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Abstract

Differential privacy (DP) is a formal notion for
quantifying the privacy loss of algorithms. Algo-
rithms in the central model of DP achieve high
accuracy but make the strongest trust assumptions
whereas those in the local DP model make the
weakest trust assumptions but incur substantial
accuracy loss. The shuffled DP model (Bittau
et al., 2017; Erlingsson et al., 2019; Cheu et al.,
2019) has recently emerged as a feasible mid-
dle ground between the central and local mod-
els, providing stronger trust assumptions than
the former while promising higher accuracies
than the latter. In this paper, we obtain practical
communication-efficient algorithms in the shuf-
fled DP model for two basic aggregation primi-
tives used in machine learning: 1) binary sum-
mation, and 2) histograms over a moderate num-
ber of buckets. Our algorithms achieve accuracy
that is arbitrarily close to that of central DP algo-
rithms with an expected communication per user
essentially matching what is needed without any
privacy constraints! We demonstrate the practi-
cality of our algorithms by experimentally com-
paring their performance to several widely-used
protocols such as Randomized Response (Warner,
1965) and RAPPOR (Erlingsson et al., 2014).

1. Introduction

Motivated by the need for scalable, distributed privacy-
preserving machine learning, there has been an intense inter-
est, both in academia and industry, on designing algorithms
with low communication overhead and high accuracy while
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protecting potentially sensitive, user-specific information.
While many notions of privacy have been proposed, differ-
ential privacy (DP) (Dwork et al., 2006b;a) has become
by far the most popular and well-studied candidate, lead-
ing to several real-world deployments at companies such
as Google (Erlingsson et al., 2014; Shankland, 2014), Ap-
ple (Greenberg, 2016; Apple Differential Privacy Team,
2017), and Microsoft (Ding et al., 2017), and in govern-
ment agencies such as the U.S. Census Bureau (Abowd,
2018). Most research has focused on the central model of
DP where a curator, who sees the raw user data, is required
to release a private data structure. While many accurate
DP algorithms have been discovered in this framework, the
requirement that the curator observes the raw data consti-
tutes a significant obstacle to deployment in many industrial
settings where the users do not necessarily trust the cen-
tral authority. To circumvent this limitation, several works
have studied the local model of DP (Kasiviswanathan et al.,
2008) (also (Warner, 1965)), which enforces the more strin-
gent constraint that each message sent from a user device
to the server is private. While requiring near-minimal trust
assumptions, the local model turns out to inherently suffer
from large estimation errors. For numerous basic tasks, in-
cluding binary summation and histograms that we study in
this work, errors are at least on the order of ﬁ, where n is
the number of users (Beimel et al., 2008; Chan et al., 2012).

Shuffled Privacy Model. The shuffled (aka. anonymous)
model of privacy has recently generated significant interest
as a potential compromise between the central and local
frameworks: having trust assumptions better than the for-
mer but enabling estimation accuracies higher than the latter.
While the shuffled model was originally studied in the field
of cryptography by Ishai et al. (2006) in their work on
cryptography from anonymity, it was first suggested as a
framework for privacy-preserving computations by Bittau
et al. (2017) in their Encode-Shuffle-Analyze architecture.
This setting only requires the multiset of anonymized mes-
sages that are transmitted by the different users to be private.
Equivalently, this corresponds to the setup where a trusted
shuffler randomly permutes all incoming messages from the
users before passing them to the analyzer. This is illustrated
in Figure 1. We point out that several efficient cryptographic
implementations of the shuffler have been considered includ-
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ing mixnets, onion routing, secure hardware, and third-party
servers (see, e.g., (Ishai et al., 2006; Bittau et al., 2017) for
more details). As in all previous work on the shuffled model,
we treat the shuffler as a black box.
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Figure 1. The Shuffled Model.

DP in the shuffled model was first formally investigated,
independently, by Erlingsson et al. (2019) and Cheu et al.
(2019). Several recent works have aimed to determine the
optimal trade-offs between communication, accuracy, and
privacy in this model for various algorithmic tasks (Balle
et al., 2019; Ghazi et al., 2019b;a; 2020b; Balle et al., 2020;
Balcer & Cheu, 2020).

Summation. One of the most basic distributed computation
problems is summation (aka. aggregation) where the goal
of the analyzer is to estimate the sum of the user inputs. In
machine learning, and specifically in the nascent field of fed-
erated learning (Konecny et al., 2016) (see, e.g., (Kairouz
et al., 2019) for a recent survey), private summation en-
ables private Stochastic Gradient Descent (SGD), which in
turn allows the private training of deep neural networks that
are guaranteed not to overfit to any user-specific informa-
tion. Moreover, summation is perhaps the most primitive
functionality in database systems in general, and in private
implementations in particular (see, e.g., (Kotsogiannis et al.,
2019; Wilson et al., 2019; Suresh et al., 2017)).

