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Abstract 

The main approach to defining equivalence 
among acyclic directed causal graphical models 
is based on the conditional independence relation­
ships in the distributions that the causal models 
can generate, in terms of the Markov equivalence. 
However, it is known that when cycles are allowed 
in the causal structure, conditional independence 
may not be a suitable notion for equivalence of 
two structures, as it does not reflect all the infor­
mation in the distribution that is useful for identi­
fication of the underlying structure. In this paper, 
we present a general, unified notion of equiva­
lence for linear Gaussian causal directed graphical 
models, whether they are cyclic or acyclic. In our 
proposed definition of equivalence, two structures 
are equivalent if they can generate the same set 
of data distributions. We also propose a weaker 
notion of equivalence called quasi-equivalence, 
which we show is the extent of identifiability from 
observational data. We propose analytic as well as 
graphical methods for characterizing the equiva­
lence of two structures. Additionally, we propose 
a score-based method for learning the structure 
from observational data, which successfully deals 
with both acyclic and cyclic structures. 

1. Introduction 
The problem of learning directed graphical models from 
data has received a significant amount of attention over the 
past three decades since those models provide a compact and 
flexible way to represent constraints on the joint distribution 
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of the data (Koller & Friedman, 2009). When interpreted 
causally, they can model causal relationships among the 
variables of the system and help make predictions under 
intervention (Pearl, 2009; Spirtes et al., 2000). 

There exists an extensive literature on learning causal graph­
ical models from observational data under the assumption 
that the model is a directed acyclic graph (DAG) (Zhang 
et al., 2018). Existing approaches include constraint-based 
methods (Spirtes et al., 2000; Pearl, 2009), score-based 
methods (Heckerman et al., 1995; Chickering, 2002), hy­
brid methods (Tsamardinos et al., 2006), as well as meth­
ods which make extra assumptions on the data generating 
process. For example, the model may be assumed to be lin­
ear with non-Gaussian exogenous noise variables (Shimizu 
et al., 2006) or contain specific types of non-linearity in the 
causal modules (Hoyer et al., 2009; Zhang & Hyvärinen, 
2009). 

Most real-life causal systems con­
tain feedback loops, since feedback 
is generally required to stabilize the 
system and improve performance in 
the presence of noise. Hence, the 
causal directed graph (DG) corre-
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Figure 1. sponding to such systems will be 
cyclic (Spirtes, 1995; Hyttinen et al., 
2012). However, there are relatively few works on learn­
ing structures that contain cycles. In many state-of-the-art 
causal models, not only is feedback ignored, it is also explic­
itly assumed that there are no cycles passing information 
among the considered quantities. Note that ignoring cycles 
in structure learning can be very consequential. For instance, 
in Figure 1, if one uses a conditional independence-based 
learning method designed for DAGs such as the PC algo­
rithm (Spirtes et al., 2000), in the absence of the dashed 
feedback loop the skeleton will be estimated correctly on 
the population dataset and the directions for all edges into 
XS can be determined. However, in the presence of the 
feedback loop, the output is a complete directed graph since 
no two variables will be independent conditioned on any 
subset of the rest of the variables. 
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is primarily due to the simplicity of working with acyclic thor(s). 
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models (see (Spirtes, 1995)) and the fact that in contrast to 
DAGs, there exists no generally accepted characterization 
of statistical equivalence among cyclic structures in the lit­
erature. The main method for defining equivalence among 
DAGs is based on the conditional independence (CI) rela­
tionships in the distributions that they imply. That is, two 
DAGs are equivalent if and only if they imply the same CI 
relations. CI relationships can be seen from statistical data, 
and the CI-based equivalence characterization for DAGs is 
attractive because CI relationships contain all the informa­
tion in the distribution that can be used for structure learning 
under the assumption of causal sufficiency. However, when 
causal sufficiency is violated or cycles are allowed in the 
structure, conditional independency may not reflect all the 
information in the distribution that can be used to identify 
the underlying structure. That is, the joint distribution may 
contain information that can be used to distinguish among 
the members of a CI-based equivalence class, which is also 
known as a Markov equivalence class. This means that it 
is possible for two graphs to be distinguishable from ob­
servational data even though they are in the same Markov 
equivalence class. For more details, see (Lacerda et al., 
2008) for the case of the violation of acyclicity and (Tian 
& Pearl, 2002; Shpitser et al., 2014) for the case of the 
violation of causal sufficiency. 

With the goal of bridging the gap between cyclic and acyclic 
DGs, in this paper we present a general characterization 
of equivalence for linear Gaussian DGs.1 In the case of 
DAGs, our approach provides a novel alternative to the 
customary tests for Markov equivalence. The proposed 
distribution equivalence characterization (Theorems 1 and 
2) not only is capable of characterizing equivalence beyond 
conditional independencies, but also provides a simpler and 
more concise evaluation approach compared to (Richardson, 
1996b). We summarize our contributions as follows. 

•	 We present a general, unified notion of equivalence 
based on the set of distributions that the directed graphs 
are able to generate (Section 2). In our proposed defi­
nition of equivalence, two structures are equivalent if 
they can generate the same set of data distributions. 

•	 We propose an algebraic and graphical characteriza­
tion of the equivalence of two DGs, be they cyclic or 
acyclic, based on the so-called Givens rotations (Sec­
tions 3 and 4). 

•	 We also propose a weaker notion of equivalence called 
quasi-equivalence, which we show is the extent of iden­
tifiability from observational data (Section 5). 

1Note that for non-linear cyclic SEMs, even the Markov prop­
erty does not necessarily hold (Spirtes, 1995; Pearl & Dechter, 
1996; Neal, 2000), and hence, it is not clear if one can make gen­
eral statements about the equivalence of structures regardless of 
the involved equations. 

