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Abstract
In many practical applications, heuristic or ap-
proximation algorithms are used to efficiently
solve the task at hand. However their solutions
frequently do not satisfy natural monotonicity
properties of optimal solutions. In this work we
develop algorithms that are able to restore mono-
tonicity in the parameters of interest. Specifically,
given oracle access to a (possibly non-monotone)
multi-dimensional real-valued function f , we pro-
vide an algorithm that restores monotonicity while
degrading the expected value of the function by at
most ε. The number of queries required is at most
logarithmic in 1/ε and exponential in the num-
ber of parameters. We also give a lower bound
showing that this exponential dependence is nec-
essary. Finally, we obtain improved query com-
plexity bounds for restoring the weaker property
of k-marginal monotonicity. Under this property,
every k-dimensional projection of the function f
is required to be monotone. The query complexity
we obtain only scales exponentially with k.

1. Introduction
“You are preparing a paper for an upcoming deadline and
try to fit the content within the page limit. You identified a
redundant sentence and remove it but to your surprise, the
page count of your paper increases!”

This is an example where a natural monotonicity property
expected from the output fails to hold, resulting in unintu-
itive behavior. As another example, consider the knapsack
problem where given a collection of items with values and
weights the goal is to identify the most valuable subset of
items with total weight less than W . Now if the capacity
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of the knapsack increases, the new set of items about to be
selected are expected to be at least as valuable as before.
While such a monotonicity property holds under the optimal
solution, when heuristic or approximate algorithms are used,
monotonicity can often fail.

There are also numerous cases in ML applications that such
a behaviour is desired. For example in hyperparameter
tuning it is expected that the error will reduce when the
complexity of the model increases, which is not always the
case. Additionally, monotone classification and isotonic
regression require the dataset to be monotone, and since this
is not always possible, they usually handle by changing the
dataset. The method we propose could act as a filter that
provides the learning algorithm with monotone points from
the dataset in a black box way.

In this work we develop tools to restore monotonicity in a
black-box way. Our goal is to create a meta-algorithm that
is guaranteed to be monotone, while querying a provided
(possibly non-monotone) algorithm behind the scenes. For
example, such a meta-algorithm might query the provided
oracle at many different inputs in an attempt to smooth out
non-monotonicities.

More precisely, we can describe the output of a (possibly
non-monotone) algorithm using a function f : Rd → [0, 1]
that measures the quality of the solution at any given point
x ∈ Rd. We assume that inputs are drawn from a known
product distribution, and that there is an (unknown) feasibil-
ity condition being satisfied by the function f . Since f may
not initially be monotone, we want to correct it through our
meta-algorithm while additionally maintaining the follow-
ing three properties: it needs to be query efficient, feasible
and comparable to the original algorithm in terms of ex-
pected solution quality. To ensure feasibility, at any given
point x we allow outputting any solution that corresponds to
some smaller input y � x (coordinate-wise), thus achieving
quality f(y) at input x. The exact constraints of the initial
algorithm are unknown, and we have to infer them using f ,
in a black-box way. We want our meta-algorithm to do this
in a way that the resulting quality function f̃ : Rd → [0, 1]
is monotone but also have expected quality E[f̃(x)] that is
comparable to the expected quality of the original algorithm,
E[f(x)] with respect to the input distribution. We finally
require that our meta-algorithm is query efficient, meaning
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that it does not require querying too many points of the
original function in order to return an answer for a given
point.

One natural way of solving this problem is to pick for every
x the best answer that corresponds to any input y � x,
resulting in f̃(x) = maxy�x f(y). While this ensures that
solutions are monotone and that the expected quality is
always better than before, it requires a large number of
queries to identify the best possible answer among inputs
y � x. A more query efficient strategy would be to always
output a constant solution that corresponds to the smallest
possible solution. While this is monotone, feasible and uses
few queries, it has very low expected quality.

1.1. Results

Our main result is stated informally below:
Theorem 1. There is a meta-algorithm Mf that corrects
the monotonicity of any given function f through queries.
The meta-algorithm is feasible and has expected quality loss
ε under a given product distribution of inputs. The total
(expected) number of queries required for every input is at
most O(log(d/ε))d.

Our meta-algorithm starts by discretizing the space to a fine
grid of d/ε points. We show that this step incurs at most an ε
penalty in expected function value. Given this discretization
it is straightforward to correct monotonicity by querying
all the points in the grid at a cost of (d/ε)d and for any x
returning the best solution for any smaller input.

We remark that our meta-algorithm is significantly more effi-
cient than this naive approach, achieving number of queries
that is at most poly-logarithmic in 1/ε. It is able to obtain
this speedup by searching over a hierarchical partition of the
space to efficiently determine which value to assign to the
given input at query time, rather than preprocessing all the
answers. Additionally, our algorithm is local and computes
answers on the fly without requiring any precomputation and
without the need to remember any prior queries to answer
the future ones.