A notable special case is binary summation (aka. counting
query) where each user holds a bit as an input and the goal
of the analyzer is to estimate the number of users whose
input equals 1. The vector version of this problem captures,
e.g., the case where gradients have been quantized to bits in
order to reduce the communication cost (e.g., the 1-bit SGD
of Seide et al. (2014)). As observed in Blum et al. (2005),
binary summation is of particular interest in ML since it is
sufficient for implementing any learning algorithm based on
statistical queries (Kearns, 1998), which includes most of
the known PAC-learning algorithms.

Several recent works have studied private summation in
the shuffled model (Cheu et al., 2019; Balle et al., 2019;
Ghazi et al., 2019b; Balle et al., 2020; Ghazi et al., 2020b;a).

These results achieve DP with parameters ¢, ¢ (defined in
Section 2). Cheu et al. (2019) showed that the standard
Randomized Response (which goes back to Warner (1965)
in the local DP case) is (&, §)-DP and incurs a squared error
of O(Z -log %) with high probability. All mentioned works
have also studied real summation, culminating in an (g, §)-
DP protocol in the shuffled model with error arbitrarily close
to a discrete Laplace random variable with parameter 1/¢,
log(1/6)

and where each user sends O(1 + W) messages of

O(log n) bits each (Ghazi et al., 2020b; Balle et al., 2020).

Histograms. A generalization of the binary summation
problem is that of computing histograms (aka. frequency
oracles or frequency estimation), where each user holds
an element from some finite set [B] := {1,..., B} and
the goal of the analyzer is to estimate for all j € [B], the
number of users holding element j as input. Computing his-
tograms is fundamental in data analytics and is well-studied
in DP (e.g., (Kairouz et al., 2016; Acharya & Sun, 2019;
Suresh, 2019)), as private histogram procedures can be used
as a black-box to solve important algorithmic problems such
as heavy hitters (e.g., (Bassily et al., 2017)) as well as un-
supervised machine learning tasks such as clustering (e.g.,
(Stemmer, 2020)); furthermore, computing histogram is in-
timately related to distribution estimation (e.g., (Kairouz
et al., 2016; Acharya & Sun, 2019)). In central DP, the
smallest possible estimation error for histograms is known
to be (9(min(w7 @, n)) (e.g., Section 7.1 in Vad-
han (2017)). On the other hand, the smallest possible error in
local DP is @(min(ivm;gB, n)) provided 0 < 1/n (Bass-
ily & Smith, 2015). In the shuffled DP setting and for € a
constant and § inverse-polynomial in n, the tight estimation
error for single-message protocols (where each user sends
a single message) is ©(min{n'/* /B}), whereas multi-
message protocols with both error and per-user communica-
tion that are logarithmic in B and n are known (Ghazi et al.,
2019a; Erlingsson et al., 2020). Recently, Balcer & Cheu
(2020) obtained a protocol with error independent of B but
logarithmic in n, albeit with a per-user communication of
O(B) messages each consisting of O(log B) bits.

Two recent works (Wang et al., 2019; Erlingsson et al.,
2020) studied private histograms in extensions of the shuf-
fled model to multiple shufflers. Wang et al. (2019) uses
Randomized Response whereas Erlingsson et al. (2020) uses
a fragmented version of RAPPOR (Erlingsson et al., 2014).

In this work we focus on the regime where B < n, which
captures numerous practical scenarios since the number of
buckets is typically small compared to the population size.

1.1. Main Results

For the binary summation problem, we give the first private
protocol in the shuffled model achieving mean squared er-
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ror (MSE) arbitrarily close to the central performance of
the Discrete Laplace mechanism while having an expected
communication per user of 1 + o(1) messages of 1 bit each.

Theorem 1 (Binary Summation Protocol). For every
e < O(1) and every 6,y € (0,1/2), there is an (g,9)-
DP protocol for binary summation in the multi-message
shuffled model with error equal to a Discrete Laplace ran-
dom variable with parameter (1 — ~)e and with an expected

Lo log?(1/6 .
communication per user of 1 + O (%) bits.
We extend Theorem 1 to a protocol for histograms that,
with a moderate number of buckets, has error arbitrarily
close to the central DP performance of the Discrete Laplace
mechanism while using essentially minimal communication.

Corollary 2 (Histogram Protocol). For every ¢ < O(1)

and every 6, € (0,1/2), there is an (e, §)-DP protocol for

histograms on sets of size B in the multi-message shuffled

model, with error equal to a vector of independent Discrete
a-

Laplace random variables each with parameter T'Y)E and

with an expected number of messages sent per user equal to
140 (%), each consisting of [log B| + 1 bits.

For the standard setting of constant ¢ and ¢ inverse-
polynomial in n and for an arbitrarily small positive con-
stant y, the expected communication per user in Theorem 1
is 1 + o(1) bits. Note that 1 bit of communication per user
is required for accurate estimation of the binary summa-
tion even in the absence of any privacy constraints. Like-
wise, the expected communication per user in Corollary 2 is
[log B] + 1+ o(1) bits. Here again, log B bits of commu-
nication per user is required for accurate estimation of the
histogram even in the absence of any privacy constraints.

