
Supplementary Material for “Task-Oriented Active Perception
and Planning in Environments with Partially Known Semantics”

Mahsa Ghasemi 1 Erdem Arinc Bulgur 2 Ufuk Topcu 2

Exact Verification of a Markov Chain with
Partial Semantics
As stated in Theorem 1, the complexity of verifying a
Markov chain with a probabilistic labeling function is ex-
ponential in both the number of states and the number of
atomic propositions. This complexity is due to the fact that
there may be 2|S||AP| possible environment configurations
that can not be handled simultaneously due to incompatibil-
ity of probabilities from the MDP and the DFA (as discussed
in Example 1).

We now propose an algorithm for exact verification of a
Markov chain with probabilistic labels against a reachability
formula. The algorithm may further be extended to verifica-
tion of general co-safe temporal logic formulas, by consider-
ing the product of the Markov chain with the corresponding
DFA. The proposed algorithm relies on constructing a com-
putation graph in a top-down manner and then, tracing back
the reachability probabilities in a bottom-up method. The
computation graph ensures that the truth assignments of
the state properties are consistent in each of its trajectories.
The computation graph is essentially a directed tree if one
disregards the edges at the same level of the tree. Nodes of
the graph accumulate reachability probabilities associated
with their subgraph conditioned on the history captured by
the trajectory from the root to that node. Edges of the graph
show probabilistic branching either due to the stochastic
transitions of the Markov chain or the uncertain transitions
over the DFA resulting from uncertain perception. The next
example explains the graph construction and reachability
evaluation for a sample Markov chain.

Example 2 (Exact quantitative verification using a compu-
tation graph). Let the fully-connected Markov chain in Fig-
ure 5 represent an induced Markov chain over an MDP by
a policy π. Moreover, let AP = {p} be the set of atomic

1Department of Electrical and Computer Engineering, Univer-
sity of Texas at Austin 2Department of Aerospace Engineering and
Engineering Mechanics, University of Texas at Austin. Correspon-
dence to: Mahsa Ghasemi <mahsa.ghasemi@utexas.edu>.

Proceedings of the 37 th International Conference on Machine
Learning, Online, PMLR 119, 2020. Copyright 2020 by the au-
thor(s).

Figure 5. A 3-state fully-connected induced Markov chain with
probabilistic labeling over property p.

propositions, and ϕ = ♦p be the reachability specification.
For a state si, the uncertain perception assigns a proba-
bility of L(si, p) for the property p to be true. Given this
knowledge, the quantitative verification aims to compute
the expected probability of realizing the specification, i.e.,
EL∼Dist(L) [Pr (Mπ |= ϕ)].

To that end, we construct a computation graph, shown in Fig-
ure 6, that captures all the trajectories over the Markov
chain as well as truth value assignments of the atomic propo-
sitions. The graph starts from a root node that is connected
to a set of nodes representing the set of initial states (may be
a singleton set). Then, each node branches into two possible
truth assignments of property p, with corresponding prob-
abilities as the labels of the outgoing edges. At this level,
one truth assignment has taken place. If property p holds
at the current state, the corresponding node satisfies the
reachability formula. Otherwise, we must account for the
next transition. Therefore, the node that assigns False to p,
branches into a number of nodes representing the possible
next states on the Markov chain. In this example, since the
Markov chain is fully-connected, each node will have 3 chil-
dren. Such edges have a label that designates the transition
probability dictated by the Markov chain. Again, different
truth assignments are considered for each new node. How-
ever, notice that the node whose property already has a truth
value will no longer branch. But instead, it may transition
to other nodes at the same level with probabilities given
by the Markov chain. This procedure is continued until the
whole graph is constructed. In particular, the graph ends
once all states have been assigned with truth values over
the set of atomic propositions. A key factor in generating

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

Figure 6. A computation graph for exact verification of a reachability specification ϕ = ♦p over the Markov chain in Figure 5 that has a
probabilistic labeling function. The branching of the nodes is either due to transition between the states (solid edges) or due to assigning a
truth value to a property at a state (dashed edges). The truth values True and False are denoted by > and ⊥, respectively. Each edge has
a label (some of them shown on the graph) that represents the branching probability. The dotted edges connect a node to a subgraph that is
identical to its future branchings.

the computation graph is that there are nodes for which the
history of truth assignments up to them are equivalent. For
instance, in one trajectory over the graph, first s0 |= ¬p
and then s2 |= ¬p while on another trajectory, the assign-
ments happen in reverse order. Such equivalent assignments
happen for any possible permutation in the ordering of the
states. Since the subgraph originating from these nodes are
the same (except the initial labels for the branchings due
to state transitions), we can avoid identical computation.
In Figure 6, such similar nodes are connected with dotted
edges.