We also note that our algorithm depends exponentially on
the number of input parameters d. This means that while
the algorithm is extremely efficient for small d, the savings
become less significant when d grows. Such an exponen-
tial dependence in the number of parameters, however, is
unavoidable for correcting monotonicity. As we show, for
any black-box scheme that aims to correct monotonicity,
there are always some problems where either it would fail to
be feasible or monotone, or it would require exponentially
many queries to calculate the appropriate answers.
Theorem 2. Let M be any feasible meta-algorithm for
monotonicity with query complexity q = 2o(d). Then,
there exists an input function f : {0, 1}d → {0, 1} with

E[f(x)] ≥ 1− 2−Ω(d) such that E[Mf (x)] ≤ 2−Ω(d).

Theorem 2 shows that ensuring monotonicity when d is large
can be quite costly, either in queries or the quality of the solu-
tion. To better understand this tradeoff, we consider a weak-
ening of monotonicity, namely k-marginal monotonicity,
where we only require monotonicity of the k-dimensional
projections of the function to be monotone. That is, when
k = 1, we want that for any coordinate i ∈ [d], the function
E[Mf (x)|xi] to be monotone with respect to xi. For larger
k > 1, we want that for any subset I ⊆ [d] of size |I| ≤ k,
the function E[Mf (x)|xI ] is monotone with respect to xS .
For this setting, we show that:

Theorem 4. There is a meta-algorithm Mf that corrects
the k-marginal monotonicity of any given function f through
queries. The meta-algorithm is feasible and has expected
quality loss ε under a given product distribution of inputs.
The total (expected) number of queries required for every
input is at most

�
d
ε

�O(k)
.

Note that when requiring marginal monotonicity, the de-
pendence on d is improved from exponential to polynomial.
Instead, the query complexity is only exponential in k. It is
an interesting open question whether this can be improved.

1.2. Related work

A very related line of work to our paper considers the prob-
lem of online property-preserving data reconstruction. In
this framework introduced by Ailon et al. (Ailon et al., 2008)
there is a set of unreliable data that should satisfy a certain
structural property, like monotonicity or convexity. The
reconstruction algorithm acts as a filter for this data, such
that whatever query the user makes on them is answered
in a way consistent with the property they should satisfy.
Ailon at al. (Ailon et al., 2008) proposed the first algorithm
for monotonicity reconstruction, and in the follow-up work,
Saks and Seshadhri (Saks & Seshadhri, 2010) designed a
more efficient and local algorithm for the same problem.
The main focus of this work is to compute a function that
is not different than the original function in a large number
of inputs. In comparison, we allow our algorithm to output
arbitrary solutions at any point subject to a feasibility crite-
rion and consider the expected quality of the solution as a
measure of performance.

In addition to these works on upper bounds on monotonic-
ity reconstruction, Bhattacharyya et al. in (Bhattacharyya
et al., 2012) proved a lower bound for local monotonicity re-
construction of Saks and Seshadhri using transitive-closure
spanners. Several reconstruction algorithms have also been
proposed for reconstructing Lipschitzness (Jha & Raskhod-
nikova, 2013), convexity (Chazelle & Seshadhri, 2011),
connectivity of directed or undirected graphs (Campagna
et al., 2013), or a given hypergraph property (Austin & Tao,
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2010), while (Chakraborty et al., 2014) focuses on lower
bounds.

Our work can also be viewed as a special case of the Local
Computation Algorithms framework introduced by (Rubin-
feld et al., 2011) and (Alon et al., 2012). In this model the
algorithm is required to answer queries that arrive online
such that the answers given are always consistent with a
specific solution. The algorithms presented also do not need
to remember old answers to remain consistent, exactly as
our algorithms do. Such local algorithms have been de-
signed for many problems like maximal independent set
maximal matching, approximate maximum matching, set
cover, vertex coloring, hypergraph coloring (Alon et al.,
2012; Mansour & Vardi, 2013; Levi et al., 2014; Even et al.,
2014; Levi et al., 2016; 2017; Parter et al., 2019; Ghaffari &
Uitto, 2019; Grunau et al., 2020).

The framework of sampling correctors, introduced by
Canonne et al in (Canonne et al., 2016) is also relevant
to our work. One important difference is that even if we
set the required property in their framework to be mono-
tonicity (to match our problem) they only have access to a
non-monotone distribution while we have query access to a
function.