A natural question in the context of Theorem 1 and Corol-
lary 2 is whether the same accuracy and communication
can be achieved by a single-message protocol in the shuf-
fled model. For histograms, this is impossible given the
Q(min{n'/*,v/B}) lower bound of Ghazi et al. (2019a) on
the /.-error of any single-message protocol whereas the
expected £, error in Corollary 2 is at most O(loi—'B). We
prove that this is also impossible for binary summation:

Theorem 3 (Binary Summation Lower Bound). Ler § =
1/n*Y) and ¢ < O(1). Then, any (¢, 8)-DP protocol for
Binary Summation in the single-message shuffled model
should incur an expected squared error of at least Q(logn).

In light of the lower bound in Theorem 3 and the aforemen-
tioned lower bound of Ghazi et al. (2019a), it is striking
that the protocols in Theorem 1 and Corollary 2 can get
arbitrarily close to the central performance of the Discrete
Laplace mechanism while being almost single-message: the
vast majority of users send a single message (consisting of a

single bit in the binary summation protocol and [log B + 1
bits in the histogram protocol) while only a random o(1)
fraction of users sends more than one message!

We point out that, as in previous work in the shuffled and
local models of DP, the communication costs in Theorem 1
and Corollary 2 exclude the encryption costs. However, as
different messages sent by the users have to be encrypted
separately, the encryption overhead increases with the num-
ber of messages, and hence our almost single-message pro-
tocols would be even more appealing compared to other
multi-message procedures as in Ghazi et al. (2020b); Balle
et al. (2020); Ghazi et al. (2019a) when the encryption costs
are taken into account.

Experimental Evaluation. We implement our algorithms
and compare their performance to several alternatives pro-
posed in the literature, both for binary summation and his-
togram. For the latter, we evaluate the algorithms on public
1940 US Census IPUMS dataset, considering both categor-
ical and numerical features. Our experiments support our
theoretical analysis: for a broad setting of n, ¢, 4, and B,
we incur small communication overhead while achieving
near-central errors that are noticeably smaller than previous
protocols. The experimental results are presented in the
supplementary material.

Remark 4. We note that our algorithms in Theorem I and
Corollary 2 can be used to learn the empirical distribution
of the users’ data up a small error. In light of the near-
optimality properties of the Discrete Laplace distribution in
the central DP model (Ghosh et al., 2012), our algorithms
are also close to optimal. This holds for general error
measures including the {1, {3, and L, norms, which are
well-studied in the literature on distribution estimation and
learning (e.g., (Kairouz et al., 2016, Acharya & Sun, 2019)).

1.2. Overview of Techniques

Before outlining the proof of Theorem 1, we first note that
the Discrete Laplace mechanism in the central model incurs
only a constant MSE. To get a similar bound in the shuffled
model, any single-message protocol—in particular, Ran-
domized Response and RAPPOR (Erlingsson et al., 2014)
(which for binary summation coincides with Randomized
Response)—is ruled out by Theorem 3. Furthermore, the
recent histogram protocols of Ghazi et al. (2019a); Erlings-
son et al. (2020), are also not applicable since they all incur
an MSE of Q(log n). Theorem 1 also guarantees vanishing
communication overhead: this rules out the split-and-mix
protocol in Ghazi et al. (2020b); Balle et al. (2020) and a
recent protocol of Ghazi et al. (2020a).

We next recall the prototypical private binary summation
procedures in the central setup. If user ¢’s input is x;, then
the analyzer simply computes the correct sum Zie[n] x;
and then adds to it a random variable sampled from some
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probability distribution D. A common choice of D is the
Discrete Laplace distribution with parameter €, which yields
an (g, 0)-DP protocol for binary summation with an asymp-
totically tight MSE of O(1/&?); this is known to be optimal
in the central DP model (Ghosh et al., 2012).

Using Infinitely Divisible Distributions. In order to emu-
late the prototypical central model mechanism in the shuf-
fled model, we need to distribute both the signal and the
noise over the n users. Distributing the signal can be nat-
urally done by having each user ¢ merely send their true
input bit ;. Distributing the noise is significantly more
challenging since the shuffled model is symmetric and does
not allow coordination of noise across users. Consider the
framework, captured in Algorithms 1 and 2 on page 5, where
(a) each user sends (possibly several) bits to the shuffler and
(b) the analyzer counts the number of 1s received from the
shuffler and outputs it as a proxy for the true sum (possi-
bly after subtracting a fixed bias term). In this case, we
would need to decompose the noise random variable into n
i.i.d. non-negative components, and have each user sample
and transmit one component in unary. Distributions that are
decomposable into the sum of n i.i.d. (not necessarily non-
negative) samples for any positive integer n are well-studied
in probability theory and are known as infinitely divisible.
In DP, the Discrete Laplace distribution was observed to be
infinitely divisible by Goryczka & Xiong (2015), and this
property was used by Balle et al. (2020) for real summation
in the shuffled model, albeit with several messages per user,
each consisting of Q2(logn) bits. However, decomposing
the Discrete Laplace distribution into a sum of i.i.d. non-
negative samples—as required by our template above—is
clearly impossible since its support contains negative values.

