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A. Linear Algebra and Spectral Theory
A.1. Inner Products

A positive-definite symmetric matrix D ∈ Rk×k induces an inner product 〈·, ·〉D and norm ‖ · ‖D on Rk. Specifically, the
inner product is written as 〈v, w〉D = v>Dw, and the corresponding norm ‖v‖2D = 〈v, v〉D = v>Dv. This corresponds to
a Hilbert space (Rk, 〈·, ·〉D). In our work, we equip Rn (where n = |S × A|) with the inner-product induced by the data
distribution Ξ. We also equip Rd (the parameter space) with the usual Euclidean inner product.

Most definitions and constructions with the Euclidean inner product generalize to arbitrary Hilbert spaces, some which we
describe on Rn. Two vectors v, w ∈ Rn are orthogonal if 〈v, w〉Ξ = v>Ξw = 0. A matrix A ∈ Rn×d is orthogonal if the
columns have unit norm, and are orthogonal to one another: A>ΞA = I . The generalization of transposes and symmetrice
matrices comes through the adjoint of a matrix A ∈ Rn×n, written as A∗ = Ξ−1A>Ξ. A matrix is self-adjoint if A = A∗,
and for matrices that are not self-adjoint, the symmetric component is given as Ā = 1

2 (A+ A∗). We refer to ‖A‖ as the
matrix norm induced by the equivalent norm on vectors.

Matrix decompositions for a matrix A ∈ Rn×n can be re-visited with respect to this inner-product.

• Spectral Decomposition: If A is self-adjoint, it admits a decomposition A = UΛU>Ξ, where U ∈ Rn×n is an
orthogonal matrix whose columns are eigenvectors of A and Λ a diagonal matrix with the corresponding eigenvalues.

• SVD: A admits a decomposition A = UΣV >Ξ, where U ∈ Rn×n is an orthogonal matrix whose columns are the left
singular vectors of A, V ∈ Rn×n is an orthogonal matrix whose columns are the right singular vectors of A, and Λ
a diagonal matrix with the corresponding singular values. Letting Ud, Vd ∈ Rn×d correspond to the first d singular
vectors and Σd ∈ Rd×d the diagonal matrix with the corresponding singular values, then the low-rank approximation
Â = UdΣdV

>
d Ξ minimizes ‖A− Â‖Ξ amongst all rank d matrices.

A.2. Eigenvalues

We define the eigenvalues of A ∈ Ck×k to be the roots of the characteristic polynomial p(t) = det(A − tI). Some
eigenvalues may correspond to a multiple root – we refer to this multiplicity as the algebraic multiplicity. Every eigenvalue
λ corresponds to an eigenspace Vλ of eigenvectors with this eigenvalue. If the algebraic multiplicity of any eigenvalue
λ does not equal the dimensionality of Vλ, then A is said to be defective. Otherwise, the matrix A is diagonalizable as
PDP−1, where P is a basis of eigenvectors of A, and D the corresponding eigenvalues.

We write Spec(A) = {λ1, . . . λk} ⊂ C to denote the set of eigenvalues of the matrix A. The spectral radius of a matrix is
the maximum magnitude of eigenvalues, written as ρ(A) = supλ∈Spec(A) |λ|. For two matrices A ∈ Ck×m, B ∈ Cm×k, we
have the following cyclicity: Spec(AB)\{0} = Spec(BA)\{0}. As a consequence, we also have that ρ(AB) = ρ(BA).
We utilize this cyclicity heavily in the ensuing proofs.

The perturbation of eigenvalues for a diagonalizable matrix can be bounded simply via the Bauer-Fike theorem. Specifically,
if A ∈ Ck×k is diagonalizable as PDP−1, then eigenvalues of the perturbed matrix λ′ ∈ Spec(A+ E) can be bounded
in distance from the original eigenvalues as infλ∈Spec(A) |λ − λ′| ≤ ‖E‖κ(P ), where κ(P ) = ‖P‖‖P−1‖. As a simple
corollary of the Bauer-Fike Theorem, we have that ρ(A+ E) ≤ ρ(A) + ‖E‖κ(P ).
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B. Proofs
Proposition 3.1. TD(0) is stable if and only if the eigenvalues of the implied iteration matrix AΦ have positive real
components, that is

Spec(AΦ) ⊂ C+ := {z : Re(z) > 0}.

