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Abstract is more powerful, as it learns the optimal kernel from a dic-

Multi-kernel learning (MKL) exhibits reliable per-
formance in nonlinear function approximation 
tasks. Instead of using one kernel, it learns the 
optimal kernel from a pre-selected dictionary of 
kernels. The selection of the dictionary has crucial 
impact on both the performance and complexity 
of MKL. Specifcally, inclusion of a large num-
ber of irrelevant kernels may impair the accuracy, 
and increase the complexity of MKL algorithms. 
To enhance the accuracy, and alleviate the com-
putational burden, the present paper develops a 
novel scheme which actively chooses relevant ker-
nels. The proposed framework models the pruned 
kernel combination as feedback collected from 
a graph, that is refned ‘on the fy.’ Leveraging 
the random feature approximation, we propose 
an online scalable multi-kernel learning approach 
with graph feedback, and prove that the proposed 
algorithm enjoys sublinear regret. Numerical tests 
on real datasets demonstrate the effectiveness of 
the novel approach. 

1. Introduction 
Function approximation emerges in various machine learn-
ing tasks such as classifcation, regression and clustering. In 
present paper, we will focus on supervised function learning 
tasks, i.e., given samples {(x1, y1), ..., (xT , yT )}T sucht=1 
that xt ∈ Rd and yt ∈ R, the goal is to fnd a function 
f(.) such that the discrepancy between f(xt) and yt is min-
imized. To this end, a cost function C(f(xt), yt) can be 
employed to measure the difference between f(xt) and ytPTand C(f(xt), yt) is minimized. Upon assuming that t=1 
f(.) belongs to a reproducing kernel Hilbert space (RKHS), 
the problem becomes tractable (Scholkopf & Smola, 2001). 
Most of kernel based learning relies on a preselected kernel, 
while the data-driven multi-kernel learning (MKL) approach 
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tionary of kernels, see e.g., (Cortes et al., 2010). 

In a number of tasks, it is also required to carry out func-
tion learning in an online fashion, especially when data is 
collected sequentially. Moreover, the sheer volume of data 
makes it impossible to store it in batch. In these cases, it is 
imperative to perform learning tasks in an online fashion. 
However, kernel based learning also suffers from the well-
known “curse of dimensionality” (Shawe-Taylor & Cris-
tianini, 2004; Wahba, 1990), which makes it not amenable 
for sequential processing. In order to address this issue, 
online single kernel-based learning has attracted increas-
ing attention, see e.g., (Bouboulis et al., 2018; Lu et al., 
2016; Zhang & Liao, 2019), where (Zhang & Liao, 2019) 
developed a random sketching based framework. Kernels 
can be approximated using fnite-dimensional feature maps 
which can effectively make the learning task scalable, see 
e.g., (Rahimi & Recht, 2007; Shahrampour & Tarokh, 2018; 
Williams & Seeger, 2000). Employing fnite feature map-
ping, (Bouboulis et al., 2018; Lu et al., 2016) developed 
online kernel learning approach based on random feature 
(RF) approximation (Rahimi & Recht, 2007) . Building 
upon the online RF-based single kernel learning framework, 
multi-kernel variants have also been developed in (Lu et al., 
2020; Sahoo et al., 2019; Shen et al., 2018; 2019). 

A largely overlooked issue for most of the MKL approaches 
is the proper selection of the kernel dictionary, which has 
pivotal impact on both accuracy and complexity of MKL. 
Specifcally, inclusion of a large number of irrelevant ker-
nels may impair the accuracy, and increase the complexity 
of the MKL algorithm. Faced with these challenges, the 
present paper aims at developing an OMKL framework, 
which can actively choose relevant kernels from the dictio-
nary, and refne the selection ‘on the fy’. The proposed 
framework can alleviate the computational burden of on-
line MKL due to the reduced number of kernels used at 
each time instant. Specifcally, the online kernel selection is 
modeled as graph-structured feedback (henceforth termed 
(OMKL-GF)), where each kernel can be viewed as an expert 
lying in a graph. At each time slot, instead of collecting 
feedback from all kernel nodes at each time, the graph is 
updated and refned so that only a subset of kernels are 
employed at each time slot. Relative to existing OMKL 
approaches, our novelty can be summarized as follows: 
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c1) Different from existing works which employ all kernels 
in the dictionary, while only learns the combination coeff-
cients, OMKL-GF only uses a subset of kernels each time 
slot according to a time-varying graph; 

c2) We develop an adaptive and disciplined framework to 
refne the graph structure according to the loss incurred 
by kernel-based approximants, and prove that the resulting 
OMKL-GF approach achieves sublinear regret; 

c3) Experiments on real datasets demonstrate the effective-
ness of the novel algorithm compared with several state-of-
art OMKL alternatives. 