•	 We propose a score-based method for structure learn­
ing from observational data with local search. We 
show that our score asymptotically achieves the 
extent of identifiability (Section 5). To the best 
of our knowledge, this is the first local search 
method capable of learning structures with cy­
cles. The implementation is publicly available at 
https://github.com/syanga/dglearn. 

1.1. Related Work 

Richardson (1996a;b) proposed graphical constraints neces­
sary and sufficient for Markov equivalence for general cyclic 
DGs and proposed a constraint-based algorithm for learning 
cyclic DGs. That algorithm was later extended to handle 
latent confounders and selection bias (Strobl, 2019). Hyt­
tinen et al. (2013; 2014) also focused on structure learning 
based on CI relationships for possibly cyclic and causally 
insufficient data gathered from multiple domains that may 
contain conflicting CI information. They proposed an ap­
proach based on an SAT or ASP solver. Due to generality of 
their setup, the run time of this approach can be restricting. 
A similar approach was proposed in (Forré & Mooij, 2018) 
for the case of nonlinear functional relationships with an 
extended notion of graphical separation called σ-separation. 
Also, Hyttinen et al. (2012) provided an algorithm for learn­
ing linear models with cycles and confounders that deals 
with perfect interventions. As mentioned earlier, having the 
assumption of non-Gaussian exogenous noises and specific 
types of non-linearity may lead to unique identifiability in 
DAGs. This idea was also investigated for cyclic DGs. Lac­
erda et al. (2008) proposed a method for learning DGs based 
on the ICA approach for linear systems with non-Gaussian 
exogenous noises, and Mooij et al. (2011) investigated the 
case of nonlinear causal mechanisms with additive noise. 

To the best of our knowledge, there exists no work on learn­
ing cyclic linear Gaussian models which utilizes the obser­
vational joint distribution itself rather than CI relationships 
in the distribution. 

2. Distribution Equivalence 
We consider a linear structural causal model over p ob­
servable variables {Xi}p with exogenous Gaussian i=1, 
noise. For i ∈ [p], variable Xi is generated as Xi =np 

j=1 Bj,iXj + Ni, in which Ni is the exogenous noise 
corresponding to variable Xi. We assume that Bi,i = 0, for 
all i ∈ [p]. Variable Xj is a direct cause of Xi if Bj,i  = 0. 
We represent the causal structure among the variables with a 
DG G = (V (G), E(G)), in which Xi → Xj ∈ G if Xi is a 
direct cause of Xj . Let X := [X1 · · · Xp]

T. The model can 
be represented in matrix form as X = BTX + N , where 
B is a p × p weighted adjacency matrix of G with Bj,i as 
its (j, i)-th entry and N = [N1 · · · Np]

T. Elements of N 

https://github.com/syanga/dglearn
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are assumed to be jointly Gaussian and independent. Since 
we can always center the data, without loss of generality, 
we assume that N , and hence, X is zero-mean. Therefore, 
X ∼ N (0, Σ), where Σ is the covariance matrix of the joint 
Gaussian distribution on X , and suffices to describe the 
distribution of X . We assume that Σ is always invertible 
(the Lebesgue measure of non-invertible matrices is zero). 
Therefore, equivalently the precision matrix Θ = Σ−1 con­
tains all the information regarding the distribution of X . Θ 
can be written as 

Θ = (I − B)Ω−1(I − B)T , (1) 

where Ω is a p × p diagonal matrix with Ωi,i = σ2 = i 
Var(Ni). In the sequel, we use the terms precision matrix 
and distribution interchangeably. 

The most common notion of equivalence for DGs in the 
literature is Markov equivalence (also called independence 
equivalence) defined as follows: 

Definition 1 (Markov Equivalence). Let I(G) denote the 
set of all conditional d-separations2 implied by the DG G. 
DGs G1 and G2 are Markov equivalent if I(G1) = I(G2). 

When cycles are permitted, defining equivalence of DGs 
based on CI relations that they represent is not suitable, as CI 
relations do not reflect all the information in the distribution 
that can be used for identification of the underlying structure; 
e.g., see (Lacerda et al., 2008). That is, there exist DGs 
which can be distinguished using observational data with 
probability one despite representing the same CI relations. 
We define the notion of equivalence based on the set of 
distributions which can be generated by a structure: 

Definition 2 (Distribution Set). The distribution set of struc­
ture G, denoted by Θ(G), is defined as 

Θ(G) :={Θ:Θ = (I − B)Ω−1(I − B)T , for any (B, Ω) 

s.t. Ω ∈ diag+ and supp(B) ⊆ supp(BG)}, 

where diag+ is the set of diagonal matrices with positive 
diagonal entries, BG is the binary adjacency matrix of G, 
and supp(B) = {(i, j) : Bij = 0}. 

Θ(G) is the set of all precision matrices (equivalently, dis­
tributions) that can be generated by G for different choices 
of exogenous noise variances and edge weights in G. 

Definition 3 (Distribution Equivalence). DGs G1 and G2 

are distribution equivalent, or for short, equivalent, denoted 
by G1 ≡ G2, if Θ(G1) = Θ(G2). 

It is important to note that for DG G and distribution Θ, 
having Θ ∈ Θ(G) does not imply that all the constraints 
of Θ, such as its conditional independencies, can be read 

2See (Pearl, 2009) for the definition of d-separation. 

off of G. For instance, a complete DAG does not represent 
any conditional d-separations, yet all distributions are con­
tained in its distribution set. This is due to the fact that the 
parameters in B can be designed to represent certain extra 
constraints in the generated distribution. 