Finally, our work is also closely related to the black-box re-
ductions literature in algorithmic mechanism design, where
we are given access to an algorithmic solution - an oracle-
and the goal is to implement an incentive compatible mecha-
nism with similar performance. Ensuring incentive compati-
bility amounts to preserving a similar monotonicity property,
like cyclic monotonicity. This line of work was initiated by
Hartline and Lucier (Hartline & Lucier, 2015), and later sev-
eral reductions were given under different solution concepts,
approximate or exact Bayesian Incentive Compatibility (Bei
& Huang, 2011; Hartline et al., 2015; Dughmi et al., 2017;
Gergatsouli et al., 2019) along with a lower bound for Domi-
nant Strategy Incentive Compatibility (Chawla et al., 2012).

2. Preliminaries
We are given oracle access to a function f : Rd → [0, 1],
and a stream of input points x ∈ Rd for which we need to
evaluate f . Our goal is to give an answer Mf for every
point such that it satisfies some notion of monotonicity and
it also has the following properties

1. Feasibility: Mf (x) ≤ maxy�x f(y)

2. Close in expectation to the initial function:
E[Mf (x))] ≥ E[f(x)]− ε

Evaluation We evaluate our algorithms on their query
complexity. Query complexity is defined as the maximum
number of times we invoke the oracle f in order to give us

an answer and the goal is to invoke the oracle as few times
as possible.

Distributional assumptions We assume that each coor-
dinate xi of every point x in the input sequence is drawn
according to a distribution Di. We denote the product of
these Di by D ∈ Δ(Rd). We want Ex∼D[f(x)] to be close
to the expectation of the transformed f which we denote
by Mf . From now on, we will omit the x ∼ D when it is
clear from the context. It is worth noting that our results are
robust to some noise in the distribution.

Monotonicity We proceed by defining the various notions
of monotonicity we will be using throughout this work. For
x, y ∈ Rd we say that x � y when xi ≤ yi for all i ∈ [d].
We say that the function f is monotone if x � y implies
f(x) ≤ f(y) for every x, y ∈ Rd.

A relaxation of the monotonicity requirement is that of
marginal monotonicity. We say that f is marginally mono-
tone if fi(xi) � Ex−i∼D[f(xi, x−i)] is monotone, where
by x−i we denote the vector of all coordinates except the
i’th. Note that this is weaker than monotonicity since even
if all marginals are monotone, this does not imply that f is
also monotone.

A further relaxation of the marginal monotonicity is the
k-marginal monotonicity. Similarly to k-wise independent
variables, we say that a function is k-marginally monotone
when for every I ⊆ [d] such that |I| ≤ k the function

fI(xI) � Ex−I [fI(xI , x−I)]

is monotone, where we denote by xI (or x−I) the size k-
vector of all the coordinates i that also belong (or do not
belong) to the set I, and by fI(xI) the marginal of the
coordinates i ∈ I that gets as input a vector of size |I| with
the coordinates xI .

Discretization of the Domain In all the algorithms de-
scribed in the following sections, we assume the domain is
discrete. To do that we use the discretization process de-
scribed below. Intuitively, we split the domain into smaller
intervals with equal probability and then “shift” every co-
ordinate’s distribution downward by sampling a point from
the lower interval. This is made more formal here, we first
describe the process for the single dimensional case (d = 1),
and then for general d.

We convert the oracle f to an oracle for a piecewise constant
function �f with 1/ε pieces. The function �f is such that
E[ �f(x)] ≥ E[f(x)]− ε, and �f(x) ≤ maxy�x f(y).

For this purpose, we split the support of the distribution into
m = 1

ε intervals I1, ..., Im such that each has probability
ε, i.e. for every i ∈ [m],

�
x∈Ii

D(x) = ε. Then, for each
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interval Ii we draw a random xi according to the conditional
distribution D|Ii. For any x ∈ Ii, we set

�f(x) =
�
0 i = 1

f(xi−1) i > 0
.

It is easy to see that �f(x) ≤ maxy�x f(y) since �f(x) is
either 0 or equal to f(xi−1) where xi ≤ x. To bound the
expectation, we note that

Ex∼D[ �f(x)] =
m−1�

i=1

εExi∼D|Ii [f(xi)]

=

m�

i=1

εExi∼D|Ii [f(xi)]− εExm∼D|Im [f(xm)]

= Ex∼D[f(x)]− εExm∼D|Im [f(xm)]

≥ Ex∼D[f(x)]− ε

For d > 1 dimensions the above process is essentially the
same for every coordinate with the difference that now we
choose m = d/ε points and every interval Iik for k ∈ [m]
of coordinate i has probability ε/d. Let the input vector be
y = (y1, y2, . . . , yd). For every coordinate yi ∈ Iik, we
draw a random zi from the conditional D|Ii(k−1) and finally
evaluate f at these points z = (z1, z2, . . . , zd). Note that
this is feasible, similarly to before, as each input returns an
outcome generated by f on a pointwise smaller input. This
perturbation effectively shifts each coordinate’s distribution
downward, removing the range Iim, therefore removing
from the expectation any input that had at least one coor-
dinate in the last interval. This occurs with probability at
most 1−

�
1− ε

d

�d ≤ ε, and therefore the new expectation
is not ε far from the old.