2. Preliminaries 
Given samples {(x1, y1), · · · , (xT , yT )}T , the goal is to t=1 
fnd the nonlinear function f(.), such that yt = f(xt) + et. 
In the context of kernel based learning, it is assumed that 
the sought f(.) belongs to the reproducing Hilbert kernel 
space (RHKS) H := {f |f(x) = 

P∞ 
αtκ(x, xt)}, where t=1 

κ(x, xt) : Rd × Rd → R measures the similarity between 
x and xt which is a symmetric positive semidefnite basis 
function called kernel. A kernel is reproducing if it satisfes 
hκ(x, xt), κ(x, xt0 )iH = κ(xt, xt0 ) where h·, ·iH denotes 
vector inner product in Hilbert space, with the RKHS normP P 
defned as kfk2 

t0 αtαt0 κ(xt, xt0 ). The function H := t 
approximation problem can henceforth be solved via 

TX 
min 

1 C(f(xt), yt) + λΩ(kfk2 (1)H) 
f ∈H T 

t=1 

where C(., .) is a cost function, which can be task-specifc, 
e.g., least-squares for regression, and logistic cost for clas-
sifcation. And the regularizer Ω(.) is a non-decreasing 
function introduced to control model complexity, and pre-
vent overftting. Given fnite data samples, the representer 
theorem states that the optimal solution of (1) can be written 
as (Wahba, 1990) 

TX 
f̂(x) = αtκ(x, xt) := α>κ(x) (2) 

t=1 

where α := [α1, ..., αT ]
> collects unknown coeffcients 

to be estimated, and κ(x) := [κ(x, x1), · · · , κ(x, xT )]
> . 

Hence, the RKHS norm can be written as kfk2 
H := α>Kα, 

where K is the kernel matrix whose (t, t0)-th entry is 
κ(xt, xt0 ). Note that the dimension of α increases with the 
number of data samples T , which is also known as ‘curse of 
dimensionality’ (Wahba, 1990). This brings challenge for 
solving (1) in an online fashion. 

2.1. Random Feature Approximation 

One way to cope with the increasing dimension of the 
unknown variables is by resorting to random feature ap-

proximation for kernels (Rahimi & Recht, 2007). As in 
(Rahimi & Recht, 2007), we will approximate κ in (2) using 
shift-invariant kernels that satisfy κ(xt, xt0 ) = κ(xt − xt0 ). 
For κ(xt − xt0 ) absolutely integrable, its Fourier trans-
form πκ(v) exists and represents the power spectral density, 
which upon normalizing to ensure κ(0) = 1, can also be 
viewed as a probability density function (pdf); hence, Z 

κ(xt − xt0 ) = πκ(v)e 
>jv (xt−xt0 )dv 

jv (xt−x:=Ev[e 
> 

t0 )]. (3) 

By sampling suffcient number of independent and iden-
tically distributed (i.i.d) samples {vi}D from πκ(v),i=1 
κ(xt − xt0 ) can be approximated by the ensemble meanPD >1 jv (xt −xt0 )κ̂c(xt − xt0 ) := , the real part ofT i=1 e 
which also constitutes an unbiased estimator of κ(xt − xt0 ) 
(Rahimi & Recht, 2007) 

>κ̂(xt − xt0 ) = z (xt)zv(xt0 ) (4)v 

where 

zv(x) (5) 

> > > > =√ 
1 

[sin v1 x, ..., sin vDx, cos v1 x, ..., cos vDx]
> . 

D 

Hence, f̂(x) in (2) can be approximated as 

TX 
>f̂RF(x) = αtz (xt)zv(x) := θ> zv(x) (6)v 

t=1 

where θ is a 2D vector whose dimension does not increase 
with the number of data samples. Thus, the nonlinear func-
tion that is optimal in sense of (1) is approximated by a 
linear function in the random feature space. Hence, using 
RF approximation resolves the growing size of parameters, 
and makes the problem (10) amenable for scalable online 
implementation. 

Note that kernel based learning approaches rely on a pres-
elected kernel, which often requires task-specifc prior in-
formation that may not be available. To cope with this 
challenge, MKL has been proposed which learns the ker-
nel as a combination of a prescribed and suffciently rich 
dictionary of kernels {κn}N The kernel combinationn=1. 

¯ ¯belongs to the convex hull K̄ := {κ̄ = 
PN 

βnκn, βn ≥ n=1 
¯0, 

PN 
βn = 1}, and is itself a kernel (Scholkopf & n=1 

Smola, 2001). Hence, the function approximation can be 
performed by seeking functions in the following form 

NX 
f(xt) = w̄ nfn(xt) (7) 

n=1 PNwhere w̄ n = 1 and fn(xt) is in Hn which is a n=1 
RKHS induced by κn. Substituting (7) into (1) and resorting 
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Jensen’s inequality, the function approximation problem can 
then be solved in an online fashion by minimizing the upper 
bound of the original objective function. Upon replacing 
fn(.) using its RF approximation 

f̂RF,n(xt) = θ> zn(xt) (8)n 

the function approximation problem can be written as (Shen 
et al., 2019) 

T N � �XX 
min w̄ n,t C(θ> zn(xt), yt)+λΩ(kθn,tk2)n 

{w̄ n,t,θn} t=1 n=1 

NX 
s.t. w̄ n,t = 1, w̄ n,t ≥ 0, ∀t : 1 ≤ t ≤ T. (9) 

n=1 

However, employing a large kernel dictionary (i.e., large 
N ) increases the computational complexity, and may dete-
riorate the accuracy of function approximation if too many 
irrelevant kernels are included. This motivates us to investi-
gate data-driven approaches to choose and refne the subset 
of relevant kernels from a large dictionary. 