As mentioned earlier, we can have a pair of DGs which 
are distinguishable using observational data despite having 
the same conditional d-separations. This is not the case 
for DAGs. In fact, restricting the space of DGs to DAGs, 
Definitions 3 and 1 are equivalent. 

Proposition 1. Two DAGs G1 and G2 are equivalent if and 
only if they are Markov equivalent. 

Therefore, one does not lose any information by caring 
only about Markov equivalence when dealing with acyclic 
structures. All proofs are provided in the Supplementary 
Materials. 

For general DGs, the graphical test for Markov equivalence 
is known to be significantly more complex (Richardson, 
1996b) than the test for DAGs (Verma & Pearl, 1991). There 
are currently no known graphical conditions for distribution 
equivalence. This is the goal of Section 4. 

3. Characterizing Equivalence 
In order to determine whether DGs G1 and G2 are equiva­
lent, a baseline equivalence test is as follows: We consider a 
distribution Θ ∈ Θ(G1) which results from a certain choice 
of parameters of G1 in expression (1), i.e., a certain choice 
of exogenous noise variances and edge weights. We then 
check whether there exists a choice of parameters for which 
G2 generates Θ. We then repeat the same procedure for G1, 
considering G2 as the original generator. More specifically, 
for DG Gi, let Qi = (I − B)Ω− 1 

for any choice of B such2 

that supp(B) ⊆ supp(BGi ) for i ∈ {1, 2}. For any choice 
of parameters of G1 that results in distribution Θ = Q1Q

T 
1 , 

we check if Q2Q
T = Θ has real-valued solution, and vice 2 

versa. Although this baseline equivalence test provides a 
systematic approach, it is tedious in many cases to check 
for the existence of a solution. In the following, we propose 
an alternative equivalence test based on rotations of Q. 

Let vi be the i-th row of matrix Q. Therefore, Θ = QQT is 
the Gramian matrix of the set of vectors {v1, · · · vp}. The 
set of generating vectors of a Gramian matrix can be deter­
mined up to isometry. That is, given Q1Q

T = Θ, we have 1 
Q2Q

T = Θ if and only if Q2 = Q1U for some orthogonal 2 
transformation U . Therefore, Q1 should be transformable to 
Q2 by a rotation or an improper rotation (a rotation followed 
by a reflection). 

In our problem of interest, for any parameterization of Q1 

(resp. Q2) it is necessary to check if there exists an orthogo­
nal transformation of Q1 (resp. Q2) which can be generated 
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for some parameterization of Q2 (resp. Q1). Therefore, only 
the support of the matrix before and after the orthogonal 
transformation matters. Hence, we only need to consider 
rotation transformations. This can be formalized as follows: 
Let QG be BG with 1s on its diagonal, i.e. QG := I + BG. 
This is the binary matrix that for all choices of parameters 
B and Ω, supp(Q) ⊆ supp(QG). 
Proposition 2. G1 ≡ G2 if and only if for any choice of 
Q1, there exists rotation U (1) such that supp(Q1U

(1)) ⊆ 
supp(QG2 ), and for any choice of Q2, there exists rotation 
U (2) such that supp(Q2U

(2)) ⊆ supp(QG1 ). 

To test the existence of a rotation required in Proposition 2, 
we propose utilizing a sequence of a special type of planar 
rotations called Givens rotations (Golub & Van Loan, 2012). 
Definition 4 (Givens rotation). A Givens rotation is a ro­
tation in the plane spanned by two coordinate axes. For 
a θ-radian rotation in the (j, k) plane, the entries of the 
Givens rotation matrix G(j, k, θ) = [g]p×p in Rp are 
gi,i = 1 for i  ∈ {j, k}, gi,i = cos(θ) for i ∈ {j, k}, and 
gk,j =−gj,k =− sin(θ), and the rest of the entries are zero. 

Any rotation in Rp can be decomposed into a sequence 
of Givens rotations. Hence, in Proposition 2, we need to 
find a sequence of Givens matrices and define U to be their 
product. The advantage of this approach is that the effect of 
a Givens rotation is easy to track: The effect of G(j, k, θ) 
on a row vector v is as follows. 
[v1 · · · vj · · · vk · · · vp]G(j, k, θ) = 

[v1 · · · cos(θ)vj +sin(θ)vk · · · −sin(θ)vj +cos(θ)vk · · · vp]. 
(2) 

3.1. Support Rotation 

As previously mentioned, since all choices of parameters 
in the structure need to be considered, it is necessary to 
determine the existence of a rotation that maps one support 
to another. We define support matrix and support rotation 
as follows. 
Definition 5 (Support matrix). For any matrix Q, its sup­
port matrix is a binary matrix ξ of the same size with entries 
in {0, ×}, where ξi,j = × if Qi,j = 0 and ξi,j = 0 other­
wise. For directed graph G, we define its support matrix as 
support matrix of QG. 

Givens rotations can be used to introduce zeros in a matrix, 
and hence, change its support. Consider input matrix Q. 
Using expression (2), for any i, j ∈ [p], Qi,j can be set to 
zero using a Givens rotation in the (j, k) plane with angle 
θ = tan−1(−Qi,j /Qi,k). When zeroing Qi,j , there may 
exist an index l such that Ql,j or Ql,k will also become zero. 
However, since we consider all parameterizations of Q, we 
cannot take advantage of such accidental zeroings. 
Definition 6 (Support Rotation). The support rotation 
A(i, j, k) is a transformation that takes a support ma­
trix ξ as the input and sets ξi,j to zero using a 

× × × ×
0 × 0 ×
× × × 0
× 0 0 ×

#(1,3,1)
× × 0 ×
0 × 0 ×
× × × 0
× 0 × ×

× × × ×
0 × 0 ×
× × × 0
× 0 0 ×

#(2,4,1)
× × × ×
× × 0 0
0 × × ×
× 0 0 ×

Figure 2. An example of support rotation (Case 2, Prop. 3). Ele­
ment ξi,j is in red, and columns j and k are in blue. 