Assuming a discrete domain, where every coordinate xi ∈
{wi1, wi2, . . . , wim}, we define the low 1-neighborhood of
a point as the set of points that are smaller in exactly 1
coordinate. Formally, the low 1-neighborhood of a point y
is N (y) = {x : ∃!k ∈ [m] such that xk = wik and yk =
wk(i+1) for some i ∈ [m− 1]}.

3. Monotonicity
In this section we show how to design an algorithm to cor-
rect a non monotone function while preserving its expecta-
tion, using O

�
log d

ε

�d
queries.

Theorem 1. There exists a meta-algotithm Mf that cor-
rects the monotonicity for any function f : Rd → [0, 1].
Mf is feasible, has query complexity O(log d

ε )
d, and has

E[Mf (x))] ≥ E[f(x)] − ε, where the first expectation is
taken over the input distribution and the randomness in the
meta-algorithm.

To establish Theorem 1 we first show how to solve the
problem for the single-dimensional case, d = 1. Observe
initially that the trivial meta-algorithm that simply queries
the function f at every point in the (sufficiently discretized)
domain has complexity O(1/�). To get the improvement to
O(log(1/�)) we first consider the following “greedy” meta-
algorithm: query the (discretized) domain in a uniformly
random order, and for each point x sequentially, define the
transformed output Mf (x) to be the value closest to f(x)
that maintains monotonicity with the values of Mf con-
structed so far. We prove that this random meta-algorithm
preserves the function value in expectation over the random
query order and then that this transformation can be imple-
mented locally, with only logarithmically many queries per
input. The details of these steps are presented in subsec-
tion 3.1 below.

3.1. Single-dimensional case (d = 1)

Using the discretization process described in section 2, we
may assume that f is supported on m points and the underly-
ing distribution is uniform. We now provide an algorithm to
obtain a monotone function f � that has the same expectation
as f and performs O(log m

δ ) queries to f with probabil-
ity 1 − δ. We later choose δ = ε and cap the queries to
O(log m

ε ) and show that it is possible to do this while main-
taining feasibility, monotonicity and incurring error at most
ε.

Construction of the Oracle The function f � that the al-
gorithm outputs is a function Mπ

f for a uniformly random
permutation π. Given a permutation π of [m], we define the
function Mπ

f : [m] → [0, 1] by setting for every i ∈ [m],

Mπ
f (πi) =





Hi f(πi) > Hi

Li f(πi) < Li

f(πi) otherwise,

where Hi is the value Mπ
f (πj) of the lowest value point

πj > πi with j < i or ∞ if such a point does not exist.
Similarly, Li is the value Mπ

f (πj) placed at the highest
point πj < πi with j < i or −∞ if such a point does not
exist. That is, the function Mπ

f visits all points according
to the permutation π and greedily assigns values consistent
with the choices made for the previous points visited so far
to preserve monotonicity. Equivalently, one can write that
Mπ

f (πi) = median{f(πi), Li, Hi}.

We now show that this choice of f � satisfies the properties
of Theorem 1 with the following two claims. Their proofs
are deferred to section A.1 of the Appendix.
Claim 1. For any permutation π, the function Mπ

f is mono-
tone and satisfies for all x ∈ [m], Mπ

f (x) ≤ maxy≤x f(y).
Claim 2. Ex∼U([m])[f(x)] = Ex∼U([m])[f

�(x)].
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It remains to show that one can evaluate Mπ
f at any point

x ∈ [m] without querying the oracle for f at all points.
To do this, we make the following observation: once we
have computed Mπ

f (π1), in order to calculate the values of
Mπ

f (y) for any y > π1, we don’t need to know the values
of Mπ

f (z) or of f(z) at any z < π1. Similarly, to calculate
the values of Mπ

f (y) for any y < π1, we don’t need to know
the values of Mπ

f (z) or of f(z) at any z > π1.

Building on this idea, we use the following algorithm to
evaluate Mπ

f (x).

Description of Oracle for Mπ
f At any point in time i, we

keep track of a range of relevant points {li, ..., ri} starting
with l1 = 0 and r0 = m. We also keep track of a lower
bound, lbi, and an upper bound, ubi, on the value of Mπ

f (x)
starting with lb0 = −∞ and ub0 = +∞.