3. Online MKL with Graph Feedback 
Based on RF formulation in Section 2, the present sec-
tion will introduce an online multi-kernel learning approach 
which can adaptively refne the kernel selection. 

3.1. Time-Varying Kernel Selection 

Instead of combining the entire dictionary of the kernels, in 
present paper, we will consider a subset of kernels {κn, n ∈ 
St} at time instant t, where St is the index set of the chosen 
subset of kernels at time instant t, and |St| = Nt. Hence, 
the original function approximation problem boils down to 

T � �XX 
min w̄ n,t C(θ> zn(xt), yt)+λΩ(kθn,tk2)n 

{w̄ n,t ,θn}t=1n∈StX 
s.t. w̄ n,t = 1, w̄ n,t ≥ 0, ∀1 ≤ t ≤ T. (10) 

n∈St 

At each time instant t, the loss of n-th kernel is defned as 

L(θ> zn(xt), yt) = C(θ> zn(xt), yt) + λΩ(kθnk2)n n 

wnUpon defning the normalized weights w̄ n,t = P ,wmm∈St 

(10) can be re-written as 

TX X wn
min P L(θ> zn(xt), yt)n 

{wn},{θn} m∈St 
wmt=1 n∈St 

s.t. wn > 0, ∀1 ≤ n ≤ N. (11) 

However, (10) assumes that {St}Tt=1 are preselected sets. 
In the following section, we will study data-driven scheme 
which can adaptively select a subset of kernels ‘on the fy’ 
upon receiving new data samples. 

3.2. Data-Driven Graph-Structured Kernel Selection 

In order to adaptively choose the subset of kernels, the 
present section models the pruned kernel combination as 
feedback collected from a graph, that is refned in an on-
line fashion. By doing this, the proposed approach trims 
irrelevant kernels in the dictionary to both improve the func-
tion approximation accuracy and reduce the computational 
complexity of MKL. 

Consider a time varying bipartite graph (Asratian et al., 
1998) Gt at time t, which consists of two sets of nodes: 

(k) (k)
N kernel nodes {v , ..., v } and J selective nodes1 N 

(c) (c) (k) (c){v , ..., v } where vn and v are the n-th kernel node 1 J j 
and j-th selective node, respectively. And the edges of the 
graph represents the association between the kernel nodes 
and the selective nodes. Specifcally, an edge between vn 

(k) 

(c)and vj exists at time t if the n-th kernel is assigned to 
j-th selective node. The construction and refnement of the 
graph will be discussed in Section 3.3 . 

At each time slot, one of selective nodes vj 
(c) is chosen, and 

(c)the subset of kernel nodes connected with v will be used j 
for the instantaneous function approximation at time t, [c.f. 
(11)]. Then, the loss L(f̂  

RF,n(xt), yt) is observed for every 
kernel in the chosen subset and θn,t is updated as 

θn,t+1 = θn,t − ηrL(θ> zv,n(xt), yt). (12)n,t 

Let wn,t denotes the weighting coeffcient wn at time instant 
t. We leverage multiplicative update for weights wn,t 

` n,t 
wn,t+1 = wn,t exp(−η ) (13)

2b 

where b = blog2(J)c, and ` n,t denotes the importance sam-
pling loss estimates (Alon et al., 2017) 

L(f̂RF,n(xt), yt)
` n,t = I{n ∈ St} (14) 

qn,t 

which is the observed loss L(f̂  
RF,n(xt), yt) divided by the 

probability qn,t which is the probability that the loss of as-
sociated kernel is observed. The value of qn,t depends on 
how the graph is generated, and I(.) denotes the indicator 
function. Since we initialize the value of wn with 1, the 
multiplicative update in (13) satisfes the constraint in (11). 
Upon updating parameters θn,t+1 and wn,t+1, the function 
approximation can be obtained via (7) and (8) using the cho-
sen subset of kernel nodes connected to one of the selective 
nodes. 
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Then, the selective nodes are assigned to weights {uj,t+1}
according to the the kernel nodes’ weights {wn,t+1}. In-
deed, each selective node’s weight {uj,t+1} is the total 
summation of weights of kernel nodes which are connected 

(c)to that selective node. Specifcally the weight of vj is 
obtained via X 

uj,t+1 = wn,t+1. (15) 
(k) (c)∀n:vn →vj 

Note that the weights of the selective nodes are determined 
by its adjacent kernel nodes, which indicates the reliability 
of the corresponding kernel-based function estimate.Hence, 
the probability according to which a selective node is chosen 
in the next time slot can be updated as 

uj,t+1 ηe 
pj,t+1 = (1 − ηe) + (16)

Ut+1 J PJwhere Ut+1 := j=1 uj,t+1, and 0 < ηe ≤ 1 is the explo-
ration rate. The term ηe is introduced to tradeoff between J 
exploitation and exploration. 

