
Generalisation error in learning with random features
and the hidden manifold model

Federica Gerace * 1 Bruno Loureiro * 1 Florent Krzakala 2 Marc Mézard 2 Lenka Zdeborová 1

Abstract
We study generalised linear regression and classi-
fication for a synthetically generated dataset en-
compassing different problems of interest, such
as learning with random features, neural networks
in the lazy training regime, and the hidden man-
ifold model. We consider the high-dimensional
regime and using the replica method from statisti-
cal physics, we provide a closed-form expression
for the asymptotic generalisation performance in
these problems, valid in both the under- and over-
parametrised regimes and for a broad choice of
generalised linear model loss functions. In par-
ticular, we show how to obtain analytically the
so-called double descent behaviour for logistic
regression with a peak at the interpolation thresh-
old, we illustrate the superiority of orthogonal
against random Gaussian projections in learning
with random features, and discuss the role played
by correlations in the data generated by the hid-
den manifold model. Beyond the interest in these
particular problems, the theoretical formalism in-
troduced in this manuscript provides a path to
further extensions to more complex tasks.

1. Introduction
One of the most important goals of learning theory is to pro-
vide generalisation bounds describing the quality of learning
a given task as a function of the number of samples. Ex-
isting results fall short of being directly relevant for the
state-of-the-art deep learning methods (Zhang et al., 2016;
Neyshabur et al., 2017). Consequently, providing tighter
results on the generalisation error is currently a very ac-
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tive research subject. The traditional learning theory ap-
proach to generalisation follows for instance the Vapnik-
Chervonenkis (Vapnik, 1998) or Rademacher (Bartlett &
Mendelson, 2002) worst-case type bounds, and many of
their more recent extensions (Shalev-Shwartz & Ben-David,
2014). An alternative approach, followed also in this paper,
has been pursued for decades, notably in statistical physics,
where the generalisation ability of neural networks was anal-
ysed for a range of “typical-case” scenario for synthetic
data arising from a probabilistic model (Seung et al., 1992;
Watkin et al., 1993; Advani et al., 2013; Advani & Saxe,
2017; Aubin et al., 2018; Candès & Sur, 2020; Hastie et al.,
2019; Mei & Montanari, 2019; Goldt et al., 2019). While
at this point it is not clear which approach will lead to a
complete generalisation theory of deep learning, it is worth
pursuing both directions.

The majority of works following the statistical physics ap-
proach study the generalisation error in the so-called teacher-
student framework, where the input data are element-wise
i.i.d. vectors, and the labels are generated by a teacher neural
network. In contrast, in most of real scenarios the input data
do not span uniformly the input space, but rather live close
to a lower-dimensional manifold. The traditional focus onto
i.i.d. Gaussian input vectors is an important limitation that
has been recently stressed in (Mézard, 2017; Goldt et al.,
2019). In (Goldt et al., 2019), the authors proposed a model
of synthetic data to mimic the latent structure of real data,
named the hidden manifold model, and analysed the learning
curve of one-pass stochastic gradient descent algorithm in
a two-layer neural network with a small number of hidden
units also known as committee machine.

Another key limitation of the majority of existing works
stemming from statistical physics is that the learning curves
were only computed for neural networks with a few hid-
den units. In particular, the input dimension is considered
large, the number of samples is a constant times the input
dimension and the number of hidden units is of order one.
Tight learning curves were only very recently analysed for
two-layer neural networks with more hidden units. These
studies addressed in particular the case of networks that
have a fixed first layer with random i.i.d. Gaussian weights
(Hastie et al., 2019; Mei & Montanari, 2019), or the lazy-
training regime where the individual weights change only
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infinitesimally during training, thus not learning any specific
features (Chizat et al., 2019; Jacot et al., 2018; Geiger et al.,
2019b).

In this paper we compute the generalisation error and the cor-
responding learning curves, i.e. the test error as a function
of the number of samples for a model of high-dimensional
data that encompasses at least the following cases:

• generalised linear regression and classification for data
generated by the hidden manifold model (HMM) of
(Goldt et al., 2019). The HMM can be seen as a single-
layer generative neural network with i.i.d. inputs and a
rather generic feature matrix (Louart et al., 2018; Goldt
et al., 2019).