Givens rotation in the (j, k) plane. The output is the 
support matrix of QG(j, k, tan−1(−Qi,j /Qi,k)), where 
Q ∈ arg maxQ! |supp(Q'G(j, k, tan−1(−Q' )))|i,j /Q

'
i,k

such that the support matrix of Q' is ξ. Note that 
G(j, k, tan−1(−Qij

' /Q' )) is the Givens rotation in the i,k

(j, k) plane which zeros Q'
i,j . 

Note that due to (2), A(i, j, k) only affects the j-th and k-th 
columns of the input. The general effect of support rotation 
A(i, j, k) is described in the following proposition. 

Proposition 3. Support rotation A(i, j, k) can have three 
possible effects on support matrix ξ: 

1. If ξi,j = 0, A(i, j, k) has no effect. 

2.	 If ξi,j = × and ξi,k = ×, A(i, j, k) makes ξi,j = 0, 
and for any l ∈ [p] \ {i} such that at least one of ξl,j 

and ξl,k is ×, A(i, j, k) makes ξl,j = × and ξl,k = ×. 
This is obtained by an acute rotation. 

3.	 If ξi,j = × and ξi,k = 0, A(i, j, k) switches columns 
j and k of ξ. This is obtained by a π/2 rotation. 

Figure 2 visualizes an example of a support rotation. Ob­
serve that the following four cases partition all the effects 
that can be obtained from a support rotation A(i, j, k). 

•	 Reduction. If ξi,j = ξi,k = × and ξl,j = ξl,k for all 
l ∈ [p] \ {i}, then only ξi,j becomes zero. 

•	 Reversible acute rotation. If ξi,j = ξi,k = × and 
there exists a row i' such that the j-th and k-th columns 
differ only in that row, then ξi,j becomes zero and both 
ξi!,j and ξi!,k become ×. 

•	 Irreversible acute rotation. If ξi,j = ξi,k = × and 
the j-th and k-th columns differ in at least two rows, 
then ξi,j becomes zero and all entries on the j-th and 
k-th columns become × on the rows on which they 
differed. 

•	 Column swap. If ξi,j = × and ξi,k = 0, then columns 
j and k are swapped. 

Note that if ξ is transformed to ξ' via a reversible acute 
rotation A(i, j, k), and ξi!,j = 0, then ξ' can be mapped 
back to ξ via A(i', j, k), hence the name reversible. 
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Figure 3. Example related to Proposition 4. 

3.2. Characterizing Equivalence via Support Rotations 

We give the following necessary and sufficient condition 
for distribution equivalence of two structures using the in­
troduced support operations. We show that irreversible 
acute rotations are not needed for checking equivalence. 
Here, for two support matrices ξ and ξ ' , we say ξ ⊆ ξ ' if 
supp(ξ) ⊆ supp(ξ ' ). 

Theorem 1. Let ξ1 and ξ2 be the support matrices of DGs 
G1 and G2, respectively. G1 is distribution equivalent to G2 

if and only if there exists a sequence of reductions, reversible 
acute rotations, and column swaps that maps ξ1 to a subset 
of ξ2, and a sequence that maps ξ2 to a subset of ξ1. 

Theorem 1 converts the problem of determining the equiv­
alence of two structures into a search problem for two se­
quences of support rotations. We propose to use a depth-first 
search algorithm that performs all column swaps at the end 
of the sequences. Due to space constraints, the pseudo-code 
is presented in the Supplementary Materials. 

The following result is a nontrivial application of Theorem 
1 regarding reversing cycles in DGs. 

Proposition 4 (Direction of Cycles). Suppose structure G1 

contains a directed cycle C. Let G2 be a structure that 
differs from G1 in two ways. (1) The direction of cycle C 
is reversed and (2) any variable pointing to Xi ∈ C in G1 

via an edge which is not part of C is, in G2, pointing to the 
preceder of Xi in C in G1. In this case, G1 is distribution 
equivalent to G2. (See Figure 3 for an example.) 

Richardson (1996b) presented a result similar to Proposition 
4 for the case of using CI relationships in the data and 
concluded that “it is impossible to orient a cycle merely 
using CI information.” Proposition 4 extends that result 
by concluding that it is impossible to orient a cycle merely 
using observational data. 

The following proposition provides a necessary and suffi­
cient condition for equivalence for a specific class of DGs. 

Proposition 5. Consider DGs G1 and G2 with support 
matrices ξ1 and ξ2, respectively. If every pair of columns of 
ξ1 differ in more than one entry, then G1 ≡ G2 if and only 
if the columns of ξ2 are a permutation of columns of ξ1. 

Example 1. In Figure 4, (a) G1 ≡ G2, (b) G1  ≡ G3, and 
(c) G1 ≡ G4. 

Figure 4. DGs related to Example 1. 