To sum up, each kernel is viewed as an expert and at each 
time instant a subset of function approximations provided 
by these experts is combined. In this regard, the RF approx-
imation f̂RF,n(xt) can be viewed as the feedback provided 
by n-th kernel node, and the proposed framework mod-
els the pruned kernel combination as feedback collected 
from a graph, where the feedback are combined only if 
the corresponding kernel node is connected to the chosen 
selective node.By doing this, the proposed approach trims 
irrelevant kernels in the dictionary to both improve the func-
tion approximation accuracy and reduce the computational 
complexity of MKL. The graph refning approach will be 
proposed in the ensuing subsection. 

3.3. Online Graph Refnement 

Note that generating and refning the time varying graph is 
of utmost importance, as it affects both function approxima-
tion accuracy and computational complexity. In this regard, 
a graph is successful if it can provide a subset of kernels 
which results in as less as possible loss. Indeed, consider-
ing computational complexity, the graph should provide a 
limited number of kernels which obtain minimum loss. To 
this end, we aim to propose a generating method for graph. 
However, in order to execute more exploration, the graph is 
generated in a stochastic manner. 

Increasing the number of kernel nodes connected to v(c) ,j 
increases the computational complexity of performing func-

(c)tion approximation by choosing vj . Therefore, the graph 
generation algorithm should be designed to limit the number 
of kernel nodes connected to each selective node. Let M 
denote the maximum number of kernel nodes connected 

to each selective node. The procedure to generate the 
graph Gt is presented in Algorithm 1. Let At represents 
N × J sub-adjacency matrix between two disjoint subsets 

(c) (c) (k) (k){v , ..., v } and {v , ..., v }. Also, At(n, j) repre-1 J 1 N 
sents n-th row and j-th column of the sub-adjacency matrix 

(k) (c)
At and it is equal to 1 if vn is connected to vj , and 0 
otherwise. 

Algorithm 1 Generating Graph Gt 

Input:Kernels κn, n = 1, ..., N , exploration coeffcient 
ηe > 0, the maximum number of connected kernel nodes 
to each computation node M and weighting coeffcient 
wn,t for kernels. 
Initialize: Sub-adjacency matrix At = 0N×J . 
for j = 1, ..., J do 

for n = 1, ..., N do 
(κn) wn,t ηeSet p = (1 − ηej ) P + 

j 

.Nt,j Nwn,t 

end for 
n=1 

for k = 1, ..., M do 
Choose one of nodes vk,i drawn according to PMF 
(κ) (κ1) (κN )p = (p , ..., p ).t,j t,j t,j 

Set At(n, j) = 1. 
end for 

end for 

(c) (k)Each selective node v draws kernel nodes vn in Mj 
independent trials and in each trial selective node draws 
only one kernel node. We put more weight on kernels which 
obtain less loss. The probability that selective node v(c) 

j 
(k)draws the kernel node vn in a trial at time t is 

(κn) wn,t ηe
j 

pt,j = (1 − ηe
j ) PN + 

N 
(17) 

n=1 wn,t 

Note that the frst term in (17) discriminates between kernels 
based on their weights which is determined by their loss in 
function approximation [c.f. (13)]. Furthermore, the second 
term allows exploration over all kernel nodes. Specially, the 

(c)selective node vj draws kernel nodes according to uniform 
distribution if ηe = 1. Furthermore, note that ηej is a non-
increasing function of j for 0 < ηe ≤ 1. The selective node 
v
(c) puts more weight on exploration in comparison with 1 

others while v(c) considers more exploitation than all the J 
other selective nodes. Therefore, the selective nodes entail 
different level of exploration and exploitation. 

(κn)Based on the defnition of pt,j in (17), the probability that 
(c) (κn)the n-th kernel node is connected to v is 1−(1−p )M .j t,j 

(κn))MIn fact, (1 − pt,j is the probability that n-th kernel 
(c)node is chosen by vj in none of M trials. Therefore, the 

probability of observing the loss of n-th kernel at time t is 
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Algorithm 2 OMKL with Graph Feedback (OMKL-GF) 
Input:Kernels κn, n = 1, ..., N , step size η > 0, the 
number of features D and b such that J ∈ [2b , 2b+1 − 1]. 
Initialize: θn,1 = 0, wn,1 = 1, n = 1, ..., N 
for t = 1, ..., T do 

Receive one datum xt. 
Generate Gt using Algorithm 1.P 
Set uj,t = (k) (c) wn,t.∀n:vn →vj 

