Online Multi-Kernel Learning with Graph-Structured Feedback

A. Proof of Lemma 1

In order to prove Lemma 1, we first establish the following lemma as a step stone.

Lemma 3. Under (al), (a2), (20a) and (20b) with F,, = {fu|fn(x) = 072, (x),¥8 € R?*P}, let frp.(.) denote the
sequence of estimates generated by our MKL algorithm with a preselected kernel k,,. The following bound holds true with
probability 1:
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where 1 is the learning rate, L is the Lipschitz constant in (a2), q’”’” = minvse(1,... T} In,t, and 07 is the corresponding

parameter vector supporting the best estimator ft,n( x) = (0%) Tz, (x).

Proof. Note that OMKL-GF updates the 6,, ; only if the n-th kernel is in the chosen subset. Therefore, based on (12), for
any fixed 6, we find
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Furthermore, based on the convexity of loss function under (al), it can be written that
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Combining (26) with (27), we arrive at
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Taking the expectation of left hand side of (28) with respect to Z(n € S;), we obtain
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where ¢, ; is the probability that the n-th kernel is in the chosen subset of kernels. Moreover, for the expectation of right
hand side of (28), we have
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From (28), (29) and (30), we can conclude that
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Summing (31) overt = 1,...,T, we obtain
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Let gmin = minysey1,... T} gn,t- Based on (a2), the right hand side of (32) can be bounded by
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where L is the Lipschitz constant. Using the facts that 6,, ; = 0 and non-negativity of |0, 741 — 2, from (32) and (33)

we can conclude that
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By choosing 8 = 6 such that ft*n(x) = (07) " z,(x), we arrive at
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Lemma 4. Under (al) and (a2), the following holds
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where 1) is the learning rate, 1. is the exploration rate, b = |logy(J)], qn = ijl Dit (1 —(1- pg?’)) ) and N
denotes the number of kernels.

Proof. Let W, = Zgzl Wy, ¢. For any ¢ we find
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Combining (37) with (38) obtains
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Using the inequality e = < 1 — z + 22, Vz > 0, (39) leads to
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Taking logarithm from both sides of inequality (40), and use the fact that 1 4+ z < e”, we have
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Summing (41) over ¢ from 1 to 7" results in
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Furthermore, recall the updating rule of w,, 741 in (13), for any n we have
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Combining (42) with (43) results in
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Multiplying both sides by (1 — 1) ﬁ, we arrive at
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Also, using the fact that 0 < 1. < 1 we can conclude that 1 — 1/ < 1 and for all j > 1, nJ < 7., the RHS of (45) can be
upper bounded by
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Since 1 — 1 = (1 —n.)(1+ ... +n/71) and . < 1, the following bound holds for the second term on the RHS of (46)
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Meanwhile, as n/ < n? for all j ,1 < j < J, the LHS of (45) can be bounded by
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Combining (45), (46), (47) and (48), we can conclude that
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Recall the probability of observing the loss of n-th kernel at time ¢ given in (18), the expected first and second moments of

(¢ in (14) given the losses incurred up to time instant ¢ — 1, i.e., {£(f,(x,),y-)}.Z} can be written as
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Based on (50b), the third term in the right hand side of (49) can be bounded as follows
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Taking the expected value of (49) at each time ¢ given{L( fT (%), y7) Yoz 1 and combining with (50a) and (51) we have
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Since Gt = t;inN < 1, replace ~—*- < 1 by 1, the inequality in (52) still holds
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Also, using the fact that Zle pj,+ = 1, for the third term in the right hand side of (53) we have
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Furthermore, based on that £( fRF’n( +),y+) < 11in (a2), the following inequality holds
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From (53), (54) and (55), we can conclude that
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According to the procedure of generating the graph G; which is presented in Algorithm 1, for each selective node v§c) a
Q)

subset of kernels is chosen using PMF p;