Once the graph is generated, we start to compute reachabil-
ity probabilities in a bottom-up manner. At the lowest level,
all states have truth assignments and hence, their verifica-
tion is reduced to solving a system of linear equations (Baier
& Katoen, 2008). Once the reachability probability of chil-
dren of a node are computed, the reachability probability of
the node will be computed using the branching probabilities.
Essentially, the parent node linearly combines the reachabil-
ity probabilities of its children, weighted by the branching
probabilities. Formally, for a node corresponding to a state
ns with a set of children C(ns) = {nb′ = >, nb′ = ⊥}, the
reachability probability is

Pr (ns |= ♦p) =L(s, p)

+ (1− L(s, p))Pr ((nb′ = ⊥) |= ♦p) ,

and for a node corresponding to a truth value nb of a state

s, the reachability probability is

Pr(nb |=♦p) =
1 if nb = >,∑
ns′∈C(nb)

T π(s, s′)Pr (ns′ |= ♦p) if nb = ⊥.

Once all levels of the graph are traversed, the reachability
probability of the root node determines the expected proba-
bility of realizing the specification.

As opposed to naively generating all possible 2|S||AP| en-
vironment configurations, the proposed algorithm is signif-
icantly advantageous. Since, for a deterministic labeling
function, verification may lead to solving a linear system of
|S| equations while in the computation graph, the number
of equations may be |S| only at the last layer. More pre-
cisely, the ith (state-based) layer of the graph may yield a
linear equation system with up to i equations. The number
of nodes in the computation graph depends on the Markov
chain as well as the reachability specification. The high-
est number of nodes happen when the Markov chain is
fully-connected with |S| = n and the reachability specifica-
tion is in the conjunctive form ϕ = ♦

∧m
j=1 pj , leading to

O(n2nm) nodes.

Remark 1. The proposed statistical verification approach
only samples a subset of environment configurations as
opposed to the exact method that exhaustively accounts for
all possible configurations. If verification of a specification

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

over a finite time horizon is desired, instead of applying
an exact verification on each sampled environment, one
may also sample trajectories from the Markov chain. This
approach leads to a Markov chain Monte Carlo strategy
over the computation graph. More specifically, each sample
will be a trajectory with length equal to the time horizon
over the computation graph.

Details of Active Perception Strategy
In settings where an agent has a single shot at performing
a task, the safety of an exploration strategy is crucial. Safe
exploration not only depends on the characteristics of the
model (here, MDP) but also the properties of the given
task. A typical strong assumption for ensuring safety in
exploration is ergodicity of the MDP (Moldovan & Abbeel,
2012). If an MDP is ergodic, then the agent will always be
able to find a policy to return to a previously visited state
after an exploratory action. For a temporal logic task, this
ergodicity assumption should hold on the product of the
MDP and the DFA corresponding to the task. Nevertheless,
the ergodicity assumption does not usually hold in a realistic
setting.

The proposed active perception strategy (detailed in Algo-
rithm 1 of the main manuscript) balances the exploration
safety with the information quality by a hyperparameter β.
In particular, the algorithm locally searches for a state on
the product of the MDP and the DFA to which it can go and
come back with high probability. Similar to an ergodicity
assumption, this requirement ensures that the agent can re-
turn to its current state (of the MDP and the task). On the
other hand, the exploratory actions must lead to gathering
information that reduces the uncertainty in the environment
semantics.

To generate the active perception strategy, Algorithm 1 gen-
erates a tree of possible sequences of actions with a bounded
length. Each node of the tree captures the exploration safety
by a reachability metric and the information quality by an
entropy reduction metric over the belief. The reachability
metric depends on the probability of being in an MDP state
bsk, the probability of being in a task state bqk, as well as the
reachability probability rk back to the state from which the
active perception strategy is initiated. The belief over the
MDP states originates from the transition probabilities of
the MDP, i.e., for an action a ∈ A,

bsk(s′) =
∑
s∈S

bsk(s)T (s, a, s′).