We say that a particular choice of representation Φ is stable for (Pπ, γ,Ξ) when AΦ satisfies the above condition.

Proof of Proposition 3.1. We review the update taken by TD(0) (equation 1), rewritten to express the connection to the
implied iteration matrix AΦ = Φ>Ξ(I − γPπ)Φ. Notice that AΦθ

∗
TD = Φ>Ξr.

θk+1 − θ∗TD = θk − η
(
Φ>Ξ(I − γPπ)Φθk − Φ>Ξr

)
− θ∗TD

= θk − θ∗TD − η (AΦθk −AΦθ
∗
TD)

= (I − ηAΦ)(θk − θ∗TD)

Unrolling the iteration, the error to the optimal solution takes the form

θk − θ∗TD = (I − ηAΦ)k(θ0 − θ∗TD)

This above iteration converges from any initialization θ0 if and only if the spectral radius is bounded by one: ρ(I−ηAΦ) < 1.

From here, we can easily show that TD(0) is stable if and only if Spec(AΦ) ⊂ C+. If there is some step-size η > 0 for
which ρ(I − ηAΦ) < 1, then Spec(AΦ) ⊂ C+. Similarly, if Spec(AΦ) ⊂ C+, then letting η = minλ∈Spec(AΦ)

Re(λ)
|λ|2

satisfies that ρ(I − ηAΦ) < 1.

Proposition 3.2. An orthogonal representation Φ is stable if and only if the real part of the eigenvalues of the induced
transition matrix ΠPπΠ is bounded above, according to

Spec(ΠPπΠ) ⊂ {z ∈ C : Re(z) < 1
γ }

In particular, Φ is stable if ρ(ΠPπΠ) < 1
γ .

Proof of Proposition 3.2. For an orthogonal representation, the iteration matrix can be written as AΦ
TD = I − γΦ>ΞPπΦ.

Then,

Spec(AΦ) ⊂ C+ ⇐⇒ Spec(Φ>ΞPπΦ) ⊂ {z ∈ C : Re(z) < 1
γ }

⇐⇒ Spec(ΠPπ) ⊂ {z ∈ C : Re(z) < 1
γ }

⇐⇒ Spec(ΠPπΠ) ⊂ {z ∈ C : Re(z) < 1
γ }

The second step falls from the cyclicity of the spectrum and the observation that for an orthogonal representation Φ, the
projection can be written as ΦΦ>Ξ = Π. The spectral radius condition is immediate.

Proposition 3.3 (SVD). The representation ΦSV D is stable if and only if the low-rank approximation P̂π satisfies

ρ(P̂π) < 1
γ .

Proof of Proposition 3.3. We can write the SVD factorization of the transition matrix as

Pπ =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V >1
V >2

]
Ξ

Then, for ΦSV D = U1, ΠPπ = U1Σ1V
>
1 Ξ = P̂π. The necessary and sufficient conditions follow from Proposition

3.2.
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Proposition 3.4 (Successor Representation). Recall that Spec(Ψ) ⊂ C+. The representation ΦSR is stable if and only if
the low-rank approximation Ψ̂ satisfies

Spec(Ψ̂) ⊂ C+ ∪ {0}.

Proof of Proposition 3.4. We can write the SVD factorization of the successor representation Ψ = (I − γPπ)−1

Ψ =
[
U1 U2

] [Σ1 0
0 Σ2

] [
V >1
V >2

]
Ξ (I − γPπ) =

[
V1 V2

] [Σ−1
1 0
0 Σ−1

2

] [
U>1
U>2

]
Ξ

Then, for ΦSR = U1, the iteration matrix can be written as AΦ = U>1 ΞV1Σ−1
1 .

Now, writing Ψ̂ as U1Σ1V
>
1 Ξ The cyclicity of the spectrum implies the desired criterion.