(a) shows that unlike DAGs, equivalent DGs do not need 
to have the same skeleton or the same v-structures. To see 
G1 ≡ G2, we note that 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
× × × × × 0 × × 0 

ξ1 = ⎣ 0 × 0 ⎦ A(1, 3, 1) ⎣ 0 × 0 ⎦ A(3, 1, 2) ⎣× × 0 ⎦ ⊆ ξ2. −−−−−−−→ −−−−−−−→ 0 × × × × × 0 × × 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
× × 0 × × 0 × × × 

ξ2 = ⎣× × 0 ⎦ A(2, 1, 2) ⎣ 0 × 0 ⎦ A(3, 1, 3) ⎣ 0 × 0 ⎦ ⊆ ξ1. −−−−−−−→ −−−−−−−→ 0 × × × × × 0 × × 

(b) follows from Proposition 5 since each pair of columns of 
ξ3 differ in more than one entry. For (c), we already have 
ξ1 ⊆ ξ4. For the other direction, 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
× × × × × × × × × 

ξ4 = ⎣× × 0 ⎦ A(2, 1, 2) ⎣ 0 × 0 ⎦ A(3, 1, 3) ⎣ 0 × 0 ⎦ ⊆ ξ1. −−−−−−−→ −−−−−−−→ 0 × × × × × 0 × × 

As seen in Example 1, structures G1 and G4 in Figure 
4 are distribution equivalent. Therefore, the extra edge 
X2 → X1 in G4 does not enable this structure to generate 
any additional distributions. In this case, we say structure 
G4 is reducible. This idea is formalized as follows. 

Definition 7 (Reducibility). DG G is reducible if there ex­
ists G ' such that G ≡ G ' and E(G ' ) ⊂ E(G). In this 
case, we say edges in E(G) \ E(G ' ) are reducible, and G 
is reducible to G ' . 

Proposition 6. DG G with support matrix ξ is reducible 
if and only if there exists a sequence of reversible acute 
rotations that enables us to apply a reduction to ξ. 

Proposition 6 implies the following necessary condition for 
reducibility. 

Proposition 7. A DG with no 2-cycles is irreducible. 

A 2-cycle is a cycle over only two variables, such as the 
cycle over X1 and X2 in G2 in Figure 4. Propositions 6 
and 7 lead to the following corollary regarding equivalence 
for DAGs, which bridges our proposed approach with the 
classic characterization for equivalence of DAGs. 

Corollary 1. DAGs G1 and G2 with support matrices ξ1 

and ξ2 are equivalent if and only if there exists a sequence 
of reversible acute rotations and column swaps that maps 
ξ1 to a subset of ξ2, and one that maps ξ2 to a subset of ξ1. 
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Figure 5. Elements of a distribution equivalence class. 

Example 2. We demonstrate our approach on a familiar 
equivalence example on DAGs: Let G1 : X1 → X2 → X3, 
G2 : X1 ← X2 ← X3, and G3 : X1 → X2 ← X3. 
(a) G1 ≡ G2. (b) G1  ≡ G3. 

To see G1 ≡ G2, we note that ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
× × 0 × 0 0 × 0 0 

ξ1 = ⎣ 0 × ×⎦ A(1, 2, 1) ⎣× × ×⎦ A(2, 3, 2) ⎣× × 0 ⎦ ⊆ ξ2. −−−−−−−→ −−−−−−−→ 0 0 × 0 0 × 0 × × 

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ 
× 0 0 × 0 0 × × 0 

ξ2 = ⎣× × 0 ⎦ A(3, 2, 3) ⎣× × ×⎦ A(2, 1, 2) ⎣ 0 × ×⎦ ⊆ ξ1. −−−−−−−→ −−−−−−−→ 0 × × 0 0 × 0 0 × 

For the second part, we note that ξ3 has two columns with 
two zeros, while ξ1 has only one column with two zeros. 
Therefore, reversible acute rotations and column swaps can­
not map ξ1 to a subset of ξ3. Therefore G1  ≡ G3. 

4. Graphical Characterization of Equivalence 
In this section, we present a graphical counterpart to Theo­
rem 1 by providing graphical counterparts to the rotations 
required by that Theorem. 
Definition 8. For vertices X1 and X2, let P1 := Pa(X1) ∪ 
{X1} and P2 := Pa(X2)∪{X2}, where Pa(X) denotes the 
set of parents of vertex X . X1 and X2 are parent reducible if 
P1 = P2 and parent exchangeable if |P1iP2| = 1, where 
i is the symmetric difference operator, which identifies 
elements which are only in one of the sets. 

The three rotations in Theorem 1 lead to the following graph­
ical operations: 

•	 Parent reduction. If Xj and Xk are parent reducible, 
any support rotation on columns ξ·,j and ξ·,k which ze­
ros a non-zero entry on those columns except ξj,j and 
ξk,k removes the parent from Xj or Xk corresponding 
to the zeroed entry. We call this edge removal a par­
ent reduction. The support rotation in this case is of 
reduction rotation type. 

{Xi}. In this case, any support rotation on columns 
ξ·,j and ξ·,k which zeros a non-zero entry on those 
columns except ξj,j and ξk,k removes the parent from 
Xj or Xk corresponding to the zeroed entry. Addition­
ally, the missing edge from Xi to Xj or Xk is added. 
We call this a parent exchange. The support rotation in 
this case is of column swap or reversible acute rotation 
type. 

•	 Cycle reversion. A cycle reversion swaps the column 
of each member of a cycle C with the column corre­
sponding to its preceder in the cycle. This reverses the 
direction of the cycle C and changes any edge outside 
of C connecting to an Xi ∈ C in the original DG to 
point instead to the preceder of Xi in C. 

Note that in the graphical operations above, we exclude 
support rotations that lead to zeroing a diagonal entry, since 
they do not have a graphical representation (by Def. 5). 

