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A. Proof of Lemma 1
In order to prove Lemma 1, we first establish the following lemma as a step stone.

Lemma 3. Under (a1), (a2), (20a) and (20b) with Fn = {f̂n|f̂n(x) = θ>zn(x),∀θ ∈ R2D}, let f̂RF,n(.) denote the
sequence of estimates generated by our MKL algorithm with a preselected kernel κn. The following bound holds true with
probability 1:

T∑
t=1

L(f̂RF,n(xt), yt)−
T∑
t=1

L(f̂∗t,n(xt), yt) ≤
‖θ∗n‖2

2ηqmin
n

+
ηL2T

2
(25)

where η is the learning rate, L is the Lipschitz constant in (a2), qmin
n = min∀t∈{1,...,T} qn,t, and θ∗n is the corresponding

parameter vector supporting the best estimator f̂∗t,n(x) = (θ∗n)>zn(x).

Proof. Note that OMKL-GF updates the θn,t only if the n-th kernel is in the chosen subset. Therefore, based on (12), for
any fixed θ, we find

‖θn,t+1 − θ‖2 = ‖θn,t − η∇L(θ>n,tzn(xt), yt)I(n ∈ St)− θ‖2

= ‖θn,t − θ‖2 − 2η∇>L(θ>n,tzn(xt), yt)I(n ∈ St)(θn,t − θ)

+ ‖η∇L(θ>n,tzn(xt), yt)I(n ∈ St)‖2. (26)

Furthermore, based on the convexity of loss function under (a1), it can be written that

L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt) ≤ ∇>L(θ>n,tzn(xt), yt)(θn,t − θ) (27)

Combining (26) with (27), we arrive at(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
I(n ∈ St)

≤ ‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2η
+
η

2
‖∇L(θ>n,tzn(xt), yt)I(n ∈ St)‖2. (28)

Taking the expectation of left hand side of (28) with respect to I(n ∈ St), we obtain

E[
(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
I(n ∈ St)]

=
(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
× 1× qn,t +

(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
× 0× (1− qn,t)

= qn,t
(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
(29)

where qn,t is the probability that the n-th kernel is in the chosen subset of kernels. Moreover, for the expectation of right
hand side of (28), we have

E
[
‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2η
+
η

2
‖∇L(θ>n,tzn(xt), yt)I(n ∈ St)‖2

]
=
‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2η
+
ηqn,t

2
‖∇L(θ>n,tzn(xt), yt)‖2. (30)

From (28), (29) and (30), we can conclude that

L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt) ≤
‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2ηqn,t
+
η

2
‖∇L(θ>n,tzn(xt), yt)‖2. (31)

Summing (31) over t = 1, . . . , T , we obtain

T∑
t=1

(
L(θ>n,tzn(xt), yt)− L(θ>zn(xt), yt)

)
≤

T∑
t=1

‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2ηqn,t
+
η

2

T∑
t=1

‖∇L(θ>n,tzn(xt), yt)‖2. (32)
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Let qmin
n = min∀t∈{1,...,T} qn,t. Based on (a2), the right hand side of (32) can be bounded by

T∑
t=1

‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2ηqn,t
+
η

2

T∑
t=1

‖∇L(θ>n,tzn(xt), yt)‖2 ≤
T∑
t=1

‖θn,t − θ‖2 − ‖θn,t+1 − θ‖2

2ηqmin
n

+
η

2

T∑
t=1

L2

=
‖θn,1 − θ‖2 − ‖θn,T+1 − θ‖2

2ηqmin
n

+
ηL2T

2
(33)

where L is the Lipschitz constant. Using the facts that θn,1 = 0 and non-negativity of ‖θn,T+1 − θ‖2, from (32) and (33)
we can conclude that

T∑
t=1

L(θ>n,tzn(xt), yt)−
T∑
t=1

L(θ>zn(xt), yt) ≤
‖θ‖2

2ηqmin
n

+
ηL2T

2
. (34)

By choosing θ = θ∗n such that f̂∗t,n(x) = (θ∗n)>zn(x), we arrive at

T∑
t=1

L(f̂RF,n(xt), yt)−
T∑
t=1

L(f̂∗t,n(xt), yt) ≤
‖θ∗n‖2

2ηqmin
n

+
ηL2T

2
(35)

where f̂RF,n(xt) = θ>n,tzn(xt).