Spec(Ψ̂) = Spec(Ψ̂+) = Spec(V1Σ−1
1 U>1 Ξ) = Spec(U>1 ΞV1Σ−1

1 )
⋃
{0} = Spec(AΦ)

⋃
{0}.

Theorem 4.1. An orthogonal invariant representation Φ satisfies

Spec(ΠPπΠ) ⊆ Spec(Pπ) ∪ {0}

and is therefore stable.

Proof of Theorem 4.1. Let λ be an nonzero eigenvalue of ΠPπΠ with an eigenvector v. Since ΠPπΠv = λv, v ∈ Span(Φ).

Since Pπ is invariant on Span(Φ), Pπv = λv, and therefore λ is an eigenvalue of Pπ. Therefore, Spec(ΠPπΠ) ⊂
Spec(Pπ)

⋃
{0}.

The spectrum of Pπ implies the stability of the representation. Pπ is a stochastic matrix satisfying ρ(Pπ) = 1, and thus
ρ(ΠPπΠ) ≤ 1, implying stability through Proposition 3.2.

Proposition 4.1 (Golub & van Loan (2013)). Let |λ1| ≥ |λ2| ≥ · · · ≥ |λn| be the ordered eigenvalues of Pπ. If
|λd| > |λd+1| and Φ0 ∈ Cn×d, the sequence Φ1,Φ2, . . . generated via orthogonal iteration is

Φk = ORTHOG(Span(PπΦk−1))

where ORTHOG(·) finds an orthogonal basis. As k →∞, Span(Φk) converges to the unique top eigenspace of Pπ .

Proof of Proposition 4.1. See Theorem 7.3.1 in Golub & van Loan (2013).

Theorem 4.2. Let Φ be an orthogonal and ε-invariant representation for (Pπ, γ,Ξ) . If Pπ is diagonalizable with eigenbasis
A, then Φ is stable if

ε <
1− γ
γ

1

κΞ(A)
.

Proof of Theorem 4.2. We can rewrite the definition of ε-invariance in terms of a matrix norm: ‖PπΠ − ΠPπΠ‖Ξ < ε.
Thus, letting E = ΠPπΠ− PπΠ, we have ‖E‖Ξ < ε.

Now, suppose that ΠPπΠ has an eigenvalue, eigenvector pair (λ, v). This means that v ∈ Span(Φ).

λv = ΠPπΠv = PπΠv + Ev = Pπv + Ev =⇒ λ ∈ Spec(Pπ + E)

Now, the Bauer-Fike Theorem (see Appendix A above) thus implies that ρ(ΠPπΠ) < ρ(Pπ) + εκΞ(A) < 1 + εκΞ(A).
Now, if ε < 1−γ

γ
1

κΞ(A) , then ρ(ΠPπΠ) < γ−1, and stability follows from Proposition 3.2.
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Proposition 4.2. A representation spanning Kd(Pπ, r) is ε-invariant if

‖ΠPπv − Pπv‖Ξ
‖v‖Ξ

≤ ε

Where v = (I −Πd−1)(Pπ)d−1r, and Πd−1 is a projection onto the (d− 1)-dimensional Krylov subspace Kd−1(Pπ, r).

Remark: The vector v can be interpreted as the component of the reward at the d-th timestep that cannot be predicted from
the first d− 1 timesteps.

Proof of Proposition 4.2. Any vector v ∈ Kd(Pπ, r) can be decomposed into two components: Πd−1v + (I −Πd−1)v.

‖ΠPπv − Pπv‖Ξ
‖v‖Ξ

=
‖ΠPπ (Πd−1v + (I −Πd−1)v)− Pπ (Πd−1v + (I −Πd−1)v) ‖Ξ

‖Πd−1v + (I −Πd−1)v‖Ξ

=
‖ΠPπ(I −Πd−1)− Pπ(I −Πd−1)v‖Ξ
‖Πd−1v‖Ξ + ‖(I −Πd−1)v‖Ξ

This expression is maximized whenever v is nonzero and ‖Πd−1v‖Ξ = 0, which is true whenever v = (I−Πd−1)(Pπ)d−1r.

sup
v∈Span(Φ)

‖ΠPπv − Pπv‖Ξ
‖v‖Ξ

=
‖ΠPπv − Pπv‖Ξ

‖v‖Ξ

Theorem 4.3. A positive-definite representation Φ has a positive-definite iteration matrix AΦ, and is thus stable.