Equipped with the graphical operations, we present a graph­
ical counterpart to Theorem 1. 
Theorem 2. G1 is distribution equivalent to G2 if and only 
if there exists a sequence of parent reductions, parent ex­
changes, and cycle reversions that maps G1 to a subgraph 
of G2, and a sequence that maps G2 to a subgraph of G1. 
Example 3. Figure 5 shows the elements of a distribution 
equivalence class. Suppose G1 is the original structure. 
Cycle reversion on the cycle (X2, X4, X3, X2) results in G2, 
cycle reversion on the cycle (X1, X3, X2, X4, X1) results 
in G3, parent exchange A(4, 1, 3) results in G4, and parent 
exchange A(1, 3, 1) results in G8. 
Remark 1. Given observational data from any of the struc­
tures in Figure 5, CI-based structure learning methods such 
as CCD (Richardson, 1996a) may output a structure (for 
example G1 without edges X4 → X1) which is not distribu­
tion equivalent to the ground truth. This can be prevented by 
leveraging other statistical information in the distribution 
beyond CI relationships. 

• Parent exchange. If Xj and Xk are parent exchange- We have the following corollary regarding equivalence for 
able, by definition there exists Xi such that Pj iPk = DAGs. The reasoning is the same as in Corollary 1. 
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Corollary 2. DAGs G1 and G2 are equivalent if and only 
if there exists a sequence of parent exchanges that maps G1 

to G2, and one that maps G2 to G1. 

5. Learning Directed Graphs from Data 
Structure G imposes constraints on the entries of precision 
matrix Θ. We will refer to such constraints as the distribu­
tional constraints of G. Every distribution in Θ(G) should 
satisfy the distributional constraints of G. Clearly, two DGs 
are distribution equivalent if and only if they have the same 
distributional constraints. We call a distributional constraint 
a hard constraint if the set of the values satisfying that 
constraint is Lebesgue measure zero over the space of the 
parameters involved in the constraint. For instance in DAGs, 
if Xi and Xj are non-adjacent and have no common chil­
dren, we have the hard constraint Θi,j = 0. We denote the 
set of hard constraints of a DG G by H(G). 

Recall that distribution equivalence of two structures G1 and 
G2 implies that any distribution that can be generated by 
G1 can also be generated by G2, and vice versa. Therefore, 
no distribution can help us distinguish between G1 and G2. 
However, in practice we usually have access to only one 
distribution which is generated from a ground truth structure, 
and it may be the case that this distribution can be generated 
by another structure which is not equivalent to the ground 
truth. Therefore, finding the distribution equivalence class of 
the ground truth structure from one distribution is in general 
not possible, and extra considerations are required for the 
problem to be well defined. Below we will accordingly 
provide a weaker notion of equivalence and show that the 
ground truth can be recovered up to this equivalence. 

The aforementioned issue also arises when learning DAGs 
and considering Markov equivalence. The most common ap­
proach to dealing with this issue in the literature is to assume 
that the distribution is faithful to the ground truth structure. 
This requires a one-to-one correspondence between the con­
ditional d-separations of the ground truth structure and the 
CI relationships in the distribution (Spirtes et al., 2000). 
This is a sensible assumption from the perspective that the 
Lebesgue measure of the parameters which lead to extra CIs 
in the generated distribution is zero (Meek, 2013). 

The case of general DGs is more complex since they can 
require other distributional constraints besides CIs. In partic­
ular, we may have distributional constraints other than hard 
constraints due to cycles. Hence, in this case the Lebesgue 
measure of the parameters which lead to extra distributional 
constraints in the generated distribution is not necessarily 
zero. This motivates the following weaker notion of equiva­
lence for structure learning from observational data. 

Definition 9 (Quasi Equivalence). Let θG be the set of lin­
early independent parameters needed to parameterize any 

distribution Θ ∈ Θ(G). For two DGs G1 and G2, let 
µ be the Lebesgue measure defined over θG1 ∪ θG2 . G1 

∼and G2 are quasi equivalent, denoted by G1 = G2, if 
µ(θG1 ∩ θG2 ) = 0. 

Roughly speaking, two DGs are quasi equivalent if the set 
of distributions that they can both generate has a non-zero 
Lebesgue measure. Note that Definition 9 implies that if 
DGs G1 and G2 are quasi equivalent they share the same 
hard constraints. We have the following assumption for 
structure learning, which is a generalization of faithfulness: 

Definition 10 (Generalized faithfulness). A distribution Θ 
is generalized faithful (g-faithful) to structure G if Θ satis­
fies a hard constraint κ if and only if κ ∈ H(G). 

Assumption 1. The generated distribution is g-faithful to 
the ground truth structure G∗, and for irreducible DG G∗ , 
if there exists a DG G such that H(G) ⊆ H(G∗) and 
|E(G)| ≤ |E(G∗)|, then H(G) = H(G∗). 

The following justifies the first part of Assumption 1: 

Proposition 8. With respect to Lebesgue measure over θG, 
the set of distributions not g-faithful to G is measure zero. 

The second part of Assumption 1 requires that if the ground 
truth structure G∗ has no reducible edges and there exists 
another DG G that has only relaxed some of the hard con­
straints of G∗, then G must have more edges than G∗. This 
is clearly the case for DAGs. 

Proposition 9. Under Assumption 1, quasi equivalence is 
the extent of identifiability from observational data. 

5.1. Score-Based Structure Learning 

We propose a score-based method for structure learning 
based on local search. Score-based methods are well-
established in the literature for learning DAGs. The pre­
dominant approach is to maximize the regularized likeli­
hood of the data by performing a greedy search over all 
DAGs (Heckerman et al., 1995), equivalence classes of 
DAGs (Chickering, 2002), or permutations of the variables 
(Teyssier & Koller, 2012; Solus et al., 2017). Also, works 
such as (Van de Geer & Bühlmann, 2013; Fu & Zhou, 2013; 
Aragam & Zhou, 2015; Raskutti & Uhler, 2018; Zheng et al., 
2018) specifically consider the problem of learning a linear 
Gaussian acyclic model via penalized parameter estimation. 