in M independent trials. In fact, a subset of kernels is assigned to each node
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vj(p) in M independent trials and in each trial one kernel is assigned and its associated entry in the sub-adjacency matrix A

becomes 1. Now, let b,, represents the frequency that n-th kernel is chosen in M independent trials. Thus, {b, }?_; can be
viewed as the solution to the following linear equation

by+...+by =M, st. b, >0,b, €N &0

where N denotes the set of natural numbers. There are (N+M 1) different solutions for (57). Let, {b,, x }_, denotes k-th

set of solution for (57). Based on Jensen’s inequality, for the expected value of £(f;(x;),y;) we have
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Also, considering (58) and the fact that w,, ; < 1, we can conclude that
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Note that the number of ways to solve (57) when n-th kernel is chosen for at least one time equals to the number of ways to
solve the following problem
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There are (N "%[ _2) different solutions for (60). Let {ng)n},]yzl denotes k-th set of solution for (60). Therefore, based on
this, from (59) we can conclude the following equality
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Combining (56) with (62) leads to
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which concludes to proof of Lemma 4. O



Online Multi-Kernel Learning with Graph-Structured Feedback

From (25) in Lemma 3 and (36) in Lemma 4, we conclude that
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Furthermore, based on (18) we can write
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From (65) and the facts that p; ; > = and Dy > % the following inequality can be concluded
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Hence, Lemma 1 is proved.
B. Proof of Theorem 2
To prove Theorem 2, the following lemma is exploited (Shen et al., 2019)
Lemma 5. For the optimal function estimator (19) in H, expressed as f}(x) := Zle o, kin(X,X¢) and its

RF-based approximant ft’in(x, X¢) = Zthl afhtzl(x)zn(xt), the following bound holds with probability at least
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nt‘

Proof. For a given shift invariant kernel «,,, the maximum point-wise error of the random feature kernel approximant is
uniformly bounded with probability at least 1 — 28(22)? exp(— ;5 +8) by (Rahimi & Recht, 2007)
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Furthermore, using the triangle inequality we can conclude that
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Considering the Lipschitz continuity of the loss function we can obtain the following inequality
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Using the Cauchy-Schwartz inequality, we obtain
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Hence, from (70), (71) and (72) we can conclude the following inequality
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Combining (69) with (73) and considering the fact that C' := max,, ZtT:l |y, ¢, yields the following inequality which
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In addition, under the kernel bound in (a3) and uniform convergence in (69) which implies Sup,, ¢ x z,) (X:)Zn(x;) < 1+e

holds with probability at least 1 — 28(%=)2 exp(— & ), it can be written that
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Combining Lemma 1 with Lemma 5 and (75), it can be concluded that the following bound holds with probability at least
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which completes the proof of Theorem 2.

C. Relationship between OMKL-GF and Raker
In this section, we compare our proposed OMKL-GF with Raker (Shen et al., 2019) presented in Algorithm 3.

Algorithm 3 Raker (Shen et al., 2019)
Input:Kernels x,, n = 1, ..., N, step size n > 0, and the number of features D.
Initialize: 0,,; =0, w,1 =1,n=1,..., N
fort=1,...,T do
Receive one datum x;.
Construct z,,(x;) via (5) forn =1,..., N.
Predict fi(x:) = 31 sov ™ fren (%e) With fren (x:) in (8).
forn=1,...,Ndo " 1
Obtain loss E(fRF’n(xt), Yt)-
Update 8,, 41 via (12).
Update wy, 441 via (13).
end for
end for

Note that both OMKL-GF and Raker utilizes random feature approximation to make the kernel-based learning task scalable.
While Raker employs all kernels in the dictionary for function approximation at each time instance, our proposed OMKL-GF
chooses a time-varying subset of kernels at each time instant by adaptively pruning irrelevant kernels. Experiments show
that OMKL-GF can attain lower MSE and execution time in comparison with Raker by actively choosing a subset of kernels.