• Learning data generated by the teacher-student model
with a random-features neural network (Rahimi & Recht,
2008), with a very generic feature matrix, including de-
terministic ones. This model is also interesting because
of its connection with the lazy regime, that is equivalent
to the random features model with slightly more compli-
cated features (Chizat et al., 2019; Hastie et al., 2019;
Mei & Montanari, 2019).

We give a closed-form expression for the generalisation
error in the high-dimensional limit, obtained using a non-
rigorous heuristic method from statistical physics known as
the replica method (Mézard et al., 1987), that has already
shown its remarkable efficacy in many problems of ma-
chine learning (Seung et al., 1992; Engel & Van den Broeck,
2001; Advani et al., 2013; Zdeborová & Krzakala, 2016),
with many of its predictions being rigorously proven, e.g.
(Talagrand, 2006; Barbier et al., 2019). While in the present
model it remains an open problem to derive a rigorous proof
for our results, we shall provide numerical support that the
formula is indeed exact in the high-dimensional limit, and
extremely accurate even for moderately small system sizes.

1.1. The model

We study high-dimensional regression and classification for
a synthetic dataset D = {(xµ, yµ)}nµ=1 where each sample
µ is created in the following three steps: (i) First, for each
sample µ we create a vector cµ ∈ Rd as

cµ ∼ N (0, Id) , (1)

(ii) We then draw θ0 ∈ Rd from a separable distribution
Pθ and draw independent labels {yµ}nµ=1 from a (possibly
probabilistic) rule f0:

yµ = f0

(
1√
d
cµ · θ0

)
∈ R . (2)

(iii) The input data points xµ ∈ Rp are created by a one-
layer generative network with fixed and normalised weights
F ∈ Rd×p and an activation function σ : R → R, acting

component-wise:

xµ = σ

(
1√
d

F>cµ
)
. (3)

We study the problem of supervised learning for the
dataset D aiming at achieving a low generalisation error
εg on a new sample xnew, ynew drawn by the same rule as
above, where:

εg =
1

4k
Exnew,ynew

[
(ŷw(xnew)− ynew)

2
]
. (4)

with k = 0 for regression task and k = 1 for classification
task. Here, ŷw is the prediction on the new label ynew of the
form:

ŷw(x) = f̂ (x · ŵ) . (5)

The weights ŵ ∈ Rp are learned by minimising a loss
function with a ridge regularisation term (for λ ≥ 0) and
defined as

ŵ = argmin
w

[
n∑
µ=1

`(yµ,xµ ·w) +
λ

2
||w||22

]
, (6)

where `(·, ·) can be, for instance, a logistic, hinge, or square
loss. Note that although our formula is valid for any f0 and
f̂ , we take f0 = f̂ = sign, for the classification tasks and
f0 = f̂ = id for the regression tasks studied here. We now
describe in more detail the above-discussed reasons why
this model is of interest for machine learning.

Hidden manifold model: The dataset D can be seen as
generated from the hidden manifold model introduced in
(Goldt et al., 2019). From this perspective, although xµ

lives in a p dimensional space, it is parametrised by a latent
d-dimensional subspace spanned by the rows of the matrix F
which are "hidden" by the application of a scalar non-linear
function σ. The labels yµ are drawn from a generalised
linear rule defined on the latent d-dimensional subspace
via eq. (2). In modern machine learning parlance, this can
be seen as data generated by a one-layer generative neural
network, such as those trained by generative adversarial net-
works or variational auto-encoders with random Gaussian
inputs cµ and a rather generic weight matrix F (Goodfellow
et al., 2014; Kingma & Welling, 2013; Louart et al., 2018;
Seddik et al., 2020).