Lemma 4. Under (a1) and (a2), the following holds

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f̂RF,n(xt), yt) ≤
2b

η
lnN + ηeJT +

η

2b+1

T∑
t=1

N∑
n=1

1

qn,t
(36)

where η is the learning rate, ηe is the exploration rate, b = blog2(J)c, qn,t =
∑J
j=1 pj,t

(
1− (1− p(κn)

t,j )M
)

and N
denotes the number of kernels.

Proof. Let Wt =
∑N
n=1 wn,t. For any t we find

Wt+1

Wt
=

J∑
j=1

pj,t
Wt+1

Wt
=

J∑
j=1

pj,t

N∑
n=1

wn,t+1

Wt
=

J∑
j=1

pj,t

N∑
n=1

wn,t
Wt

exp(− η

2b
`n,t). (37)

Based on (17), we have

wn,t
Wt

=
p

(κn)
t,j −

ηje
N

1− ηje
,∀j ∈ {1, ..., J}. (38)

Combining (37) with (38) obtains

Wt+1

Wt
=

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
exp(− η

2b
`n,t). (39)

Using the inequality e−x ≤ 1− x+ 1
2x

2,∀x ≥ 0, (39) leads to

Wt+1

Wt
≤

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje

(
1− η

2b
`n,t +

1

2
(
η

2b
`n,t)

2

)
. (40)

Taking logarithm from both sides of inequality (40), and use the fact that 1 + x ≤ ex, we have

ln
Wt+1

Wt
≤

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje

(
− η

2b
`n,t +

1

2
(
η

2b
`n,t)

2

)
. (41)
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Summing (41) over t from 1 to T results in

ln
WT+1

W1
≤

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje

(
− η

2b
`n,t +

1

2
(
η

2b
`n,t)

2

)
. (42)

Furthermore, recall the updating rule of wn,T+1 in (13), for any n we have

ln
WT+1

W1
≥ ln

wn,T+1

W1
= − lnN −

T∑
t=1

η

2b
`n,t. (43)

Combining (42) with (43) results in
T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j

1− ηje
(
η

2b
`n,t)−

T∑
t=1

η

2b
`n,t

≤ lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηje
N

1− ηje
(
η

2b
`n,t) +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje

(
1

2
(
η

2b
`n,t)

2

)
. (44)

Multiplying both sides by (1− ηJe ) 2b

η , we arrive at

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j

1− ηJe
1− ηje

`n,t −
T∑
t=1

(1− ηJe )`n,t

≤(1− ηJe )
2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηje(1− ηJe )

N(1− ηje)
`n,t +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

(1− ηJe )(p
(κn)
t,j −

ηje
N )

1− ηje
(
η

2b+1
`2n,t). (45)

Also, using the fact that 0 < ηe ≤ 1 we can conclude that 1− ηJe < 1 and for all j ≥ 1, ηje ≤ ηe, the RHS of (45) can be
upper bounded by

(1− ηJe )
2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηje(1− ηJe )

N(1− ηje)
`n,t +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

(1− ηJe )(p
(κn)
t,j −

ηje
N )

1− ηje
(
η

2b+1
`2n,t)

≤ 2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηe(1− ηJe )

N(1− ηe)
`n,t +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
(
η

2b+1
`2n,t). (46)

Since 1− ηJe = (1− ηe)(1 + . . .+ ηJ−1
e ) and ηe ≤ 1, the following bound holds for the second term on the RHS of (46)

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηe(1− ηJe )

N(1− ηe)
`n,t =

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηe(1 + . . .+ ηJ−1
e )

N
`n,t

≤
T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
`n,t. (47)

Meanwhile, as ηJe ≤ ηje for all j, 1 ≤ j ≤ J , the LHS of (45) can be bounded by

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j

1− ηJe
1− ηje

`n,t −
T∑
t=1

(1− ηJe )`n,t ≥
T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j `n,t −

T∑
t=1

`n,t. (48)

Combining (45), (46), (47) and (48), we can conclude that
T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j `n,t −

T∑
t=1

`n,t

≤2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
`n,t +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
(
η

2b+1
`2n,t). (49)
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Recall the probability of observing the loss of n-th kernel at time t given in (18), the expected first and second moments of
`n,t in (14) given the losses incurred up to time instant t− 1, i.e., {L(f̂τ (xτ ), yτ )}t−1