The belief over the DFA states depends on the belief over
the MDP states and the belief over the atomic propositions,

i.e., for an action a ∈ A,

bqk(q′) =
∑
s∈S

bsk(s)
∑
s′∈S
T (s, a, s′)∑

P⊆AP

Lt(s′, P)
∑
q∈Q

1[δ(q, P) = q′],

where 1[.] is the indicator function. It is worth noting that
instead of explicitly enumerating all P ⊆ AP , it suffices
to only find the activation probabilities of transitions in
the DFA. Each transition has a propositional logic formula
whose truth assignment can be evaluated using the following
rules recursively:

Pr(s |= p) = L(s, p),

Pr(s |= ¬p) = 1− L(s, p),

Pr(s |= p1 ∧ p2) = L(s, p1)L(s, p2),

Pr(s |= p1 ∨ p2) = L(s, p1) + L(s, p2)

− L(s, p1)L(s, p2).

The information quality of a node is measured by the amount
of entropy reduction ∆ek of the belief distribution on the
atomic propositions. Given an observation model and the
current belief, it is straightforward to compute the expected
entropy reduction. The proposed active perception strategy
will keep reducing the uncertainty over the environment
semantics. Hence, if the ergodicity assumption holds on the
product MDP, then the agent will be able to find the optimal
policy.

Simulation Details
We provide the details of the simulation settings as well as
further results next.

Planar Navigation with Finite-Horizon Tasks

We simulated a planar navigation in a discretized 2D en-
vironment of size 8 × 8. We implemented the proposed
task-oriented perception and planning algorithm and its dif-
ferent variations without certain blocks such as belief update,
divergence test, and active perception. The simulations for
planar navigation were run on a laptop with 2.0 GHz Intel
Core i7-4510U CPU and 8 GB RAM. The Python codes
are provided in the following repository: https://github.com/
MahsaGhasemi/task-oriented-perception-and-planning

The results of 50 runs of each algorithm is averaged and
represented in Table 1 of the main manuscript. The success
rate is the average of how many runs the agent successfully
completed the task. The number of steps indicates how
many actions the agent has taken to either complete the
task or fail it. The failure of the task could either be due to
exceeding the maximum time step of 50 or due to hitting an
obstacle. The number of (re)planning is reported in the last

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

column. If the divergence test is included in the algorithm,
the agent performs fewer policy synthesis, however, it also
takes longer to complete the task and has smaller success
rate. The results show that adding an active perception strat-
egy increases the success rate whether replanning happens
at every state or only when required by the divergence test.

The proposed task-oriented perception and planning algo-
rithm has two hyperparameters that affect its performance.
The hyperparameter γd determines how frequent the re-
planning must occur. Lower values of γd impose a higher
amount of computation as the agent should synthesize a
policy more often. On the other hand, higher values of γd
may increase the risk of following a potentially poor plan
obtained from poor perception. A relatively conservative
choice for γd is the minimum value that the divergence mea-
sure will change if the truth value of a state’s property is
flipped. The hyperparameter γr determines the willingness
of the agent to risk, i.e., follow a policy whose success
is considerably changed when perception uncertainties are
taken into account. The choice of γr depends on the appli-
cation, more specifically how much cost a wrong or unsafe
action may incur. Figure 7 demonstrates the effect of risk
threshold on an agent’s behavior. The agent starts from
the bottom-left cell and aims to safely navigate through the
environment to reach the top-right cell. The paths depicted
in (a) and (b) are both successful, however, in (b) the risk
threshold is lower. As a result of that, the agent performs
more information-gathering strategies. As shown in (c) and
(d), an improper choice of the the risk threshold may lead
to task failure. If γr is too high, the agent may take a bad
action and arrive at a state with an obstacle. On the other
hand, if γr is too low, the agent keeps gathering information
until the maximum number of time steps is exceeded.

Drone Navigation in Simulated Urban Environment

We used the open-source platform AirSim (Shah et al., 2017)
to evaluate the proposed task-oriented perception and plan-
ning algorithm on a drone flying through a simulated ur-
ban environment. AirSim can be integrated with any envi-
ronment created on the Unreal Engine. We used version
4.18 of Unreal Engine. We developed an urban environ-
ment, partially depicted in Figure 8, using the commercial
Unreal Engine package DownTown created by PolyPixel.
All AirSim simulations were run on a machine with 3.50
GHz Intel Core i9-9920X CPU, GeForce RTX 2080 Super
GPU, and 128 GB RAM. The Python codes and the set-
ting file (JSON format) for AirSim are provided in in the
following repository: https://github.com/MahsaGhasemi/
task-oriented-perception-and-planning

We modeled a drone flying in this environment. The drone’s
task is to reach to a target building with a flag on top of it
while avoiding the other buildings in its surroundings. We

(a) A successful path with
high risk threshold.

(b) A successful path with
low risk threshold.

(c) An unsuccessful path
due to very high risk
threshold.

(d) An unsuccessful path
due to very low risk thresh-
old.