Random features: The model considered in this paper
is also an instance of the random features learning dis-
cussed in (Rahimi & Recht, 2008) as a way to speed up
kernel-ridge-regression. From this perspective, the cµs
∈ Rd are regarded as a set of d-dimensional i.i.d. Gaus-
sian data points, which are projected by a feature matrix
F = (fρ)

p
ρ=1 ∈ Rd×p into a higher dimensional space, fol-

lowed by a non-linearity σ. In the p→∞ limit of infinite
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number of features, performing regression on D is equiva-
lent to kernel regression on the cµs with a deterministic ker-
nel K(cµ1 , cµ2) = Ef

[
σ(f · cµ1/

√
d) · σ(f · cµ2/

√
d)
]

where f ∈ Rd is sampled in the same way as the rows
of F. Random features are also intimately linked with the
lazy training regime, where the weights of a neural network
stay close to their initial value during training. The train-
ing is lazy as opposed to a “rich” one where the weights
change enough to learn useful features. In this regime, neu-
ral networks become equivalent to a random feature model
with correlated features (Chizat et al., 2019; Du et al., 2018;
Allen-Zhu et al., 2019; Woodworth et al., 2019; Jacot et al.,
2018; Geiger et al., 2019b).

1.2. Contributions and related work

The main contribution of this work is a closed-form expres-
sion for the generalisation error εg, eq. (8), that is valid in
the high-dimensional limit where the number of samples n,
and the two dimensions p and d are large, but their respec-
tive ratios are of order one, and for generic sequence of
matrices F satisfying the following balance conditions:

1
√
p

p∑
i=1

wa1i w
a2
i · · ·w

as
i Fiρ1Fiρ2 · · · Fiρq = O(1), (7)

where {wa}ra=1 are r independent samples from the
Gibbs measure (14), and ρ1, ρ2, · · · , ρq ∈ {1, · · · , d},
a1, a2, · · · , as ∈ {1, · · · , r} are an arbitrary choice of sub-
set of indices, with s, q ∈ Z+. The non-linearities f0, f̂ , σ
and the loss function ` can be arbitrary. Our result for the
generalisation error stems from the replica method and we
conjecture it to be exact for convex loss functions `. It can
also be useful for non-convex loss functions but in those
cases it is possible that the so-called replica symmetry break-
ing (Mézard et al., 1987) needs to be taken into account to
obtain an exact expression. In the present paper we hence
focus on convex loss functions ` and leave the more general
case for future work. The final formulas are simpler for non-
linearities σ that give zero when integrated over a centred
Gaussian variable, and we hence focus on those cases.

An interesting application of our setting is ridge regression,
i.e. taking f̂(x) = x with square loss, and random i.i.d.
Gaussian feature matrices. For this particular case (Mei &
Montanari, 2019) proved an equivalent expression. Indeed,
in this case there is an explicit solution of eq. (6) that can
be rigorously studied with random matrix theory. In a sub-
sequent work (Montanari et al., 2019) derived heuristically
a formula for the special case of random i.i.d. Gaussian
feature matrices for the maximum margin classification, cor-
responding to the hinge loss function in our setting, with the
difference, however, that the labels yµ are generated from
the xµ instead of the variable cµ as in our case.

Our main technical contribution is thus to provide a generic
formula for the model described in Section 1.1 for any loss
function and for fairly generic features F, including for
instance deterministic ones.

The authors of (Goldt et al., 2019) analysed the learning
dynamics of a neural network containing several hidden
units using a one-pass stochastic gradient descent (SGD) for
exactly the same model of data as here. In this online setting,
the algorithm is never exposed to a sample twice, greatly
simplifying the analysis as what has been learned at a given
epoch can be considered independent of the randomness of
a new sample. Another motivation of the present work is
thus to study the sample complexity for this model (in our
case only a bounded number of samples is available, and
the one-pass SGD would be highly suboptimal).

An additional technical contribution of our work is to derive
an extension of the equivalence between the considered data
model and a model with Gaussian covariate, that has been
observed and conjectured to hold rather generically in both
(Goldt et al., 2019; Montanari et al., 2019). While we do not
provide a rigorous proof for this equivalence, we show that
it arises naturally using the replica method, giving further
evidence for its validity.

