear algebra,
as eigenspaces for nonsymmetric matrices (SCHUR) are
more sensitive to perturbation and estimation error than for
eigenspaces of symmetric matrices (SPECTRAL, SVD). This
implies a three-way tradeoff between stability, approxima-
tion error, and ease of estimation when choosing a represen-
tation for a general environment. The successor representa-
tion is unstable, the safe Laplacian is limited in its approx-
imation power, and the Schur decomposition is harder to
learn from samples. The orthogonal Krylov basis emerges as
a strong method by these measures, but requires additional
knowledge in the guise of the reward function.

Estimation with Neural Networks: In our final set of ex-
periments, we show that the Schur representation and the
orthogonal Krylov representation can be learned by neu-
ral networks by performing stochastic gradient descent on
certain auxiliary objectives.

It has been noted previously that training a representation
network with a final linear layer to predict features causes
the neural network to learn a basis for the target features
(Bellemare et al., 2019). A d-dimensional Krylov represen-
tation then can be learned by predicting reward values at
the next d time-steps. Similarly, orthogonal iteration for
learning the Schur representation (Proposition 3.2) can be
approximated with a two-timescale algorithm that (a) at
each step, predicts the feature values of a fixed target repre-
sentation network at the next time step and (b) infrequently
refreshes the target representation network with the current.

Loss Invariance

b

Loss Value

T T T T
25000 50000 75000 100000
# Gradient Steps

T T T T T T
0 25000 50000 75000 100000 0
# Gradient Steps

== Schur s Krylov
Figure 4. Learning to predict future rewards (Krylov) or future
feature values (Schur) discovers approximately invariant stable

representations.

As our stability guarantees hold for orthogonal representa-
tions, the neural network must learn uncorrelated features,
which can be enforced explicitly or with a penalty-based
orthogonality loss (Wu et al., 2018). We fully describe the
auxiliary objectives and provide implementation details in
Appendix C.

Figure 4 demonstrates that these predictive losses can be
optimized easily with neural networks and can learn stable
approximately invariant representations. We note that this
auxiliary task of predicting future latent states has been
heuristically proposed before (Francois-Lavet et al., 2018;
Gelada et al., 2019), as a way to improve approximation
errors. Our results indicate that such auxiliary tasks may not
only help reduce approximation error, but more importantly,
can mitigate divergence in the learning process and provide
for stable optimization.

6. Conclusion

We have presented an analysis of stability guarantees for
value-function learning under various representation learn-
ing procedures. Our analysis provides conditions for stabil-
ity of many algorithms that learn features from transitions,
and demonstrates how representation learning procedures
constrained to respect the geometry of the transition matrix
can induce stability. We demonstrated that the Schur decom-
position and orthogonal Krylov bases are rich representa-
tions that mitigate divergence in off-policy value function
learning, and further showed that they can be learned using
stochastic gradient descent on a loss function.

Our work provides formal evidence that representation learn-
ing can prevent divergence without sacrificing approxima-
tion quality. To carry our results to the full practical case,
stability should be extended to the sequence of policies that
are encountered during policy iteration. One should also
consider the effects of learning value functions and repre-
sentations concurrently, and the ensuing interactions in the
representation. Our work suggests that studying stable rep-
resentations in these contexts can be a promising avenue
forward for the development of principled auxiliary tasks
for stable deep reinforcement learning.
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