Obtain pj,t via (16). 
(c)Choose one selective node vj according to PMF pt = 

(p1,t, ..., pJ,t). P 
Predict f̂  

t(xt) = P wn,t f̂RF,n(xt) with n∈St m∈St 
wm,t 

f̂RF,n(xt) in (8). 
Obtain loss L(f̂  

RF,n(xt), yt) for all n ∈ St. 
Update θn,t+1 via (12) for all n ∈ St. 
Update wn,t+1 via (13). 

end for 

given by 

JX � � 
(κn)qn,t = pj,t 1 − (1 − pt,j )M (18) 

j=1 

for 1 ≤ n ≤ N . The value of qn,t is computed and used 
for importance sampling loss estimate in (14). The graph 
generation framework is summarized in Algorithm 1 

At each time slot t, a graph Gt is generated, and used for 
choosing a selective node, and henceforth subset of the ker-
nels. Then the weights of the selected kernels are updated 
according to the loss [c.f.(12) and (13)]. Then the graph can 
be refned as it is presented in Algorithm 1, and henceforth 
resulting in a better graph, leads to better function approxi-
mation. Given the graph, the function approximation will 
be carried out by choosing one of the selective nodes which 
leads to selecting a subset of kernels. Our proposed on-
line multi-kernel learning with graph-structured feedback 
(OMKL-GF) is summarized in Algorithm 2. 

Memory Requirement. At time instant t, OMKL-GF 
needs to store a real 2D random feature vector in addition 
to a weighting vector for each kernel in conjunction with 
a weighting vector for each selective node. As the number 
of kernels is in general larger than the number of selective 
nodes, the required memory is of order O(dDN). 

Computational Complexity. The per-iteration complex-
ity of our OMKL-GF (e.g. calculating inner products) is 
O(dDM + JN). In comparison, the per-iteration complex-
ity of OMKR developed (Sahoo et al., 2014) is O(tdN), 
while more contemporary online RF-based OMKL ap-
proaches proposed in (Sahoo et al., 2019; Shen et al., 
2019) both have per-iteration complexity O(dDN). Hence, 

OMKL-GF can signifcantly reduce the per iteration com-
plexity especially when J ≤ M << N . 

Comparison with Online Expert Learning. Note that the 
updates resembles those in online learning with expert ad-
vice (Cesa-Bianchi et al., 1997; Littlestone & Warmuth, 
1994; Vovk, 1998), and online expert learning with graph-
structured feedback (Alon et al., 2015; 2017; Cortes et al., 
2019; Liu et al., 2018; Mannor & Shamir, 2011), where 
each kernel can be viewed as an expert. However, rela-
tive to the generic expert advice problem, there exist three 
innovative differences in OMKL-GF: i) the kernel-based 
function estimator itself performs effcient online learning 
scheme for self-improvement; ii) unlike conventional on-
line learning with expert advice which combines feedback 
from all experts, OMKL-GF only collects feedback from 
a subset of experts based on a graph; iii) we proposed an 
adaptive scheme to actively refne feedback graph based on 
the incurred online loss. 

Comparison with Raker (Shen et al., 2019). Comparing 
OMKL-GF with Raker (Shen et al., 2019), it can be readily 
observed that both algorithms rely on RF-approximation to 
make online kernel based learning more scalable. While 
Raker employs all kernels in the dictionary for function 
approximation, our proposed OMKL-GF chooses a time-
varying subset of kernels at each time instant by adaptively 
pruning irrelevant kernels. Experiments on real datasets will 
be presented in Section 5 to show that OMKL-GF can attain 
lower MSE and execution time in comparison with Raker 
by actively choosing a subset of kernels. 

4. Regret Analysis 
In order to analyze the performance of our OMKL-GF, we 
assume that the following conditions hold: 

(a1) At each time instance t the loss function 
L(θ> zn(xt), yt) is convex with respect to θ.n,t 

(a2) For θ in a bounded set Θ which satisfes kθk ≤ Cθ the 
loss is bounded as L(θ> (xt), yt) ∈ [0, 1]. Also,n,tzv,n 

in this case the loss has bounded gradient which means 
krL(θ> (xt), yt)k ≤ L.n,tzv,n 

(a3) Kernels {κn}nN 
=1 are shift-invariant, standardized, and 

bounded, that is κn(xi, xj ), ∀xi, xj . Also, each datum 
is bounded i.e. kxtk ≤ 1. 

Note that (a1) is satisfed by many convex loss functions 
such as least-squares loss. Furthermore, (a2) states that the 
losses are bounded and L-Lipschitz continuous. In addition, 
a number of kernels satisfy (a3), e.g., Gaussian, Laplacian 
and Cauchy kernels(Rahimi & Recht, 2007). Generally, the 
above conditions are standard in online convex optimization 
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(Hazan, 2016) and kernel learning (Rahimi & Recht, 2007; 
Shen et al., 2019). 