Figure 7. Samples of different paths of an agent in an 8 × 8 2D
environment under different risk thresholds. The agent’s goal is to
reach the top-right cell from the initial bottom-left cell. The colors
indicate the normalized frequency of visiting each state where dark
blue means no-visit and dark red means highest number of visits.

control the drone through a PX4 flight controller. The drone
flies in a point-to-point manner with constant speed between
centers of the cells of a discretized map of the environment.
The map is 120× 185 m2 and consists of 24× 37 cells of
size 5× 5 m2. The drone’s perception relies on two types
of data gathered by 4 RGB cameras (with the resolution of
128× 128 pixels) and 4 depth cameras (type DepthPlanner
in AirSim). Each camera has a 90◦ field of view so that the
4 of them cover the whole 360◦. Whenever the drone arrives
at a cell, the perception modules processes the current data
through the procedure shown in Figure 9. In particular, using
a projection matrix for the depth data, we create a point
cloud, labeling each pixel with its corresponding coordinates

Figure 8. A scene from the created urban environment.

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

Figure 9. The data processing of the drone’s perception module in the AirSim environment. The depth data is used to create a point cloud
and the RGB data is used to create a semantic segmentation. The information from the point cloud and the semantic segmentation are
integrated to generate a probabilistic labeling over the discretized map. Probabilistic labels consist of the target building, the obstacles
(including other buildings), and unknown entities that include any entities not related to the task.

in the environment. We semantically segment the RGB data
based on three classes of target building, obstacles (e.g.,
other buildings), and unknown entities (e.g., sky). We add a
noise of up to 0.25 to the output of semantic segmentation to
model perception uncertainty. By mapping the coordinates
from the point cloud to the cells of the discretized map, we
match each pixel to a cell. Then, for each cell we average
the labeling output of semantic segmentation from the pixels
matched to that cell. The average labeling probability of
each cell determines the probabilistic semantics.

Since in this setting, an exact observation model does not
exist, we resort to a frequentist way of updating the agent’s
belief over the states’ properties. To realize that, at each
time step, we compute the set of states that are not visible
given the current obstacles in the view. Therefore, we can
keep track of how many times each cell has been visited
and use that frequency to update the belief. At time step t,
Lt(s, p) = Lt−1(s, p) if state s is not visible and updates
according to

Lt(s, p) =
Lt−1(s, p) ∗ freq(s) + Pravg(s |= p)

freq(s) + 1

if state s is visible, where freq(s) is the frequency of visiting
state s up to time t− 1 and Pravg(s |= p) is the output of
the perception module at the current time step.

We simulate three different scenarios. In the first scenario,
the drone has exact knowledge of the semantic labeling and
hence, synthesizes a policy only at the beginning and con-

tinues with that policy. In the second scenario, the drone
starts with a noisy belief of the semantic labeling, however,
it receives perception data from a constructed observation
function. The observation function provides noisy measure-
ments of the labels over the entire map. In the third scenario,
the drone is equipped with the more realistic perception
module depicted in Figure 9 that gathers local RGB and
depth measurements. In both the second and the third sce-
narios, the drone’s semantic knowledge evolves over time
and hence, it has to replan as necessary. To reduce the size
and shorten the videos, we have sped up the recordings of
the drone’s flight for each of these scenarios by 16× and
made them available in the supplementary material.

As seen in the videos, the drone successfully reaches to
the flagged building in all three scenarios. In the first sce-
nario, the drone reaches to the target sooner than the other
scenarios due to it having access to the perfect labeling as
well as the fact that it does not need to synthesize a policy
except at the initial point. In the second scenario, the drone
receives measurements of the labels through a constructed
observation function which it can use to update its belief in a
Bayesian way. Since these measurements are from the entire
environment, the drone’s knowledge improves more quickly
than the third scenario. As a result of that, it is able to com-
plete the task earlier than the third scenario. However, in
the third scenario where the agent has a realistic perception
module with local observations, it is able to successfully
complete the task.

Task-Oriented Active Perception and Planning in Environments with Partially Known Semantics

References
Baier, C. and Katoen, J.-P. Principles of model checking.

MIT press, 2008.

Moldovan, T. M. and Abbeel, P. Safe exploration in Markov
decision processes. In Proceedings of the 29th Interna-
tional Coference on International Conference on Machine

Learning, pp. 1451–1458, 2012.

Shah, S., Dey, D., Lovett, C., and Kapoor, A. Airsim: High-
fidelity visual and physical simulation for autonomous
vehicles. In Field and Service Robotics, 2017. URL
https://arxiv.org/abs/1705.05065.