τ=1 can be written as

E[`n,t] =

J∑
j=1

pj,t

(
1− (1− p(κn)

t,j )M
) L(f̂RF,n(xt), yt)

qn,t
= L(f̂RF,n(xt), yt) (50a)

E[`2n,t] =

J∑
j=1

pj,t

(
1− (1− p(κn)

t,j )M
) L2(f̂RF,n(xt), yt)

q2
n,t

=
L2(f̂RF,n(xt), yt)

qn,t
≤ 1

qn,t
. (50b)

Based on (50b), the third term in the right hand side of (49) can be bounded as follows

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
(
η

2b+1
`2n,t) ≤

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
(

η

2b+1qn,t
). (51)

Taking the expected value of (49) at each time t given{L(f̂τ (xτ ), yτ )}t−1
τ=1 and combining with (50a) and (51) we have

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j L(f̂RF,n(xt), yt)−

T∑
t=1

L(f̂RF,n(xt), yt)

≤2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
L(f̂RF,n(xt), yt) +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j −

ηje
N

1− ηje
(

η

2b+1qn,t
). (52)

Since wn,t
Wt

=
p
(κn)
t,j −

η
j
e
N

1−ηje
≤ 1, replace

p
(κn)
t,j −

η
j
e
N

1−ηje
≤ 1 by 1, the inequality in (52) still holds

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j L(f̂RF,n(xt), yt)−

T∑
t=1

L(f̂RF,n(xt), yt)

≤2b

η
lnN +

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
L(f̂RF,n(xt), yt) +

η

2b+1

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

1

qn,t
. (53)

Also, using the fact that
∑L
j=1 pj,t = 1, for the third term in the right hand side of (53) we have

η

2b+1

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

1

qn,t
=

η

2b+1

T∑
t=1

N∑
n=1

1

qn,t
. (54)

Furthermore, based on that L(f̂RF,n(xt), yt) ≤ 1 in (a2), the following inequality holds

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
L(f̂RF,n(xt), yt) ≤

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

ηeJ

N
= ηeJT. (55)

From (53), (54) and (55), we can conclude that

T∑
t=1

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j L(f̂RF,n(xt), yt)−

T∑
t=1

L(f̂RF,n(xt), yt)

≤2b

η
lnN + ηeJT +

η

2b+1

T∑
t=1

N∑
n=1

1

qn,t
. (56)

According to the procedure of generating the graph Gt which is presented in Algorithm 1, for each selective node v(c)
j a

subset of kernels is chosen using PMF p(κ)
t,j in M independent trials. In fact, a subset of kernels is assigned to each node
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v
(c)
j in M independent trials and in each trial one kernel is assigned and its associated entry in the sub-adjacency matrix A

becomes 1. Now, let bn represents the frequency that n-th kernel is chosen in M independent trials. Thus, {bn}Nn=1 can be
viewed as the solution to the following linear equation

b1 + . . .+ bN = M, s.t. bn ≥ 0, bn ∈ N (57)

where N denotes the set of natural numbers. There are
(
N+M−1

N

)
different solutions for (57). Let, {bn,k}Nn=1 denotes k-th

set of solution for (57). Based on Jensen’s inequality, for the expected value of L(f̂t(xt), yt) we have

E[L(f̂t(xt), yt)] =

J∑
j=1

pj,t

(N+M−1
N )∑
k=1

(
N∏
n=1

(p
(κn)
t,j )bn,k

)
L(
∑
n∈St

w̄n,tf̂RF,n(xt), yt)

≤
J∑
j=1

pj,t

(N+M−1
N )∑
k=1

(
N∏
n=1

(p
(κn)
t,j )bn,k

) ∑
n∈St

w̄n,tL(f̂RF,n(xt), yt). (58)

Also, considering (58) and the fact that w̄n,t ≤ 1, we can conclude that

E[L(f̂t(xt), yt)] ≤
J∑
j=1

pj,t

(N+M−1
N )∑
k=1

(
N∏
n=1

(p
(κn)
t,j )bn,k

) ∑
n∈St

w̄n,tL(f̂RF,n(xt), yt)

≤
J∑
j=1

pj,t

(N+M−1
N )∑
k=1

(
N∏
n=1

(p
(κn)
t,j )bn,k

) ∑
n∈St

L(f̂RF,n(xt), yt). (59)

Note that the number of ways to solve (57) when n-th kernel is chosen for at least one time equals to the number of ways to
solve the following problem

b̃1,n + . . .+ b̃N,n = M − 1, s.t. b̃m,n ≥ 0, b̃m,n ∈ N. (60)