Finally, the analysis of our formula for particular machine
learning tasks of interest allows for an analytical investiga-
tion of a rich phenomenology that is also observed empiri-
cally in real-life scenarios. In particular

• The double descent behaviour, as termed in (Belkin et al.,
2019) and exemplified in (Spigler et al., 2019), is ex-
hibited for the non-regularized logistic regression loss.
The peak of worst generalisation does not corresponds to
p = n as for the square loss (Mei & Montanari, 2019),
but rather corresponds to the threshold of linear separa-
bility of the dataset. We also characterise the location of
this threshold, generalising the results of (Candès & Sur,
2020) to our model.

• When using projections to approximate kernels, it has
been observed that orthogonal features F perform better
than random i.i.d. (Choromanski et al., 2017). We show
that this behaviour arises from our analytical formula,
illustrating the "unreasonable effectiveness of structured
random orthogonal embeddings”(Choromanski et al.,
2017).

• We compute the phase diagram for the generalisation
error for the hidden manifold model and discuss the de-
pendence on the various parameters, in particular the ratio
between the ambient and latent dimensions.

2. Main analytical results
We now state our two main analytical results. The replica
computation used here is in spirit similar to the one per-
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Figure 1. Comparison between theory (full line), and simulations
with dimension d = 200 on the original model (dots), eq. (3), with
σ = sign, and the Gaussian equivalent model (crosses), eq. (17),
for logistic loss, regularisation λ= 10−3, n/d = 3. Labels are
generated as yµ=sign

(
cµ · θ0

)
and f̂ = sign. Both the training

loss (green) and generalisation error (blue) are depicted. The
theory and the equivalence with the Gaussian model are observed
to be very accurate even at dimensions as small as d = 200.

formed in a number of tasks for linear and generalised lin-
ear models (Gardner & Derrida, 1989; Seung et al., 1992;
Kabashima et al., 2009; Krzakala et al., 2012), but requires a
significant extension to account for the structure of the data.
We refer the reader to the supplementary material Sec. 3 for
the detailed and lengthy derivation of the final formula. The
resulting expression is conjectured to be exact and, as we
shall see, observed to be accurate even for relatively small
dimensions in simulations. Additionally, these formulas re-
produce the rigorous results of (Mei & Montanari, 2019), in
the simplest particular case of a Gaussian projection matrix
and ridge regression task. It remains a challenge to prove
them rigorously in broader generality.

2.1. Generalisation error from replica method

Let F be a feature matrix satisfying the balance condition
stated in eq. (7). Then, in the high-dimensional limit where
p, d, n→∞ with α = n/p, γ = d/p fixed, the generalisa-
tion error, eq. (4), of the model introduced in Sec. (4) for
σ such that its integral over a centered Gaussian variable is
zero (so that κ0 = 0 in eq. (17)) is given by the following
easy-to-evaluate integral:

lim
n→∞

εg = Eλ,ν
[
(f0(ν)− f̂(λ))2

]
, (8)

where f0(.) is defined in (2), f̂(.) in (5) and (ν, λ) are jointly
Gaussian random variables with zero mean and covariance

matrix:

Σ =

(
ρ M?

M? Q?

)
∈ R2 (9)

with M? = κ1m
?
s , Q? = κ2

1q
?
s + κ2

?q
?
w. The constants

κ?, κ1 depend on the nonlinearity σ via eq. (17), and
q?s , q

?
w,m

?
s , defined as:

ρ =
1

d
||θ0||2 q?s =

1

d
E||Fŵ||2

q?w =
1

p
E||ŵ||2 m?

s =
1

d
E
[
(Fŵ) · θ0

]
(10)

The values of these parameters correspond to the solution
of the optimisation problem in eq. (6), and can be obtained
as the fixed point solutions of the following set of self-
consistent saddle-point equations:

V̂s =
ακ2

1

γV Eξ
[∫

R dy Z (y, ω0) (1− ∂ωη (y, ω1))
]
,

q̂s =
ακ2

1

γV 2Eξ
[∫

R dy Z (y, ω0) (η (y, ω1)− ω1)
2
]
,

m̂s = ακ1

γV Eξ
[∫

R dy ∂ωZ (y, ω0) (η (y, ω1)− ω1)
]
,

V̂w =
ακ2

?