One basic discrete non-negative infinitely divisible distri-
bution is the Poisson distribution with parameter A, which
can be sampled by summing n i.i.d. samples from a Poisson
distribution with parameter A/n, for any positive integer n.
The resulting Poisson mechanism can thus be used as a can-
didate binary summation procedure in the shuffled model.
It turns out that this mechanism is (¢, §)-DP if we set A to

0 (%) (see Theorem 11). In this case, the expected

communication cost of transmitting the per-user noise is
equal to the expectation A/n, which is much smaller than 1.
We note that, for a reason explained in Section 3.2, we can
further reduce the communication by considering the Neg-
ative Binomial distribution NB(r, p). This distribution is
infinitely divisible as a random sample from NB(r, p) can
be generated by summing n i.i.d. samples from NB(r/n, p),
for any positive integer n.

Unfortunately, it turns out we cannot hope to achieve near-
central accuracy using any non-negative infinitely divisible
distribution. Specifically, we prove in Section 3.3 that for
every such noise distribution, the incurred MSE will grow

asymptotically with log(1/4). This is in sharp contrast with
the error in the central model, which is independent of 6.

Unary Encoding and Correlated Noise. Instead, the sup-
port of our noise distribution has to also contain negative
values. To allow this, a natural extension of the above tem-
plate algorithm is to let each message consists of either an
increment (e.g., +1) value or a decrement (e.g., —1) value.
This template leads to a distributed noise strategy that can
achieve near-central accuracy, described next. We know
from Goryczka & Xiong (2015) that the Discrete Laplace
distribution with parameter ¢ is the same as the distribution
of the difference of two independent NB(1, e~¢) random
variables, and is thus infinitely divisible. This noise can
be distributed in the shuffled model by letting each user
sample two independent random variables Z' and Z? from
NB(1/n,e™¢), and send Z' increment messages and Z>
decrement messages to the shuffler. This mechanism would
achieve the same error as the central Discrete Laplace mech-
anism. However, since the analyzer can still see the num-
ber of increment messages, this scheme is no more private
than the (non-negative) mechanism with noise distribution
NB(1,e~¢), and thus cannot be (g, §)-DP by virtue of the
lower bound (Section 3.3).

To leverage the power of sending both positive and nega-
tive messages, we correlate the input-dependent and noise
components sent by the users so that the analyzer is unable
to extract much information about the user inputs from one
type of messages. We do so by employing a unary version
of the split-and-mix procedure of Ishai et al. (2006); Ghazi
et al. (2020b); Balle et al. (2020). Namely, in addition to the
aforementioned random variables Z! and Z2, each user will
independently sample a third random variable Z3 from an-
other infinitely divisible distribution, and will send Z Ly 73
increment messages and Z2 + Z3 decrement messages (see
Algorithm 3 on page 7). Note that in this case, when Z3 is
sufficiently “spread out”, the analyzer cannot extract much
information from counting the number of increments alone,
since the noise from Z? already overwhelms the user inputs.
We formalize this intuition by proving that, for carefully
selected infinitely divisible noise distributions, the result-
ing mechanism is (&, §)-DP and incurs an error that can be
made arbitrarily close to that of the central Discrete Laplace
mechanism, while incurring an expected communication
overhead per user that goes to 0 with as n increases.

To prove Corollary 2, we run the binary summation protocol
in parallel on all B buckets, and instead of sending +1 val-
ued messages, we concatenate each with the length [log B]
binary expansion of the index of the bucket being incre-
mented/decremented. While a straightforward implementa-
tion of the randomizer has a running time of Q(B), we show,
using the characterization of infinitely divisible distributions
in terms of Discrete Compound Poisson (DCP) distributions,
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that the expected running time can be significantly reduced
to the order of the expected per-user communication cost.

Size-Freeness. Infinitely divisible noise mechanisms are
much easier to deploy in practice compared to general
schemes. This is because for fixed (e, d), the “noise pa-
rameter” of infinitely divisible mechanisms is independent
of the number of users n: e.g., in the case of the Poisson
Mechanism, the parameter A only depends on € and ¢. In
contrast, computing near-optimal parameters in the shuffled
model of the noise parameters for non-infinitely divisible
schemes such as Randomized Response (Warner, 1965) and
RAPPOR (Erlingsson et al., 2014) requires re-running a
time-expensive algorithm for each new value of n (see the
supplementary material for more details). This can be unde-
sirable in practice, especially for real-time applications.