There are
(
N+M−2

N

)
different solutions for (60). Let {b̃(k)

m,n}Nn=1 denotes k-th set of solution for (60). Therefore, based on
this, from (59) we can conclude the following equality

J∑
j=1

pj,t

(N+M−1
N )∑
k=1

(
N∏
n=1

(p
(κn)
t,j )bn,k

) ∑
n∈St

L(f̂RF,n(xt), yt)

=

J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j

(N+M−2
N )∑
k=1

(
N∏
m=1

(p
(κm)
t,j )b̃

(k)
m,n

)
L(f̂RF,n(xt), yt) (61)

where
∑(N+M−2

N )
k=1

(∏N
m=1(p

(κm)
t,j )b̃

(k)
m,n

)
is the total probability of all

(
N+M−2

N

)
possible solutions of (60). Therefore,∑(N+M−2

N )
k=1

(∏N
m=1(p

(κm)
t,j )b̃

(k)
m,n

)
= 1. Substituting (61) into (58), we obtain

E[L(f̂t(xt), yt)] ≤
J∑
j=1

pj,t

N∑
n=1

p
(κn)
t,j L(f̂RF,n(xt), yt). (62)

Combining (56) with (62) leads to

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f̂n,t(xt), yt) ≤
2b

η
lnN + ηeJT +

η

2b+1

T∑
t=1

N∑
n=1

1

qn,t
(63)

which concludes to proof of Lemma 4.
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From (25) in Lemma 3 and (36) in Lemma 4, we conclude that

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f̂∗t,n(xt), yt) ≤
2b

η
lnN +

‖θ∗n‖2

2ηqmin
n

+
ηL2T

2
+ ηeJT +

η

2b+1

T∑
t=1

N∑
n=1

1

qn,t
. (64)

Furthermore, based on (18) we can write

qn,t =

J∑
j=1

pj,t

(
1− (1− p(κn)

t,j )M
)

=

J∑
j=1

pj,tp
(κn)
t,j

(
1 + . . .+ (1− p(κn)

t,j )M−1
)
≥

J∑
j=1

pj,tp
(κn)
t,j . (65)

From (65) and the facts that pj,t > ηe
J and p(κn)

t,j >
ηje
N , the following inequality can be concluded

qn,t ≥
J∑
j=1

pj,tp
(κn)
t,j > p1,tp

(κn)
t,1 >

η2
e

NJ
. (66)

Therefore, we find qmin
n >

η2e
NJ . Combining (64) and (66) we can conclude that

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f̂∗t,n(xt), yt) <
2b

η
lnN +

‖θ∗n‖2NJ
2ηη2

e

+
ηL2T

2
+ ηeJT +

ηN2JT

2b+1η2
e

. (67)

Hence, Lemma 1 is proved.

B. Proof of Theorem 2
To prove Theorem 2, the following lemma is exploited (Shen et al., 2019)
Lemma 5. For the optimal function estimator (19) in Hn expressed as f∗n(x) :=

∑T
t=1 α

∗
n,tκn(x,xt) and its

RF-based approximant f̂∗t,n(x,xt) =
∑T
t=1 α

∗
n,tz

>
n (x)zn(xt), the following bound holds with probability at least

1− 28(σnε )2 exp(− Dε2

4d+8 ) ∣∣∣∣∣
T∑
t=1

L(f̂∗t,n(xt), yt)−
T∑
t=1

L(f∗n(xt), yt)

∣∣∣∣∣ ≤ εLTC (68)

where the equality happens if we have C := maxn
∑T
t=1 |α∗n,t|.

Proof. For a given shift invariant kernel κn, the maximum point-wise error of the random feature kernel approximant is
uniformly bounded with probability at least 1− 28(σnε )2 exp(− Dε2

4d+8 ), by (Rahimi & Recht, 2007)

sup
xi,xj∈X

|zn(xi)
>zn(xj)− κn(xi,xj)| < ε (69)

Furthermore, using the triangle inequality we can conclude that∣∣∣∣∣
T∑
t=1

L(f̂∗t,n(xt), yt)−
T∑
t=1

L(f∗n(xt), yt)

∣∣∣∣∣ ≤
T∑
t=1

∣∣∣L(f̂∗t,n(xt), yt)− L(f∗n(xt), yt)
∣∣∣ . (70)