V Eξ
[∫

R dy Z (y, ω0) (1− ∂ωη (y, ω1))
]
,

q̂w =
ακ2

?

V 2 Eξ
[∫

R dy Z (y, ω0) (η (y, ω1)− ω1)
2
]
,



Vs = 1
V̂s

(1− z gµ(−z)) ,
qs =

m̂2
s+q̂s

V̂ 2
s

[
1− 2zgµ(−z) + z2g′µ(−z)

]
− q̂w

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
,

ms = m̂s
V̂s

(1− z gµ(−z)) ,

Vw = γ

λ+V̂w

[
1
γ − 1 + zgµ(−z)

]
,

qw = γ q̂w
(λ+V̂w)2

[
1
γ − 1 + z2g′µ(−z)

]
,

−γ m̂2
s+q̂s

(λ+V̂w)V̂s

[
−zgµ(−z) + z2g′µ(−z)

]
,

(11)

written in terms of the following auxiliary variables ξ ∼
N (0, 1), z = λ+V̂w

V̂s
and functions:

η(y, ω) = argmin
x∈R

[
(x− ω)2

2V
+ `(y, x)

]
,

Z(y, ω) =

∫
dx√
2πV 0

e−
1

2V 0 (x−ω)2δ
(
y − f0(x)

)
(12)

where V = κ2
1Vs+κ2

?Vw, V 0 = ρ−M2

Q ,Q = κ2
1qs+κ2

?qw,
M = κ1ms, ω0 =

(
M/
√
Q
)
ξ and ω1 =

√
Qξ. In the

above, we assume that the matrix FF> ∈ Rd×d associated
to the feature map F has a well behaved spectral density,
and denote gµ its Stieltjes transform.
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The training loss on the dataset D = {xµ, yµ}nµ=1 can also
be obtained from the solution of the above equations as

lim
n→∞

εt =
λ

2α
q?w + Eξ,y [Z (y, ω?0) ` (y, η(y, ω?1))] (13)

where as before ξ ∼ N (0, 1), y ∼ Uni(R) and Z, η are the
same as in eq. (12), evaluated at the solution of the above
saddle-point equations ω?0 =

(
M?/

√
Q?
)
ξ, ω?1 =

√
Q?ξ.

Sketch of derivation — We now sketch the derivation
of the above result. A complete and detailed account can
be found in Sec. 3 of the supplementary material. The
derivation is based on the key observation that in the high-
dimensional limit the asymptotic generalisation error only
depends on the solution ŵ ∈ Rp of eq. (5) through the
scalar parameters (q?s , q

?
w,m

?
s) defined in eq. (10). The idea

is therefore to rewrite the high-dimensional optimisation
problem in terms of only these scalar parameters.

The first step is to note that the solution of eq. (6) can be
written as the average of the following Gibbs measure

πβ(w|{xµ, yµ}) =
1

Zβ
e
−β

[
n∑
µ=1

`(yµ,xµ·w)+λ
2 ||w||22

]
,

(14)

in the limit β →∞. Of course, we have not gained much,
since an exact calculation of πβ is intractable for large values
of n, p and d. This is where the replica method comes in.
It states that the distribution of the free energy density f =
− logZβ (when seen as a random variable over different
realisations of dataset D) associated with the measure µβ
concentrates, in the high-dimensional limit, around a value
fβ that depends only on the averaged replicated partition
function Zrβ obtained by taking r > 0 copies of Zβ :

fβ = lim
r→0+

d
dr

lim
p→∞

[
−1

p

(
E{xµ,yµ}Zrβ

)]
. (15)

Interestingly, E{xµ,yµ}Zrβ can be computed explicitly for
r ∈ N, and the limit r → 0+ is taken by analytically con-
tinuing to r > 0 (see Sec. 3 of the supplementary material).
The upshot is that Zr can be written as