1.3. Organization

We provide some background and notation in Section 2. In
Sections 3 and 4 we prove Theorem 1. Our experimental
setup and results are presented in Section 5. We conclude
with some open questions in Section 6. Corollary 2 and
Theorem 3 are proved in the supplementary material.

2. Preliminaries

Let n be the number of users and [n] := {1,...,n}. In this
work, we only consider discrete probability distributions
that are supported on (possibly negative) integers. We write
X ~ D to denote a random variable X sampled according
to D. We let supp(D) denote the support of D, E[D] its
mean, and Var(D) its variance. For two distributions D
and D’, we denote by D + D’ the distribution of X + X'
where X and X’ are independently sampled from D and D’
respectively; D — D’ is defined similarly. For integer k, we
denote by k+D the distribution of £+ X when X ~ D. For
any x € Z we let D(z) denote Prz,.p[Z = z]. We denote
by x ~ x’ two datasets (i.e., n-dimensional vectors) x and
x’ differing on a single user’s data (i.e., a single coordinate).

Definition 5 (Differential Privacy (Dwork et al., 2006a;b)).
For any parameters € > 0 and 6 € [0,1], a randomized
mechanism M is (e, d)-differentially private (DP) if for
every pair of x ~ x' and for every subset S of transcripts of
M, it holds that Pr[M(x) € S] < e -Pr[M(x) € S|+,
where the probabilities are over the randomness in M.

Shuffled Model. A protocol in the shuffled privacy model
consists of three procedures: a local randomizer that sends
one or several messages depending on its input, a shuffler
that randomly permutes all incoming messages, and an an-
alyzer that takes in the output of the shuffler and returns
the final output of the protocol. Privacy is required to be
guaranteed with respect to the output of the shuffler.

Algorithm 1 D-Distributed Randomizer.

1: procedure RANDOMIZERp ()
2:  Sample Z ~ Dy,
3:  Send z + Z messages, where each message is 1

3. The D-Distributed Mechanisms

In this section, we propose and study a family of simple
mechanisms in the shuffied model for the binary summa-
tion problem. While the mechanisms in this section do not
achieve the accuracy promised in Theorem 1, they will serve
as an important building block to our eventual algorithm in
Section 4. In fact, we will need the privacy guarantee of
these mechanisms against a generalization of bit summation
called A-summation defined as follows. For A € N, in the
A-summation task, the input to each user is a number z;
in {0,..., A} and the goal is to compute >, ., z;. When
A =1, this task is the same as binary summation.

To define our protocol, we first recall that a standard strategy
for achieving DP in the central model is to simply add noise
to the correct answer. We will refer to such a mechanism
the D Mechanism when the noise distribution is D.

Definition 6. For any distribution D, the D Mechanism for
computing a function f : X™ — 7% is defined as the mech-
anism that, on input x € X", outputs f(x) + (Y1,...,Yy)
where Y; ~ D, i € [d] are independent.

The definition of the D Mechanism applies even when
supp(D) contains negative integers, but in this section we
focus on distributions D that are supported on non-negative
integers and that are infinitely divisible as defined next.

Definition 7 (Infinite Divisibility). A distribution D is said
to be infinitely divisible (abbreviated co-div) if for every
n € N, there exists a distribution D ;,, such that (X1+---+
Xn) ~ D where X; ~ Dy, i € [d] are independent.

For an oco-div D on non-negative integers, we define the
D-Distributed Mechanism in the shuffled model as follows:

Algorithm 2 D-Distributed Analyzer.
1: procedure ANALYZERp

2: U < number of messages received
3 returnU — E[D]

Privacy. Observe that, from the analyzer’s perspective, it
only sees U (because all the messages are identical) and
U is distributed exactly as 3, z; + D by oo-div of D.
From this, we immediately get that the privacy guarantee of
the D-Distributed Mechanism in the shuffled model is the
same as that of the D Mechanism in the central model.

Observation 8. For any ¢ > 0 and 6 € (0,1), the D-
Distributed Mechanism is (¢,0)-DP in the shuffled model
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Sor A-summation if and only if the D Mechanism is (g, 0)-
DP in the central model for A-summation.

Accuracy. As discussed above, we are guaranteed in Algo-
rithm 2 that U = 3~ (., #; + D, which gives:
Observation 9. The error of the D-distributed Mechanism
is distributed as D — E[D).

Expected Communication. The expected number of mes-
sages sent by each user in Algorithm 1 is = + E[D,| =
z + B2l Using the fact that 2 € {0,..., A}, we get:

n
Observation 10. The expected number of messages sent by

a user in the D-Distributed Mechanism is at most A\ + @.
3.1. Example I: The Poisson Mechanism

Arguably, the simplest protocol in the family of D-
Distributed Mechanisms is the Poisson Mechanism that uses
the Poisson distribution!, which is co-div. In this protocol,
D is Poi(\) for some A € R and D,, is simply Poi(\/n).
We now compute its privacy guarantee.