For any i ∈ [m], if πi ∈ {li−1, ..., ri−1}, then it is rel-
evant and must be evaluated. Its value is then accord-
ing to the definition Mπ

f (πi) = median{f(πi), Hi, Li},
which is equal to median{f(πi), ubi−1, lbi−1} for the up-
per and lower bounds we have so far. Once the value is
computed, if πi > x, we set ubi = Mπ

f (πi) while keep-
ing lbi = lbi−1 and the relevant interval now becomes
{li, ..., ri} = {li−1, ...,πi − 1}. Similarly, if πi < x, we
update lbi = Mπ

f (πi), ubi = ubi−1 and set li = πi + 1
and ri = ri−1. In contrast, if πi �∈ {li−1, ..., ri−1}, it is
irrelevant and is not evaluated. The interval and upper and
lower-bounds are then kept the same for the next iteration.

The following claim shows that for a uniformly random
permutation π, the above process only queries the oracle f
at a few points. The proof is deferred to section A.1 of the
appendix.

Claim 3. With probability 1− δ, the oracle f � can be eval-
uated at any point x ∈ [m] using at most O(log m

δ ) queries
to oracle f .

We now argue that it is possible to perform the transforma-
tion so that the algorithm always makes at most O(log m

ε )
while maintaining feasibility, monotonicity and incurring
error at most ε. Our construction of the oracle maintains
for every interval a high and a low value that points in the
interval may take. The interval shrinks with good prob-
ability by a constant factor at every step which gives the
high probability result. To ensure no more than O(log m

ε )
queries, we need to ensure that every interval shrinks at
most O(log m

ε ) times. Indeed, we can enforce that after
these many rounds, if the interval has not shrunk to a single
point every point in the interval is allocated the lowest value.
This ensures monotonicity while it incurs a decrease in the
expected value. As this decrease happens with probability
at most ε and the decrease is bounded by 1 the total error is
at most ε.

3.2. Extending to many dimensions

In order to generalize to many dimensions, we apply our
construction for this “single-dimensional case” to fix mono-
tonicity in each direction separately starting with the first.
The key property we use is that when given oracle access to
a function that is monotone in the first i−1 coordinates, our
construction of the meta-algorithm will fix the monotonicity
in the i-th coordinate while preserving monotonicity in the
i− 1 first coordinates. This allows us to obtain a chain of
oracles f = f0, f1, ..., fn = f � where fi is monotone in
the first i coordinates. Evaluating fi requires only O(log d

ε )
queries to oracle fi−1 and gets error at most ε/d. Thus, to
evaluate f � = fn, O(log d

ε )
d queries to oracle f are suffi-

cient to get error ε. Details are deferred to section A.2 of
the appendix.

Observe that our algorithm guarantees consistency when
the same point is asked multiple times. As long as the
randomization remains fixed, the query for x will always
return the same Mf (x).

4. Lower bound
Having designed the meta-algorithm to “monotonize” a
function, in this section we show that the exponential depen-
dence on the dimension our previous algorithm exhibits, as
shown in Theorem 1, is actually necessary even when the
domain is the boolean hypercube {0, 1}d and the distribu-
tion D of values is uniform. The idea for this lower bound is
to show that there exists a function such that any monotone
and feasible meta-algorithm M with subexponential query
complexity q = 2o(d) will have very low expectation. This
is made formal in Theorem 2 below.

Theorem 2. Let M be any feasible meta-algorithm that
fixes monotonicity with query complexity q = 2o(d). Then,
there exists an input function f : {0, 1}d → {0, 1} with
E[f(x)] ≥ 1− 2−Ω(d) such that with E[Mf (x)] ≤ 2−Ω(d).

If the meta-algorithm is infeasible or non-monotone with
probability δ, then E[Mf (x)] ≤ 2δ + 2−Ω(d).

To prove the statement, we construct a distribution over
functions on {0, 1}d and show that any monotone and fea-
sible meta-algorithm must have very low expectation with
high probability.

We consider the following family of functions parametrized
by (z, S, T ) where z ∈ {0, 1} and S, T ⊆ [d] so that S ⊆ T .
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We define for any X ⊆ [d]

fz
S,T (X) =





0 |X| < 4d

10

0 X ⊆ T and |X \ S| > d

10

z X ⊆ T and |X \ S| ≤ d

10
1 X �⊆ T





|X| ≥ 4d

10

We also define the function

f1(X) = I{|X|≥ 4d
10}

Observe that even though these functions are defined over
subsets of [d] it is straightforward to view each of these
subsets as a point in {0, 1}d.

We define a distribution over the family of functions by
selecting z uniformly at random. The sets S and T will
also be random variables with S including each element
with probability 1/2 and T including each element with
probability 3/4. Since S ⊆ T , this means that given S, the
set T contains each element outside of S with probability
1/2. Similarly given T , the set S contains each element of
T with probability 2/3. We also define random variable X
that is a uniformly random subset of [d].