E{xµ,yµ}Zrβ ∝
∫

dqsdqwdms e
pΦ

(r)
β (ms,qs,qw) (16)

where Φβ - known as the replica symmetric potential - is
a concave function depending only on the following scalar
parameters:

qs =
1

d
||Fw||2, qw =

1

p
||w||2, ms =

1

d
(Fw) · θ0

for w ∼ πβ . In the limit of p → ∞, this integral concen-
trates around the extremum of the potential Φ

(0)
β for any

β. Since the optimisation problem in eq. (5) is convex, by
construction as β →∞ the overlap parameters (q?s , q

?
w,m

?
s)

satisfying this optimisation problem are precisely the ones
of eq. (10) corresponding to the solution ŵ ∈ Rp of eq. (5).

In summary, the replica method allows to circumvent the
hard-to-solve high-dimensional optimisation problem eq. (5)
by directly computing the generalisation error in eq. (4)
in terms of a simpler scalar optimisation. Doing gradient
descent in Φ

(0)
β and taking β →∞ lead to the saddle-point

eqs. (11).

2.2. Replicated Gaussian Equivalence

The backbone of the replica derivation sketched above and
detailed in Sec. 3 of the supplementary material is a central
limit theorem type result coined as the Gaussian equivalence
theorem (GET) from (Goldt et al., 2019) used in the context
of the “replicated” Gibbs measure obtained by taking r
copies of (14). In this approach, we need to assume that the
“balance condition” (7) applies with probability one when
the weights w are sampled from the replicated measure.
We shall use this assumption in the following, checking its
self-consistency via agreement with simulations.

It is interesting to observe that, when applying the GET in
the context of our replica calculation, the resulting asymp-
totic generalisation error stated in Sec. 2.1 is equivalent to
the asymptotic generalisation error of the following linear
model:

xµ = κ01 + κ1
1√
d

F>cµ + κ? z
µ , (17)

with κ0 = E [σ(z)], κ1 ≡ E [zσ(z)], κ2
? ≡ E

[
σ(z)2

]
−

κ2
0 − κ2

1, and zµ ∼ N (0, Ip). We have for instance,

(κ0, κ1, κ?) ≈
(

0, 2√
3π
, 0.2003

)
for σ = erf and

(κ0, κ1, κ?) =
(

0,
√

2
π ,
√

1− 2
π

)
for σ = sign, two cases

explored in the next section. This equivalence constitutes a
result with an interest in its own, with applicability beyond
the scope of the generalised linear task eq. (6) studied here.

Equation (17) is precisely the mapping obtained by (Mei
& Montanari, 2019), who proved its validity rigorously in
the particular case of the square loss and Gaussian random
matrix F using random matrix theory. The same equivalence
arises in the analysis of kernel random matrices (Cheng &
Singer, 2013; Pennington & Worah, 2017) and in the study
of online learning (Goldt et al., 2019). The replica method
thus suggests that the equivalence actually holds in a much
larger class of learning problem, as conjectured as well in
(Montanari et al., 2019), and numerically confirmed in all
our numerical tests. It also potentially allows generalisation
of the analysis in this paper for data coming from a learned
generative adversarial network, along the lines of (Seddik
et al., 2019; 2020).
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Figure 2. Upper panel: Generalisation error evaluated from eq. (8)
plotted against the number of random Gaussian features per sample
p/n = 1/α and fixed ratio between the number of samples and
dimension n/d = α/γ = 3 for logistic loss (red), square loss
(blue). Labels are generated as yµ = sign

(
cµ · θ0

)
, data as

xµ = sign
(
F>cµ

)
and f̂ = sign for two different values of

regularisation λ, a small penalty λ = 10−4 (full line) and a value
of lambda optimised for every p/n (dashed line). Lower panel:
The training loss corresponding to λ = 10−4 is depicted.