We consider stochastic regret, which is a typical criterion 
for analyzing online convex optimization schemes (Hazan, 
2016). Specifcally, it measures the difference between 
expected aggregate loss of the online algorithm and the best 
function approximant in the hindsight. Given a sequence of 
approximations f̂  

t(.) obtained by the algorithm A, we have 

T TX X 
E[RA 

s (T )]= E[L(f̂  
t(xt), yt)]− L(f ∗ (xt), yt). (19) 

t=1 t=1 

where f∗(.) denotes the best function approximant in the 
hindsight and it can be obtained as follows 

TX 
f ∗ (.) ∈ arg 

f∗ 
min L(fn 

∗ (xt), yt) (20a) 
,n∈{1,...,N}n t=1 

TX 
f ∗ ∈ arg min L(f(xt), yt) (20b)n 

f∈Hn 
t=1 

where Hn denotes the RKHS induced by κn. Thus, to 
compute the stochastic static regret analysis we have 

T TX X 
E[RA 

s (T )]= E[L(f̂  
t(xt), yt)]− L(f ∗ (xt), yt). (21) 

t=1 t=1 

Note that in this paper, E[.] at time t denotes conditional 
expected value given {L(f̂  

τ (xτ ), yτ )}t−1 
τ =1. 

In order to analyze the regret for OMKL-GF, we frst estab-
lish an intermediate result in the following lemma. 

Lemma 1. The regret of our proposed algorithm under (a1), 
(a2) and with Fn = {f̂  

n|f̂  
n(x) = θ>zn(x), ∀θ ∈ R2D}

satisfes the following bound 

T TX X 2b 

E[L(f̂  
t(xt), yt)] − L(f̂∗ (xt), yt) < ln Nt,n η 

t=1 t=1 

kθ∗ k2NJ ηL2T ηN2JT n+ + + ηeJT + (22)
2b+1η22ηη2 2e e 

where θ∗ is associated with the best RF function approxi-n 

(xt) = θ∗>mant f̂∗ zn(xt).t,n n 

The next theorem further characterizes the difference be-
tween the loss of OMKL-GF relative to the best functional 
estimator in the RKHS. 

Theorem 2. The following bound holds with probability at 
least 1 − 28( σn )2 exp(− D�2 

) under (a1)-(a3) for � > 0� 4d+8 

and with f∗ belonging to RKHS Hn as in (20b)n 

T TX X 
E[L(f̂  

t(xt), yt)] − min L(f ∗ (xt), yt)n 
n∈{1,...,N}

t=1 t=1 

2b NJ(1 + �)C2 ηL2T 
< ln N + + + ηeJT 

η 2ηη2 
e 

ηN2JT 
+ �LT C + (23)

2b+1η2 
e 

where C is a constant, and σ2 is the second order mo-n 
ment of the RF vector norm which can be defned as 
σ2 := Eπ 

v 
κn [kvk2].n 

1According to Theorem 2, by setting η = � = O( √ ) and 
T 

ηe = O(T −1/6) in (23), the stochastic static regret in (19) 
satisfes E[Rs (T )] = O(T 6

5 
). Thus, by selecting appropri-A 

ate parameters, our proposed OMKL-GF achieves sublinear 
regret in expectation with respect to the best static function 
approximant in (19). 

Note that while proper settings of � and η relies on the knowl-
edge of T , such information may not be necessary, via em-
ploying, e.g., doubling trick (Cesa-Bianchi & Lugosi, 2006). 
Considering (23), the probability 1 − 28( σn )2 exp(− D�2 

)� 4d+8 
is an increasing function of D such that for a fxed �, al-
ways there are some values for D which result in posi-
tive probability. Furthermore, (23) shows that by setting 
D = O(T log(T )), a sublinear regret can be obtained with 
high probability. In addition, more recent results about 
RF approximation, e.g., (Rudi & Rosasco, 2017) can also 
be readily applied and show that sublinear regret can be√ 
obtained with O( T log(T )) random features. 

5. Experiments 
In this section, our proposed online OMKL-GF framework 
is tested in terms of accuracy and computational complexity. 
We evaluate our proposed online OMKL-GF in comparison 
with the following kernel learning baselines 

• OMKR: Online MKL Hedge algorithm developed in 
(Sahoo et al., 2014). 

• OMKR-FA: Random feature based online MKL via 
function approximation (Sahoo et al., 2019). 

• Raker: Random feature based online MKL (Shen 
et al., 2019). 

Mean square error (MSE) is used to evaluate the accuracy of 
MKL algorithms when it comes to performing online regres-
sion. For random feature based MKL algorithms including 
our proposed OMKL-GF, Raker and OMKR-FA, we gener-
ate 50 different sets of random features and the mean value 
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of MSE for all sets of random features is reported. Thus, in 
this section we compute MSE at time instant t as follows 

NMSE tX X 
MSE =

1 1
(ŷτ − yτ )

2 (24)
NMSE t 

i=1 τ=1 

where ŷτ is the approximation of yt provided by the MKL 
algorithms. Also, NMSE denotes the number of rounds that 
MSE is computed. For our proposed OMKL-GF, Raker and 
OMKR-FA the value of NMSE is set to 50 whereas the value 
of NMSE for OMKR is set to 1. The number of random 
features D is fxed to 50 for all random feature-based MKL 
algorithms. Also, the regularization coeffcient λ is set 
to 10−3 . In addition, for MKL algorithms we consider a 
dictionary of 17 radial basis function (RBF) kernels with 
different bandwidths. Let σi, 