What we are trying to achieve with these functions is while
f1 has high expectation, the function fz

S,T does not, but we
will not be able to tell them apart. The idea is that in both
functions fz

S,T there is the “low” set T where the function
outputs 0, but inside it there is a hidden set S where the
function is either 1 or 0. The two claims shown below, will
prove that first we cannot distinguish between the function
that gives S either 0 or 1, and then this function from the
“high” function that gives 1 to all large inputs. This is shown
in figure 1 below1.

Claim 4. Pr
�
Mf1

S,T
(T ) �= Mf0

S,T
(T )

�
≤ q2−

d
450

Claim 5. Pr
�
Mf1

S,T
(S) �= Mf1(S)

�
≤ q2−

d
10

The proofs of both the claims are deferred to section B of the
appendix. It is now easy to complete the proof of Theorem 2

1The figure serves as a simplified example of the structure of
the functions, the sizes of the sets are not on scale

by setting f = f1.

E[Mf1(x)] = E
�
Mf1(S)

�

≤ E
�
Mf1

S,T
(S)

�
+ q2−

d
10

≤ δ + E
�
Mf1

S,T
(T )

�
+ q2−

d
10

≤ δ + E
�
Mf0

S,T
(T )

�
+ q2−

d
10 + q2−

d
450

≤ 2δ + q2−
d
10 + q2−

d
450

= 2δ + 2−Ω(d)

where the first line follows since S is chosen uniformly at
random, then we use Claim 5 and then we use that f satisfies
monotonicity with probability 1 − δ. Following this, the
third line follows from Claim 4 and then we use the fact
that Mf0

S,T
(T ) ≤ maxY⊆T f0

S,T (Y ) = 0 with probability

1− δ. Finally we get the result for any q = 2o(d).

In contrast, for the initial function f1 we get E
�
f1(X)

�
=

Pr
�
|X| ≥ 4d

10

�
≥ 1− 2−Ω(d).

5. Marginal Monotonicity
In this section, we switch gears towards the relaxations of
monotonicity defined in section 2. We start by considering
marginal monotonicity. In this case, we want to guarantee
that each of the marginals of the function will be monotone,
and not loosing much in expectation. As it turns out, we
can achieve this in time polynomial in d/ε. The formal
statement follows.

Theorem 3. There exists a feasible meta-algorithm Mf

that fixes marginal monotonicity for any function f : Rd →
[0, 1]. Mf is feasible, has query complexity O

�
poly

�
d
ε

��
,

and satisfies E[Mf (x)] ≥ E[f ]− ε, where the first expecta-
tion is taken over the input distribution and the randomness
of the meta-algorithm.

The discretization process described in section 2 will also
be used here. Observe that we sample the marginals after
conditioning, but this can be efficiently implemented by
rejection sampling. Therefore we can safely assume that the
domain is discretized and supported on m different values
which we denote by wi1 < . . . < wim.

We start by assuming we are given query access directly to
the marginal distribution fi in every dimension and showing
that we can achieve the theorem using O(dm) queries. Then
in subsection 5.2, we show how to achieve the same result
by only querying the initial function f in order to estimate
the marginals.
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|X| < 4d/10

|X| ≥ 4d/10

f1 f0
S,T f1

S,T

T

S

T

S

Figure 1. Output for each function. The gray colour means the output is 1, white means 0.

5.1. Transformation Using Exact Marginals

In this case we assume that we know exactly each one of
the marginals fi(xi).

Consider meta-algorithms of the following form: in each
dimension i there will be a mapping φi : R → R, with
φi(xi) ≤ xi for all xi ∈ R. We will write φ(x) =
(φ1(x1), . . . ,φd(xd)). We will then define f �(x) =
f(φ(x)). Observe that any such f � satisfies feasibility, since
f �(x) = f(φ(x)) ≤ maxy�x f(y).

We will build the mapping φ iteratively, starting with the
identity mapping, which we will call φ0. Since the dis-
tribution over values is discrete, it suffices to define each
mapping φi on the finitely many values in the support of the
distribution (for each one of the d dimensions).

Suppose our current mapping is φr = (φr
1, . . . ,φ

r
d), for

some r ≥ 0 and let fr(x) = f(φr(x)). If fr
i , the i’th

marginal function is monotone for every i, then we will
choose f � = fr.

Otherwise, there is some i and some j < m such that
fr
i (wij) > fr

i (wi(j+1)). In this case, we will define φr+1

as follows: φr+1(wi(j+1)) = φr(wij), and φr+1 = φr on
all other inputs. That is, whenever f � is given wi(j+1) as
input, we will instead invoke fr as though we have gotten
wij . Observe that this modification chains: if on some
previous iteration we had mapped input wij to wi(j−1), then
after this iteration we will ultimately be passing the input
wi(j−1) to the original function f . As argued above, this
modified function fr+1 will be feasible. Moreover,

Ex∼D[f
r+1(x)] = Exi

[fr+1
i (xi)]

≥ Exi
[fr

i (xi)]

= Ex∼D[f
r(x)]

so fr+1 has only weakly greater expected value than fr.