To the best of our knowledge, there are no existing score-
based structure learning approaches for the cyclic linear 
Gaussian model. In light of our theory, we propose to use 
the g0-regularized negative log likelihood function as the 
score, which is a standard choice of the score in the literature 
of learning DAGs, and show that it is able to recover the 
quasi equivalence class of the underlying DG. Let X be the 
n × p data matrix. The g0-regularized ML estimator solves 
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the following unconstrained optimization problem: 

min min L(X : B, Ω) + λIBI0, (3)
G (B,Ω):supp(B)⊆supp(BG) np nwhere L(X :B, Ω)=−n log(det(I−B))+ log(σ2)+ i=1 2 i 

1 
2σ2 IX·,i−XB·,iI22 is the negative log-likelihood of the data, 

i n 
IBI0 := 1x=0(Bi,j ), and similar to the BIC score, we i,j #
set λ = 0.5 log n. 

Remark 2. The estimator in (3) will never output a re­
ducible DG, since removing redundant edges improves the 
score. This is in line with the minimality assumption in the 
literature for DAGs (Pearl, 1988; Raskutti & Uhler, 2018). 

Theorem 3. Under Assumption 1, the global minimizer of 
= G∗(3) with λ = 0.5 log n outputs Ĝ ∼ asymptotically. 

Hence, by Prop. 9 and Theorem 3, the score (3) is consistent, 
i.e., it asymptotically achieves the extent of identifiability. 

5.1.1. STRUCTURE SEARCH 

We solve the outer optimization problem in (3) via local 
search over the structures. We choose the search space 
to contain all DGs and use the standard operators (i.e., lo­
cal changes) of edge addition, deletion, and reversal. See 
(Koller & Friedman, 2009) for a discussion regarding the 
necessity of these operators. Two main issues arise when 
cycles are allowed in the structure: 

Virtual edges. There exists a virtual edge between non­
adjacent vertices Xi and Xj if they have a common child 
Xk which is an ancestor of Xi or Xj (Richardson, 1996b). 
If a greedy search algorithm does not find Xk and Xi (or 
Xj ) to be on a cycle, it can significantly increase the likeli­
hood by adding an edge at the location of the virtual edge. 
The algorithm would therefore be trapped in a local opti­
mum with one more edge than the ground truth. To resolve 
this issue, we propose adding the following fourth search 
operator: Suppose we have a triangle over three variables 
Xi, Xj and Xk, and there exists an additional sequence 
of edges connecting Xj and Xk. In one atomic move, we 
perform a series of edge reversals to form a cycle containing 
Xj → Xk along the sequence, delete the edge connecting 
Xi to Xj , and orient the edge Xi → Xk. If the likelihood 
is unchanged, the edge deletion improves the score. In the 
case that the oriented cycle is of length two, additional con­
siderations are needed; see the Supplementary Materials for 
details as well as simulations justifying this fourth operator. 

Score decomposability. When the DG is acyclic, the dis­
tribution generated by a linear Gaussian structural equation 
model satisfies the local Markov property. This implies 
that the joint distribution can be factorized into the product 
of the distributions of the variables conditioned on their 
parents. The benefit of this factorization is that the compu­
tational complexity of evaluating the effect of operators can 

be dramatically reduced since a local change in the structure 
does not change the score of other parts of the DAG. In 
contrast, for the case of cyclic DGs the distribution does 
not necessarily satisfy the local Markov property. However, 
the distribution still satisfies the global Markov property 
(Spirtes, 1995). Therefore, our search procedure factorizes 
the joint distribution into the product of conditional distribu­
tions. Each of these distributions is over the variables in a 
maximal strongly connected subgraph (MSCS), conditioned 
on their parents outside of the MSCS. After applying an op­
eration, the likelihoods of all involved MSCSs are updated; 
see the Supplementary Materials for additional details. 

The implementation of the approach is publicly available at 
https://github.com/syanga/dglearn. 

6. Experiments 
We generated 100 random ground truth DGs of orders 
p ∈ {5, 20, 50}, all with maximum degree 4. The DGs 
are constrained to have maximum cycle lengths 5, 5, and 
10, respectively. For each structure, we sampled the edge 
weights uniformly from Bi,j ∈ [−0.8, −0.2]∪[0.2, 0.8] and 
the exogenous noise variances uniformly from σ2 ∈ [1, 3] toi 
generate the data matrix X of size 104 × p. We constrained 
the ground truth B matrices to be stable via an accept-reject 
approach; the modulus of all eigenvalues of B should be 
strictly less than one. The stability of a model guarantees 
that the effects of one-time noise dissipate. Our search algo­
rithms were also constrained to only output stable structures. 
We used the following standard local search methods: 1. 
Hill climbing 2. Tabu search (Koller & Friedman, 2009). 

Evaluating the performance of a learning approach is not 
trivial for the case of general DGs. As seen before, equiva­
lent cyclic DGs may have very different skeletons. Hence, 
conventional evaluation metrics such as structural Hamming 
distance (SHD) with the ground truth DG or comparison of 
the learned and ground truth adjacency matrices cannot be 
used. We propose the following evaluation methods: 

1. SHD Evaluation. We enumerate the set of all DGs equiv­
alent to the ground truth DG using Algorithm 1 in the Sup­
plementary Materials to form the distribution equivalence 
class of the ground truth. We then compute the smallest 
SHD between the algorithm’s output DG and the members 
of the equivalence class as a measure of the performance. 