2 
dic denotes the variance of i-

th RBF kernel in the dictionary. In this case, the value of 
σi, 
2 

dic can be expressed as σi, 
2 

dic = 10 
i−9 

where 1 ≤ i ≤2 

17. Moreover, for all MKL algorithms, stepsize η and the 
1exploration rate ηe are set to √ . 
t 

Algorithm 2 requires to observe the graph to choose a sub-
set of kernels. The graph Gt is generated by Algorithm 1 
and disclosed. However, generating graph in every time 
instant can increase the computational complexity of the 
proposed OMKL-GF while it cannot improve MSE consid-
erably. To further decrease the computational complexity 
of our proposed OMKL-GF, we consider the following sce-
nario. The graph is generated until an amount of loss is 
achieved. For this scenario, the graph will not be generated 
in τter + 1, . . . , T if the condition (ŷτter − yτter )

2 < 10−4 is 
met at time instant τter. 

The performance of MKL algorithms are tested for online 
regression, over the following real datasets downloaded 
from UCI Machine Learning Repository are used. 

• Air Quality. The dataset contains 9358 instances of 
hourly averaged responses from an array of 5 sensors 
located on the feld in a signifcantly polluted area. 
Data samples contain 13 features which are averaged 
sensors response. It is aimed at predicting yt which is 
polluting chemical concentration in the air. (Vito et al., 
2008). 

• Istanbul Stock Exchange. Data is organized with 
regard to working days in Istanbul Stock Exchange 
which contains 536 instances with 7 features including 
stock market return indices. The goal is to predict 
Istanbul stock exchange national 100 index (Akbilgic 
et al., 2014). 

• Twitter. This dataset contains 14000 samples from 
a micro-blogging platform Twitter with 77 features 
including the length of discussion on a given topic 

Table 1. MSE (×10−3) and execution time of MKL algorithms for 
Air Quality dataset when η = √1 . 

t 

Algorithms M J MSE Execution time (s) 

OMKR - - 3.3 2533.96s 

OMKR-FA - - 41.2 1.67s 

Raker - - 4.7 2.88s 

OMKL-GF 1 1 8.1 0.74s 
OMKL-GF 7 1 4.2 1.47s 
OMKL-GF 10 1 3.9 1.68s 
OMKL-GF 17 1 4.1 2.56s 

OMKL-GF 1 2 7.7 0.75s 
OMKL-GF 1 4 11.2 0.78s 
OMKL-GF 7 2 4.6 1.46s 
OMKL-GF 7 4 6.8 1.67s 

Table 2. MSE (×10−3) and execution time of MKL algorithms for 
Istanbul Exchange dataset when η = √1 . 

t 

Algorithms M J MSE Execution time (s) 

OMKR - - 10.0 17.16s 

OMKR-FA - - 187.8 0.11s 

Raker - - 11.3 0.19s 

OMKL-GF 1 1 61.9 0.05s 
OMKL-GF 7 1 13.3 0.12s 
OMKL-GF 10 1 12.2 0.14s 
OMKL-GF 17 1 11.3 0.18s 

OMKL-GF 1 2 38.5 0.05s 
OMKL-GF 1 4 38.4 0.05s 
OMKL-GF 7 2 12.9 0.17s 
OMKL-GF 7 4 15.2 0.15s 

and the number of new interactive authors. Also, yt 
represents the average number of active discussion 
(popularity) on a certain topic (Kawala et al., 2013). 

• Tom’s Hardware. dataset contains 10000 samples 
from a worldwide new technology forum with 96 fea-
tures including the number of discussions on a topic. 
Moreover, yt represents the average number of display 
about a certain topic on Tom’s hardware (Kawala et al., 
2013). 

• Naval Propulsion Plants. Data has been generated 
from a sophisticated simulator of gas turbines. Dataset 
contains 11934 samples with 15 features including 
ship speed. Furthermore, yt represents lever position 
(Coraddu et al., 2016). 

Table 1, Table 2, Table 3 and Table 4 list performance of 
MKL algorithms in terms of both MSE and execution time 
for each dataset. Note that while OMKR provides better 
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Table 3. MSE (×10−3) and execution time of MKL algorithms for 
Twitter dataset when η = √1 . 

t 

Algorithms M J MSE Execution time (s) 

OMKR - - 3.3 9099.95s 

OMKR-FA - - 29.6 4.06s 

Raker - - 5.3 6.06s 

OMKL-GF 1 1 16.5 1.46s 
OMKL-GF 7 1 5.3 2.80s 
OMKL-GF 10 1 4.7 4.03s 
OMKL-GF 17 1 4.6 5.17s 

OMKL-GF 1 2 12.2 1.50s 
OMKL-GF 1 4 14.4 1.56s 
OMKL-GF 7 2 5.1 3.94s 
OMKL-GF 7 4 8.7 3.49s 

Table 4. MSE (×10−3) and execution time of MKL algorithms for 
Tom’s Hardware dataset when η = √1 . 