Theorem 11. Foranye > 0, € (0,1), and A € N, the

Poi(\) Mechanism with \ = (116_109%(51/(2/()5; + 1_3,Agm, is

(€,0)-DP in the central model for A-summation.

By setting A = 1 and using Observations 8, 9, and 10, we
get the following for binary summation.

Corollary 12. Forany 0 < e < O(1)and ¢ € (0,1), let A
be as in Theorem 11 with A = 1. The Poi(\)-Distributed
Mechanism is (g, §)-DP for binary summation in the shuffled

model, each user sends at most 1 + O (M> one-bit

e2n

messages in expectation, and the MSE is O (logi#).

3.2. Example II: The Negative Binomial Mechanism

A disadvantage of the Poisson Mechanism is that, in the
most important regime where % < 1, the expected number

of messages sent is 1 + O (M . (%)2> In this sub-

n
section, we show how to reduce the dependency on % from
(%)2 to %, while retaining a similar error bound. (As we
will see in Section 4, this dependency will also permeate to
our eventual algorithm in the proof of Theorem 1.) Before
doing so, we note that the (%)2 dependency is necessary
for the Poisson Mechanism since it is well-known? that the
MSE of any central (g, 0(1))-DP protocol for A-summation
has to be at least Q((%)Q) and since the MSE of the Poi())
Mechanism is exactly A, we must hence set A > (£)2.
Thus, the expected number of messages sent per user in the

. . 2
Poi(A) Mechanism must be 1 + 2 > 14 Q (% (£) )

'Poi(A) is defined as Poi(k; ) = Afe % /kl.

>This follows from the sensitivity of A-summation; see,
e.g.. (Vadhan, 2017).

To circumvent this, we first observe that the above argu-
ment holds only because the parameter A of the Poisson
Mechanism governs both the MSE (i.e., the variance of
the distribution) and the number of messages sent (i.e., the
expectation of the distribution). This motivates us to seek
an oco-div distribution on the negative integers whose vari-
ance and mean can be very different. We consider the neg-
ative binomial distribution® NB(r,p) which is co-div as
NB(r,p) = >_i" 1 NB(Z, p) for every n € N. Moreover,
E[NB(r,p)] = (ffp) and Var[NB(r,p)] = #, which
can be very different when p is close to 1. We next show a
DP guarantee for this Negative Binomial Mechanism.

Theorem 13. For any e > 0,0 € [0,1), and A € N, let
p=e %2 andr = 50 - /2 - log (%) The NB(r,p)
Mechanism is (¢, 0)-DP in the central model.

Plugging A = 1, we get the following corollary. When com-
pared to Poisson Mechanism (Corollary 12), we achieve the
same error bound but with a £ instead of % multiplicative
term in the expected number of additional messages sent.

Corollary 14. For any e, > 0 withe < O(1), let p,r be
as in Theorem 13 with A = 1. The NB(r, p)-Distributed
Mechanism is (g, 0)-DP for binary summation in the shuffled

model, each user sends at most 1 + O (M) one-bit

S

messages in expectation, and the MSE is O (M).

£2

3.3. A Lower Bound for D-Distributed Mechanisms

The downside of the Poisson and Negative Binomial Mecha-
nisms is that they suffer from an MSE of O, (log(§)) instead
of the O(Z;) MSE, independent of 4, of the central Discrete
Laplace Mechanism. It turns out that this dependency on
log(%) is necessary for every D-Distributed Mechanism:

Lemma 15. For any infinitely divisible distribution D on
non-negative integers, if D-Distributed Mechanism is (g, 6)-
DP in the shuffled model for binary summation, then the
MSE of the mechanism is ). (log(1/6)).

In other words, D-Distributed Mechanisms do not suffice
for the goal of achieving near-central error guarantees.

4. Correlated Distributed Mechanisms

We next present a family of protocols in the shuffled model
that will overcome the lower bound barrier of Lemma 15
and achieve an accuracy/privacy trade-off arbitrarily close
to the central model. We start by outlining the intuition
behind the protocol. First, suppose hypothetically that we
could somehow implement the D Mechanism in the shuffled
3NB(r, p) is defined as NB(k;7,p) = (k+,:_1)(1 —p)"p".
We remark that the negative binomial distribution may be viewed as
a generalization of the Poisson distribution: when taking » — oo
and letting p = \/r, NB(r, p) point-wise converges to Poi()\).
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model when supp(D) can contain negative integers. Then,
we would actually be done! This is because the Discrete
Laplace distribution is co-div as DLap(e) = NB(1,e~¢)—
NB(1,e~¢) (see, e.g., (Kotz et al., 2001)), and NB(1, e~ )
is co-div, and is in fact the geometric distribution. Of course,
the problem is that if we sample the number of messages
from DLap(e) /,, we will often try to send a negative number
of messages, which is meaningless!