2. Multi-Domain Evaluation. Suppose the input data is 
sampled from a distribution Θ generated by ground truth DG 
G∗, and let Ĝ denote an algorithm’s output structure. Due to 
finite sample size and the possible violation of Assumption 
1, Ĝ may be able to maximize the likelihood yet not be 
(quasi) equivalent to G∗ . In general, we expect such an 
output to be compatible with only the given data and not 
with data sampled from other distributions generated by G∗ . 
We therefore propose the following evaluation approach. 

https://github.com/syanga/dglearn
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Figure 6. Results for p = 5, 20, 50, top to bottom. Left column: 
multi-domain evaluation. The percentage of outputs with success 
rate larger than a certain value is plotted vs. success percentages; 
e.g., for p = 20, 80% of the outputs could generate more than 
25% of the distributions generated by their corresponding ground 
truth. Right column: SHD evaluation. The percentage of outputs 
with SHD less than or equal to a certain value is plotted vs. SHD. 

1.	 For ground truth structure G∗, generate d distributions 
{Θ1, ..., Θd} by sampling edge weights and variances. 

2. For each Θi, run the algorithm to obtain Ĝi. 

3.	 For each Ĝi, optimize its edge weights and variances 
ˆto generate distributions {Θ̂i,1, ..., Θi,d} such that Θ̂i,j 

minimizes the KL-divergence to Θj ∈ {Θ1, ..., Θd}. 

4.	 The success rate of Ĝi is the percentage of domains 
for which the minimizing KL-divergence computed in 
step 3 is below a threshold η. 

Since domain distributions are generated randomly, if the 
success rate of output Ĝi is large, there is a non-negligible 
subset of the distribution set of G∗ that Ĝi can generate as 
well. Hence, Ĝi is quasi equivalent to G∗ . In our evalua­
tions, we used d = 50 and η = p × 10−3. We emphasize 
that multi-domain data is only used for evaluation. In the 
learning stage, only one distribution is used. 

We cannot compare the performance of our approach with 
the performance of methods based on CI relationships (such 

CA3/DG

CA1

Sub

ERC

PHC

PRC

Figure 7. Ground truth structure for the fMRI hippocampus 
dataset. 

as CCD), since those approaches return a PAG represent­
ing all Markov equivalent DGs, which usually represents 
a much larger set of DGs than the distribution equivalence 
class. We therefore only compared our approach with 
an g1-regularized maximum likelihood estimator which 
directly solves the optimization problem minB,Ω L(X : 
B, Ω) + λIBI1, which does not need a separate structure 
search. The results are given in Figure 6. The figure shows 
that our proposed approach successfully finds DGs capable 
of generating distributions generated by the ground truth 
structure. While the SHD evaluation shows that the outputs 
are not always distribution equivalent, the multi-domain 
evaluation provides evidence that many are quasi equivalent 
to the ground truth. We also evaluated the effect of sample 
size on the performance in the Supplementary Materials. 

6.1. fMRI hippocampus data 

We considered the fMRI hippocampus dataset (Poldrack 
et al., 2015), which contains signals from six separate brain 
regions: perirhinal cortex (PRC), parahippocampal cortex 
(PHC), entorhinal cortex (ERC), subiculum (Sub), CA1, and 
CA3/Dentate Gyrus (CA3) in the resting state. We used the 
anatomical connections (Bird & Burgess, 2008; Zhang et al., 
2017) as the ground truth, depicted in Figure 7. We applied 
our proposed method on one of the domains in the dataset 
and found that two out of eight structures equivalent to the 
ground truth were (local) optima for the score even though 
there is no evidence that the data are linear Gaussian. 

7. Conclusion 
We presented a general, unified notion of equivalence for 
linear Gaussian DGs and proposed methods for characteriz­
ing the equivalence of two structures. We also proposed a 
score-based structure learning approach that asymptotically 
achieves the extent of identifiability. Our results are instru­
mental to the fields of causality and graphical models. From 
the causality perspective, consider for example Figure 5. 
Our results guarantee a direct causal effect between X2 and 
X4 and show that a direct causal effect does not necessarily 
exist between X3 and X4. From the graphical models per­
spective, our results provide the tools to handle distributions 
that lack a DAG representation but can be modeled by a 
cyclic DG. We hope that this work spurs further research in 
the study of directed graphs. 



Characterizing Distribution Equivalence and Structure Learning for Cyclic and Acyclic Directed Graphs 

Acknowledgements 
This work was supported in part by ONR grants W911NF15­
1-0479 and N00014-19-1-2333, NSF CCF 1704970, and 
NSF CNS 16-24811. KZ would like to acknowledge 
the support by National Institutes of Health under Con­
tract No. NIH-1R01EB022858-01, FAIN-R01EB022858, 
NIH-1R01LM012087, NIH5U54HG008540-02, and FAIN­
U54HG008540, and by the United States Air Force under 
Contract No. FA8650-17-C7715. We thank Dr. Jia-En 
Liang from Unisound for helpful discussions. 

References 
Aragam, B. and Zhou, Q. Concave penalized estimation of 

sparse gaussian bayesian networks. Journal of Machine 
Learning Research, 16:2273–2328, 2015. 

Bird, C. M. and Burgess, N. The hippocampus and mem­
ory: insights from spatial processing. Nature Reviews 
Neuroscience, 9(3):nrn2335, 2008. 

Chickering, D. M. Optimal structure identification with 
greedy search. Journal of machine learning research, 3 
(Nov):507–554, 2002. 
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