t 

Algorithms M J MSE Execution time (s) 

OMKR - - 2.2 4474.20s 

OMKR-FA - - 21.4 3.04s 

Raker - - 4.6 4.64s 

OMKL-GF 1 1 12.3 1.03s 
OMKL-GF 7 1 3.7 2.26s 
OMKL-GF 10 1 3.5 2.65s 
OMKL-GF 17 1 3.7 3.67s 

OMKL-GF 1 2 12.1 1.07s 
OMKL-GF 1 4 13.0 1.08s 
OMKL-GF 7 2 5.2 2.39s 
OMKL-GF 7 4 8.5 2.46s 

accuracy compared with RF-based alternatives, it is also 
much more computationally complex, without resorting to 
RF approximation. It can be observed that the proposed 
OMKL-GF outperforms OMKR-FA in terms of accuracy. 
Also, the results show that when the maximum number of 
kernels that can be chosen is one (M = 1), OMKL-GF 
can achieve higher accuracy with lower execution time in 
comparison with OMKR-FA. Furthermore, Tables 1, 2 3 
and 4 show that MSE obtained by OMKL-GF is comparable 
to that of Raker while OMKL-GF reaches this with lower 
execution time. It can also be seen that when M = 7, 10 
and 17, the proposed OMKL-GF can provide more accurate 
function approximations compared to Raker. Furthermore, 
our proposed OMKL-GF is much more scalable in compari-
son with OMKR and using our OMKL-GF framework can 
reduce the execution time of function approximation consid-
erably while preserving comparatively accurate estimates. 

The results in Tables 1, 2, 3 and 4 also demonstrate that for 

Figure 1. MSE of MKL Algorithms over time for Naval Propulsion 
Plants dataset. 

Table 5. MSE (×10−3) and execution time of MKL algorithms for 
Naval Propulsion Plants dataset when η = √1 . 

t 

Algorithms M J MSE Execution time (s) 

OMKR - - 1.0 9690.24s 

OMKR-FA - - 294.9 2.42s 

Raker - - 1.4 4.14s 

OMKL-GF 1 1 20.1 1.24s 
OMKL-GF 10 1 1.4 2.49s 
OMKL-GF 1 3 18.6 1.24s 
OMKL-GF 10 3 1.7 2.62s 

the same value of M , OMKL-GF achieves lower MSE by 
decreasing J , the number of selective nodes in virtually all 
cases. It can also be observed that by increasing the value 
of M , the MSE obtained by OMKL-GF reduces in most 
of cases. On the other hand, larger M (i.e. the maximum 
number of kernels chosen at each time) leads to higher the 
execution time as well. Also, increase in the number of 
selective nodes leads to increase in the execution time. 

Furthermore, Fig. 1 illustrates the MSE of competative 
algorithms for Naval Propulsion Plants dataset over time. 
As it can be observed from Fig. 1, our proposed OMKL-
GF can provide lower MSE in comparison with OMKR-
FA. When M = 10 and J = 1 in almost all time indices 
our proposed OMKL-GF provides similar MSE compared 
to Raker. Also, Fig. 1 shows that increasing the number 
of selective nodes from 1 to 3 leads to increase in MSE 
for OMKL-GF. Execution time of all algorithms for Naval 
Propulsion Plants dataset is reported in Table 5, which shows 
OMKL-GF runs faster than Raker while it can still provide 
comparable MSE. This validates the effectiveness of the 
proposed graph based kernel selection scheme. 
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6. Conclusion 
The present paper developed an online MKL approach for 
nonlinear function approximation based on random feature 
approximation. By generating graph feedback, proposed 
alogrithmic scheme chose a subset of relevant kernels based 
on losses observed in prior time instants. By choosing a 
subset of relevant kernels, our proposed approach trimmed 
irrelevant kernels to enhance the accuracy, and reduce the 
computational complexity. We proved that our proposed 
approach achieve sublinear regret in expectation. Numerical 
tests on several real datasets reveal merits of our proposed 
algorithmic framework in comparison with other online 
MKL benchmarks. 

References 
Akbilgic, O., Bozdogan, H., and Balaban, M. E. A novel hy-

brid rbf neural networks model as a forecaster. Statistics 
and Computing, 24(3):365 – 375, May 2014. 

Alon, N., Cesa-Bianchi, N., Dekel, O., and Koren, T. Online 
learning with feedback graphs: Beyond bandits. In Pro-
ceedings of Conference on Learning Theory, volume 40, 
pp. 23–35, Jul 2015. 

Alon, N., Cesa-Bianchi, N., Gentile, C., Mannor, S., Man-
sour, Y., and Shamir, O. Nonstochastic multi-armed ban-
dits with graph-structured feedback. SIAM Journal on 
Computing, 46(6):1785–1826, 2017. 

Asratian, A. S., Denley, T. M. J., and Häggkvist, R. Bipartite 
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