This leads us to using two types of messages: one for
increments (denoted +1) and one for decrements (denoted
—1). The +1 messages are sampled as in the NB(1, e ¢)
Mechanism, and so are the —1 messages except that
each user pretends that their input is O in this case. The
analyzer’s answer is the difference between the number
of +1 messages and the number of —1 messages it
receives. The aforementioned fact that the difference of
two NB(1,e™¢) random variables is DLap(e) implies
that this protocol has the same accuracy as the central
Discrete Laplace Mechanism, as desired. However, this
protocol is not (¢, 0)-DP in the shuffled model. To see this,
note that the analyzer sees the number of +1 messages
received, and hence the protocol is no more private than
the NB(1,e™¢) Mechanism, which is not (g,0)-DP as
explained by Lemma 15. To overcome this, we “mask”
the numbers of +1 and —1 messages by sampling a
random variable Z from D/, for some other oco-div
D over non-negative integers, and additionally send Z
increments (i.e., +1) and Z decrements (i.e., —1). Clearly,
this does not affect the accuracy of the analyzer, but we
will show that it improves privacy. For every choice of
oo-div D', D?, D3 on non-negative integers, we define
the (D', D? D3)-Correlated Distributed Mechanism:

Algorithm 3 (D', D?, D®)-Correlated Distributed Randomizer

1: procedure RANDOMIZERp1 p2 ps ()
2. Sample Z' ~ D),

Sample Z2 ~ D?n
Sample Z3 ~ D?n
Send z + Z' + Z3 many +1 messages.

Send Z? + Z3 many —1 messages.

AN AN

Algorithm 4 (D', D? D?)-Correlated Distributed Analyzer
1: procedure ANALYZERp1 p2
2: Uiy < number of +1 messages received.

3:  U_jp < number of —1 messages received.
4 return U,y — U_; — E[D! — D?]

Accuracy and Communication Complexity. The accu-
racy and communication complexity of the protocol can be

*DLap(s) is defined as DLap(k; s) = == - e~ 15l's,

C(s)
O(s) = 3272 ___ e I¥I"* is the normalization constant.

where

derived as in the D-Distributed Mechanism from Section 3:

Observation 16. The error of (D', D?, D3)-Distributed
Mechanism is distributed as (D* — D?) — E[D' — D?].

Observation 17. The expected number of messages sent by

each user in the (D', D? D3)-Distributed Mechanism is at
E[D!]+E[D?]42-E[D?]
most 1 + - .

Privacy. The crux of our DP proof for the (D!, D?, D3)-
Correlated Distributed Mechanism is the following theorem:

Theorem 18. Let A > 0 and D', D?, D3 satisfy:

e (Privacy of True Noise) The (D* — D?) Mechanism is
€1-DP for binary summation in the central model.

e (Privacy of Correlated Noise) The D3 Mechanism is
(g2, 02)-DP for A-summation in the central model.

e (Concentration of Neg. Noise) Pry .p2[Y > A] < d3.

Then, the (D*, D?, D3)-Correlated Distributed Mechanism
is (1 + €2, €51 - §y + 2€%°1 - 03)-DP in the shuffled model.

Proof Overview. All the analyzer sees is (Uy1,U-1) =
(e T + 2473, 2%+ Z%) where for j € [3], Z9 ~ Di.
Since there is bijection between (U1, U-1) and (U1 —
U_1,U1) = (e @i + Z' — 72,7% + Z3), we may
consider the distribution on the latter. The first coordinate
is the same as the analyzer’s view from the (D! — D?)
Mechanism, which is €1-DP by the first assumption. Once
we condition on U, ; — U_; being equal to some value, we
are left to consider a distribution on U_ . This distribution is
not the same as the original one (before conditioning) since
U_q and UH -U —qare correlated. But this correlation only
comes via Z2, as Z3 does not appear in U1 — U_;. By
the concentration of D? (the third assumption), Z2is rarely
larger than A. When 72 < A, we can use the (e2,02)-
DP of the D? Mechanism for A-summation to argue the
privacy of the protocol. The proof follows this intuition
while carefully tracking the privacy loss in each step.

4.1. Near-Central Accuracy with Shuffled Mechanisms

We use Theorem 18 to derive our “near-central” proto-
col (Theorem 1). Specifically, we set D', D? so that
D! —D? = DLap(0.99¢), which implies that the (D* —D?)
Mechanism is 0.99¢-DP in the central model. The remain-
ing privacy budget of 0.01¢ is allocated to the D3 Mecha-
nism, which we set to be the NB(-.-) Mechanism with ap-
propriate parameters. We use the Negative Binomial rather
than the Poisson distribution as the former (Theorem 13) has
a smaller communication cost than the latter (Theorem 11).
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5. Experimental Evaluation and Results
5.1. Binary Summation