We can think of fr+1 as acting on a reduced domain, where
the possible input wi(j+1) is removed from the support of

xi’s distribution and instead its probability mass is added
to that of some lower value, φr(wij). Under this interpre-
tation, each iteration reduces the total number of possible
input values in the support of D by 1. This process must
therefore stop at or before iteration r = d(m − 1), since
a marginal over a single input value is always monotone.
Thus, after at most d(m − 1) iterations, this process will
terminate at an function f � that is feasible, monotone, and
has Ex∼D[f �(x)] ≥ Ex∼D[f(x)].

5.2. Sampling to Estimate Marginals

The meta-algorithm above assumes direct access to the
marginal distributions even after the modifications we make
at each step. We will show how to remove these assump-
tions, at the cost of a loss of ε on the expectation of f �. This
ε loss is due to sampling error, and can be made as small as
desired with additional sampling.

Prior to viewing the input, our meta-algorithm will esti-
mate each one of the marginals. For each i ∈ [d], take
O(log(dm)/δ2) samples x−i and observe f(xi, x−i). Let
f̃i(xi) for the empirical mean of the observed samples.
By Hoeffding inequality and a union bound over all co-
ordinates and all possible input values, we will have that
|f̃i(xi) − fi(xi)| ≤ δ for all i and all xi, with high proba-
bility.

We will then apply our meta-algorithm from above using the
marginals f̃ as an oracle. This generates mappings φi, such
that the new “monotonized” marginals f̃i(φi) have weakly
increased expectation relative to f̃i. If |E[f̃i(xi)]−fi(xi)| ≤
δ, then we also have |E[f̃i(φ(xi))] − fi(φ(xi))| ≤ δ for
all i and all xi as well. Monotonicity of f̃i(φi) therefore
implies (2δ)-approximate monotonicity of f(φ), and that
E[f(φ(x))] ≥ E[f(x)] + 2δ.

From Approximate to Exact Monotonicity From the
above steps, we can assume access to a function f that
is (2δ)-approximately monotone. We will implement a new
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Initial Replacement
Rule 1 001?1?0? → 001?0?0?
Rule 2 0?1?01?1 → 0?1?01?0
. . . . . .

Rule � ?01?0?10 → ?01?0?00

Table 1. Example of replacement rule list. For any input x, the
input is sequentially transformed to a different one by applying the
rules from top to bottom, the function value at the resulting vector
is then returned.

function f � such that, on input x, say with xi = wij(i) for
each i, returns max{0, f(x) − 2δ · �i(m − j(i))}. Then
f � is monotone, as whenever x > y we have that either
f �(y) = 0 or f �(x) − f �(y) ≥ f(x) − f(y) + 2δ ≥ 0.
Moreover, this modification reduces the expected allocation
of f by at most 3md · δ. So as long as δ ≤ ε/(dm), its
expected allocation is within ε of f .

6. k-Marginal Monotonicity
Having designed an algorithm for marginal monotonicity,
we move on to a generalization that guarantees k-marginal
monotonicity. In this case, given oracle access to a function
f : Rd → [0, 1] we want to guarantee that all k-marginals
of f will be monotone.

Theorem 4. There exists a meta-algorithm Mf to fix k-
marginal monotonicity (whp) for any function f : Rd →
[0, 1]. Mf is feasible, has query complexity Õ

�
d2k+6

ε2k+3

�
and

satisfies E[Mf (x)] ≥ E[f ]− ε, where the first expectation
is taken over the input distribution and the randomness of
the meta-algorithm.

In order to prove the theorem, we start by using the dis-
cretization method described in section 2. After having
a discrete domain, our meta-algorithm estimates in each
step all2 the dk marginals and whenever it detects a non-
monotonicity in one of them, it fixes it within δ by defining
a set of replacement rules. Then for an input x, we sequen-
tially try to apply the rules, bu starting from the first, and
trying to match the given point with one of the patterns of
the rules. After we applied the possible rules, we reached
some other point x� and then we output f(x�). An example
of the set of replacement rules is shown in Table 1.

We describe the algorithm in three steps; first we de-
scribe the replacement process, in order to fix the non-
monotonicities, given that we have access to the exact
margninals, and then describe the sampling process used
to estimate the marginals. Using the first two steps, we are
guaranteed only approximate monotonicity, so as the third

2Note that there is no way to avoid fixing all the
�
d
k

�
marginals;

even
�
d
k

�
− 1 monotone marginals cannot guarantee that the

�
d
k

�
’th

is also monotone.

step we show how to further modify our function to achieve
exact monotonicity.