Considering the Lipschitz continuity of the loss function we can obtain the following inequality

T∑
t=1

∣∣∣L(f̂∗t,n(xt), yt)− L(f∗n(xt), yt)
∣∣∣ ≤ T∑

t=1

L

∣∣∣∣∣
T∑
τ=1

α∗n,τz
>
n (xτ )zn(xt)−

T∑
τ=1

α∗n,τκn(xτ ,xt)

∣∣∣∣∣. (71)

Using the Cauchy-Schwartz inequality, we obtain

T∑
t=1

L

∣∣∣∣∣
T∑
τ=1

α∗n,τz
>
n (xτ )zn(xt)−

T∑
τ=1

α∗n,τκn(xτ ,xt)

∣∣∣∣∣ ≤
T∑
t=1

L

T∑
τ=1

|α∗n,τ |
∣∣z>n (xτ )zn(xt)− κn(xτ ,xt)

∣∣ (72)
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Hence, from (70), (71) and (72) we can conclude the following inequality∣∣∣∣∣
T∑
t=1

L(f̂∗t,n(xt), yt)−
T∑
t=1

L(f∗n(xt), yt)

∣∣∣∣∣ ≤
T∑
t=1

L

T∑
τ=1

|α∗n,τ |
∣∣z>n (xτ )zn(xt)− κn(xτ ,xt)

∣∣ (73)

Combining (69) with (73) and considering the fact that C := maxn
∑T
t=1 |α∗n,t|, yields the following inequality which

holds with probability at least 1− 28(σnε )2 exp(− Dε2

4d+8 ),∣∣∣∣∣
T∑
t=1

L(f̂∗t,n(xt), yt)−
T∑
t=1

L(f∗n(xt), yt)

∣∣∣∣∣ ≤
T∑
t=1

Lε

T∑
τ=1

|α∗n,τ | ≤ εLTC. (74)

In addition, under the kernel bound in (a3) and uniform convergence in (69) which implies supxi,xj∈X z>n (xτ )zn(xt) ≤ 1+ε

holds with probability at least 1− 28(σnε )2 exp(− Dε2

4d+8 ), it can be written that

‖θ∗n‖2 ≤ ‖
T∑
t=1

α∗n,tzn(xt)‖2 ≤ |
T∑
t=1

T∑
τ=1

α∗n,tα
∗
n,τz

>
n (xt)zn(xτ )| ≤ (1 + ε)C2. (75)

Combining Lemma 1 with Lemma 5 and (75), it can be concluded that the following bound holds with probability at least
1− 28(σnε )2 exp(− Dε2

4d+8 ),

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f∗n(xt), yt)

=

T∑
t=1

E[L(f̂t(xt), yt)]−
T∑
t=1

L(f̂∗t,n(xt), yt) +

T∑
t=1

L(f̂∗t,n(xt), yt)−
T∑
t=1

L(f∗n(xt), yt)

<
2b

η
lnN +

NJ(1 + ε)C2

2ηη2
e

+
ηL2T

2
+ ηeJT + εLTC +

ηN2JT

2b+1η2
e

(76)

which completes the proof of Theorem 2.

C. Relationship between OMKL-GF and Raker
In this section, we compare our proposed OMKL-GF with Raker (Shen et al., 2019) presented in Algorithm 3.

Algorithm 3 Raker (Shen et al., 2019)
Input:Kernels κn, n = 1, ..., N , step size η > 0, and the number of features D.
Initialize: θn,1 = 0, wn,1 = 1, n = 1, ..., N
for t = 1, ..., T do

Receive one datum xt.
Construct zn(xt) via (5) for n = 1, . . . , N .
Predict f̂t(xt) =

∑N
n=1

wn,t∑N
m=1 wm,t

f̂RF,n(xt) with f̂RF,n(xt) in (8).
for n = 1, . . . , N do

Obtain loss L(f̂RF,n(xt), yt).
Update θn,t+1 via (12).
Update wn,t+1 via (13).

end for
end for

Note that both OMKL-GF and Raker utilizes random feature approximation to make the kernel-based learning task scalable.
While Raker employs all kernels in the dictionary for function approximation at each time instance, our proposed OMKL-GF
chooses a time-varying subset of kernels at each time instant by adaptively pruning irrelevant kernels. Experiments show
that OMKL-GF can attain lower MSE and execution time in comparison with Raker by actively choosing a subset of kernels.