In this section, we evaluate our protocols. Specifically, we
consider the Poisson Distributed Mechanism (Theorem 11)
and the Correlated Distributed Noise Mechanism (Theo-
rems 1 and 18). We consider the root mean square error
(RMSE), which is independent of the input data for all
methods considered, and for this reason there is no need
to consider performance on particular data sets. For each
setting of ¢, §, our parameters are selected in an accurate
manner; this is explained in detail in the supplementary ma-
terial. We only note here that for the Correlated Distributed
Mechanism, we set D! = D? = NB(1,e~1) with £; such
that the RMSE of the protocol is 20% more than that of the
(central) DLap(e) Mechanism. We compare our algorithms
against the classic Randomized Response (RR) algorithm,
where a user with input x sends  w.p. p, and 1 — x w.p.
1 — p, for some parameter p € [0,1/2].

Error. We compute the errors as € or ¢ varies. The corre-
sponding plots are shown in Figure 2; we include the error
of the (central) Discrete Laplace Mechanism for comparison
(but of course this is not directly implementable in the shuf-
fled model). We remark that the RMSEs of our protocols are
independent of the number of users n, and only the RMSE
of RR depends on n, which we choose to be 10,000. While
the Correlated Distributed protocol has a constant RMSE
as we vary 6, both Poisson and RR incur larger RMSE:s.
In particular, when § = 1075 ¢ = 1, the RMSE of the
Correlated Distributed protocol is 3.5 times less than that
of Poisson and RR (which essentially coincide). The fact
that the Poisson Mechanism and RR have essentially the
same RMSE should come as no surprise, since the binomial
distribution Bin(n, p) converges (in the distributional sense)
to the Poisson distribution Poi(np) as n — oo and p is kept
constant. This means that we would prefer RR in this case,
since it always sends one message.

Communication Complexity. Figure 3 shows the plots of
the expected number of additional messages sent by each
user in our Poisson and Correlated Distributed Mechanisms.
Here we let n = 10, 000. In the reasonable setting where
5 =107%and ¢ = 1, the expected number of additional
messages sent in the Correlated Distributed Mechanism is
only 0.04, whereas in the Poisson Mechanism, it is even
smaller at 0.0003. Even in the more extreme case of ¢ = 0.1,
the former is still 0.278 and the latter is only 0.141.

5.2. Histograms

We have also performed experiments on the histogram ver-
sions of our Correlated Distributed and Poisson Mecha-
nisms, and compare them against three algorithms from the
literature: B-Randomized Response (B-RR), RAPPOR (Er-

Root Mean Square Error for e =1,n=10000

& | ~@ Correlated Noise
~¥- Poisson
W Central
#- RR

w - wn @

Root Mean Square Error

o

pl

Root Mean Square Error for 6= 10", n = 10000

—@- Correlated Noise

Root Mean Square Error

Figure 2. RMSE of the protocols for binary summation. Note that
the RMSEs of RR and Poisson are essentially the same.

lingsson et al., 2014), and Fragmented RAPPOR (Erlingsson
et al., 2020). Each of these three can be viewed as a B-ary
generalization of the binary RR. We ran these algorithms on
two IPUMS datasets (Ruggles et al., 2019). Due to space
constraints, the full description of the experiments and re-
sults are deferred to the supplementary material. Here we
just summarize our findings: For most parameters, RAP-
POR incurs significantly larger errors than B-RR. Moreover,
similarly to how RR mirrors the Poisson Mechanism in the
binary case, Fragmented RAPPOR gives almost the same
results as Poisson for histograms. In terms of RMSE, our
correlated mechanism is significantly closer to the central
model error than its competitors. The plots are in fact very
similar to those of binary summation for the Correlated Dis-
tributed and Poisson Mechanisms, with RR doing 25-50%
worse than Poisson. In terms of /., RR incurs more than
3% l errors compared to our algorithms. Furthermore, as
corroborated by theory (Ghazi et al., 2019a), the error of RR
grows quickly with the number B of buckets, while those
of our mechanisms grow very slowly.

6. Conclusions and Open Questions

We proposed DP algorithms in the shuffled model for binary
summation and histograms with accuracy arbitrarily close to
the central model and a vanishing communication overhead.
There are several questions left open by our work. One
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Expected Messages Overhead for £ =1,n =10000
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Figure 3. Expected additional number of messages sent by each
user for binary summation. While we use n = 10%, this expecta-
tion scales linearly in 1/n. E.g., if n = 105, the plots will look
the same, but with the y-axis scaled down by a factor of 10.

is to obtain algorithms achieving near-central performance
with negligible communication overhead for the problems
of real summation, vector summation, and histograms over
a large number B > (n) of buckets. Another question
is to prove a lower bound against expected single-message
protocols (that can send 0, 1 or more messages in the worst-
case) as our lower bound in Theorem 3 does not hold in this
case. A very interesting related direction is to build on our
algorithms to improve the communication complexity of DP
stochastic gradient descent in a federated learning setup.
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