6.1. Transformation Using Exact Marginals

Assuming now that we have access to all the k-marginals
exactly, we describe an iterative process, in order to correct
the non-monotonicities in all the k-marginals. The answer
we give is the transformed function f �.

As a direct extension from the previous marginals case,
consider transformations of the form: φ : Rd → Rd such
that φ(x) ≤ x, for all x ∈ Rd. We define f �(x) = f(φ(x)).

We denote by φI(xI) : Rk → Rd, for some I ⊆ [d], with
|I| ≤ k, the projection of the function φ in the k coordinates
that are in I , where the variables xj for j �∈ I are treated as
constants and remain the same. Recall that by xI we denote
all the coordinates xi such that i is in the set I ⊆ [d] with
|I| ≤ k.

Intuitively, what the process does is when we detect a non-
monotonicity between some input x and its neighbor y,
where y is larger in at least one coordinate3, from then on
we always map y to x. This is reflected in the function φ that
replaces y with x to correct the non-monotonicities. Since
this process is done iteratively, when we map y to x and x
to some other input z, it means y is ultimately mapped to z.

More formally, we start from the identity function φ0(x) =
x, and iteratively define φ1,φ2, . . .. In this case we define a
non-monotonicity as the case when there exists a set I ⊆ [d],
with |I| ≤ k, such that xI < yI we have that fI(xI) >
fI(yI)+δ. Observe that in this case, we only ensure that the
function is δ monotone. In iteration r, one of the following
cases can happen

1. There is no such set I: we terminate the process and
return f �(x) = f(φr(x))

2. There exists such a set I: we set

φr+1
I (yI) = max

z∈N (y)
φr
I(zI)

where recall from section 2 that N (y) is the low 1-
neighborhood of y.

Using this process, and exactly how we argued in the pre-
vious section, the output function f � is feasible and that
Ex∼D[fr+1(x)] ≥ Ex∼D[fr(x)].

Observe that every time the replacement described above
happens, the expectation of the transformed function f �

increases by at least δ/mk, meaning that this process can-
not happen more than mk/δ times in total since f � ≤ 1.

3We can assume without loss of generality that y is higher in
exactly one coordinate.
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When the process halts, the transformed function f � is fea-
sible and approximately δ-monotone, with Ex∼D[f �(x)] ≥
Ex∼D[f(x)].

6.2. Sampling to Estimate Marginals

In the process described above, we assumed that the exact
marginals were known. In reality, in every step we estimate
the marginals again before checking for non-monotonicities,
by sampling points x ∈ Rd and observing f(x).

This step differs from the estimation step in the marginals
case in that we do not draw samples xI from each specific
marginal fI , but directly from the function f and then we
estimate each marginal.

Recall from the discretization process, that now the distri-
bution over the mk different values f can take is uniform,
which means that by drawing samples from f , we need
mk samples in expectation to get a sample from a specific
marginal. Using this fact, Hoeffding’s inequality and a
union bound over all different dk marginals, mk values and
all mk/δ rounds this sampling process is happening, we
need k

mkδ2
log(m

2d
δ ) samples.

6.3. From Approximate to Exact Monotonicity

This part is exactly the same as the previous section with the
only difference that we have access to a function that is 4δ-
approximately monotone. This difference is due to the fact
that we only guaranteed δ monotonicity when we knew the
exact marginals compared to exact monotonicity. Therefore,
we now return a new function f � that on input x with xi =
wij(i) for each i, returns max{0, f(x)−4δ ·�i(m− j(i))},
which as before is guaranteed to be monotone.

This modification reduces the expected allocation of f by at
most 4md ·δ in this case, so when δ ≤ ε/(dm), its expected
allocation is within ε of f .

Query Complexity In order to calculate the query com-
plexity of the meta-algorithm, recall that there are mk/δ
rounds, where for each round we use kmk/δ2 log(m2d/δ)
queries for the marginal estimation.

Using that δ < 1/(dm) and that m = d/ε from the dis-
cretization process, we get that the query complexity is
kd2k+6

ε2k+3 log
�

d5

ε3

�
= Õ

�
d2k+6

ε2k+3

�
.

7. Conclusion
In this paper we presented a meta-algorithm to correct a pos-
sibly non monotone function, in a black-box way, so that it
always gives answers that are monotone, and maintains the
performance guarantees of the initial function up to a small
error. After showing that the algorithm presented cannot

be improved, we relaxed the monotonicity requirement to
that of k-marginal monotonicity. One interesting open ques-
tion is whether we can improve the marginal monotonicity
runtime to logarithmic instead of linear in d/ε.

Another problem that might be interesting is to extend this
meta-algorithm beyond product distribution. Our results
rely crucially on the independence assumption and we are
not aware of a non trivial way to remove this.
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