Proof of Theorem 4.3. First, we show that the iteration matrix AΦ is positive-definite, and then show that this implies
stability.

For any x ∈ Rd, let v = Φx. Because Φ is positive-definite, v ∈ SPD. Notice that rearranging the definition of positive
definiteness implies that 〈v, (I − γPπ)v〉Ξ > 0.

x>AΦ
TDx = v>Ξ(I − γPπ)v = 〈v, (I − γPπ)v〉Ξ > 0.

Now, we consider an eigenvalue λ of the iteration matrix AΦ, and a corresponding unit eigenvector x ∈ Cd. We know that λ
is also an eigenvalue of AΦ with unit eigenvector x. Then,

(x+ x)>AΦ(x+ x) = λx>x+ λx>x+ λx>x+ λx>x = 2(λ+ λ)

Positive-definiteness implies that 2(λ+ λ) > 0, and therefore the real component of λ, Re(λ) = 1
2 (λ+ λ), must also be

positive.

Proposition 4.3. Let λ1, . . . , λn be the eigenvalues of K, in decreasing order, and u1, . . . , un the corresponding eigenvec-
tors. Define d∗ as the smallest integer such that λd∗ < 1

γ . For any i ≤ n− d∗, the safe Laplacian representation Φ, defined
as

Φ = [ud∗ , ud∗+1, . . . , ud∗+i],

is positive-definite and stable.

Proof of Proposition 4.3. We shall show that Span({ud∗ , ud∗+1, . . . , un}) ⊆ SPD, which implies the proposition.

〈v, Pπv〉Ξ = 〈v, 1
2 (Pπ + Ξ−1(Pπ)>Ξ)v〉Ξ
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Consider some v ∈ Span({ud∗ , ud∗+1, . . . , un}) which can be expressed as
∑n
k=d∗ αkuk. We have

〈v, Pπv〉Ξ = 〈v, 1
2 (Pπ + Ξ−1(Pπ)>Ξ)v〉Ξ

=

〈
n∑

k=d∗

αkuk,
1
2 (Pπ + Ξ−1(Pπ)>Ξ)

n∑
k=d∗

αkuk

〉
Ξ

=

〈
n∑

k=d∗

αkuk,

n∑
k=d∗

λkαkuk

〉
Ξ

< γ−1

〈
n∑

k=d∗

αkuk,

n∑
k=d∗

αkuk

〉
Ξ

= γ−1‖v‖2Ξ

Hence, v ∈ SPD and Span({ud∗ , ud∗+1, . . . , un}) ⊆ SPD. The second-to-last line is a result of eigenvalues being bounded
by γ−1.

Since Span(Φ) ⊆ Span({ud∗ , ud∗+1, . . . , un}), we also have Span(Φ) ⊆ SPD, and stability ensues from Theorem 4.3.

As a sidenote, we can use this same sequence of steps to show that a representation using only the top eigenvectors of
K is always not stable. Defining the representation Φ = [u1, u2, . . . , ud∗−1], and following the same set of steps yields
that 〈v, Pπv〉 > γ−1‖v‖2Ξ for any v ∈ Span(Φ). This implies that for this representation, the iteration matrix AΦ is
negative-definite, and has all eigenvalues with negative real component, therefore not stable.
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C. Empirical Evaluation
C.1. Experimental Setup

Four-room Domain: The four-room domain (Sutton et al., 1999) has 104 discrete states arranged into four “rooms”. At any
state, the agent can take one of four actions corresponding to cardinal directions; if a wall blocks movement in the selected
direction, the agent remains in place.

Policy Evaluation: We augment this domain with a task where the agent must reach the top right corner of the environment.
The corresponding reward function is sparse, with the agent receiving +1 reward when it is in the desired state, and
zero otherwise. The policy evaluation problem is to find the value function of a near-optimal policy in the environment
Epsilon-Greedy(π∗, ε = 0.1), which takes the optimal action with probability 0.9, and a randomly selected action otherwise.
Data is collected by rolling out 50-step trajectories from the center of the bottom-left room with a uniform policy, which
samples actions uniformly at random. The discount factor is γ = 0.99.

C.2. Exact Evaluation

In this setting, the exact transition matrix Pπ and data distribution Ξ are used to create the representation. We compute
the decompositions according to Table 1 and Appendix A. Stability is measured for a given representation by explicitly
creating the induced iteration matrix, computing the eigenvalues, and checking for real positive parts. To measure accuracy,
we considered three metrics (Figure C.2).

• Policy Accuracy: (displayed in paper) This measures how well the greedy policy for the true value function matches
the greedy policy for the estimated value function. This is given as

1

|S|
∑
s∈S

δ(arg max
a

Q̂(s, a) 6= arg max
a

Qπ(s, a))

• Optimal Projection Error: This measures how far the true value function is from the subspace of expressible value
functions ‖Qπ − ΠQπ‖Ξ. As the number of features increases, this error monotonically decreases, but may not be
indicative of the quality of the solution.

• Bellman Projection Error: This measures how far the solution reached by TD(0) (the TD-fixed point) is from the
true value function: ‖Qπ −Φθ∗TD‖Ξ. This measure of error is nonmonotonic (adding extra features can cause errors to
increase) and unbounded. Furthermore, in the regime of a low number of features, this error greatly underestimates the
quality of the recovered solution.
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C.3. Estimation from Samples

To measure how well the representations can be measured using samples, we consider the difference between the subspace
spanned by the estimated and true representations. In particular, we sample t transitions from the data distribution, and
reconstruct the empirical transition matrix P̂π given these transitions. If a particular (s, a) pair is never sampled, the prior
we use for the transition matrix is that taking this action deterministically leads back to s. We construct the estimated
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representation as Φ̂, and measure the distance between the true representation Φ and the estimated representation Φ̂ as
‖ΠΦ −ΠΦ̂‖Ξ,F . The Frobenius norm ‖ · ‖Ξ,F is selected in particular as this measures an expected distance, as compared
to the maximum distance, measured by the operator norm ‖ · ‖Ξ.

C.4. Estimation with Gradient Descent:

When learning the representation using gradient descent, we train a network f(s, a; θ) with one hidden layer with d units
with no activation function, that takes in state-action pairs encoded in one-hot form (as vectors in R|S×A|) and outputs in
Rd. In our experiments, d = 21. The value of the units in the hidden layer is the representation φ(s, a; θ). The network is
trained with a minibatch size of 32 for 100, 000 steps, all implemented in Jax.

• Schur Decomposition: To mimic the orthogonal iteration procedure, we use the following training loss function,
where θt are the parameters for the target network.

L(θ; θt) = E (s,a)∼ξ
s′∼P (·|s,a)

[
‖f(s, a; θ)− Ea′∼π[φ(s′, a′; θt)]‖

2
]

This loss is optimized using stochastic gradient descent with a step-size of 4. The target network is updated every 10, 000
steps, and after every target network update, the representation is renormalized to satisfy E(s,a)∼ξ[φ(s, a; θ)2

i ] = 1.

• Reward Krylov Basis: We use the following regression training loss function

L(θ) = E(s1,a1)∼ξ

[
d∑
i=1

(
f(s, a; θ)i − E(s2,a2,s3,a3,...,sd,ad)∼Pπ [r(si, ai)]

)2]

where the inner expectation comes from trajectories that are generated from the policy π being evaluated starting from
(s1, a1). Although this loss requires that the evaluated policy be run in the environment, it serves a didactic purpose to
show that these Krylov bases can be learned with additional domain knowledge. This loss is optimized using the Adam
optimizer with a learning rate of 10−3.