Fig. 1 illustrates the remarkable agreement between the
result of the generalisation formula, eq. (8) and simulations
both on the data eq. (3) with σ(x) = sign(x) non-linearity,
and on the Gaussian equivalent data eq. (17) where the non-
linearity is replaced by rescaling by a constant plus noise.
The agreement is flawless as implied by the theory in the
high-dimensional limit, testifying that the used system size
d = 200 is sufficiently large for the asymptotic theory to be
relevant. We observed similar good agreement between the
theory and simulation in all the cases we tested, in particular
in all those presented in the following.

3. Applications of the generalisation formula
3.1. Double descent for classification with logistic loss

Among the surprising observations in modern machine learn-
ing is the fact that one can use learning methods that achieve
zero training error, yet their generalisation error does not
deteriorate as more and more parameters are added into
the neural network. The study of such “interpolators” have
attracted a growing attention over the last few years (Advani
& Saxe, 2017; Spigler et al., 2019; Belkin et al., 2019; Neal
et al., 2018; Hastie et al., 2019; Mei & Montanari, 2019;
Geiger et al., 2019a; Nakkiran et al., 2019), as it violates
basic intuition on the bias-variance trade-off (Geman et al.,
1992). Indeed classical learning theory suggests that gener-
alisation should first improve then worsen when increasing
model complexity, following a U-shape curve. Many meth-
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Figure 3. Generalisation error of the logistic loss at fixed very
small regularisation λ = 10−4, as a function of n/d = α/γ and
p/n = 1/α, for random Gaussian features. Labels are generated
with yµ = sign

(
cµ · θ0

)
, the data xµ = sign

(
F>cµ

)
and f̂ =

sign. The interpolation peak happening where data become linearly
separable is clearly visible here.

ods, including neural networks, instead follow a so-called
"double descent curve" (Belkin et al., 2019) that displays
two regimes: the "classical" U-curve found at low number
of parameters is followed at high number of parameters
by an interpolation regime where the generalisation error
decreases monotonically. Consequently neural networks
do not drastically overfit even when using much more pa-
rameters than data samples (Breiman, 1995), as actually
observed already in the classical work (Geman et al., 1992).
Between the two regimes, a "peak" occurs at the interpo-
lation threshold (Opper & Kinzel, 1996; Engel & Van den
Broeck, 2001; Advani & Saxe, 2017; Spigler et al., 2019).
It should, however, be noted that existence of this "interpo-
lation" peak is an independent phenomenon from the lack
of overfitting in highly over-parametrized networks, and in-
deed in a number of the related works these two phenomena
were observed separately (Opper & Kinzel, 1996; Engel &
Van den Broeck, 2001; Advani & Saxe, 2017; Geman et al.,
1992). Scaling properties of the peak and its relation to the
jamming phenomena in physics are in particular studied in
(Geiger et al., 2019a).

Among the simple models that allow to observe this be-
haviour, random projections —that are related to lazy train-
ing and kernel methods— are arguably the most natural
one. The double descent has been analysed in detail in
the present model in the specific case of a square loss on
a regression task with random Gaussian features (Mei &
Montanari, 2019). Our analysis allows to show the gener-
ality and the robustness of the phenomenon to other tasks,



Generalisation error in learning with random features and the hidden manifold model

 0

 2

 4

 6

 8

 10

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7

separablenon-separable

n
/d

p/n

Gaussian
Orthogonal

Figure 4. The position of the interpolation peak in logistic regres-
sion with λ = 10−4, where data become linearly separable, as
a function of the ratio between the number of samples n and the
dimension d. Labels are generated with yµ = sign

(
cµ · θ0

)
, the

data xµ = sign
(
F>cµ

)
and f̂ = sign. The red line is with Gaus-

sian random features, the blue line with orthogonal features. We
see that for linear separability we need smaller number of projec-
tions p with orthogonal random features than with Gaussian.

matrices and losses. In Fig. 2 we compare the double de-
scent as present in the square loss (blue line) with the one
of logistic loss (red line) for random Gaussian features. We
plot the value of the generalisation error at small values of
the regularisation λ (full line), and for optimal value of λ
(dashed line) for a fixed ratio between the number of sam-
ples and the dimension n/d as a function of the number of
random features per sample p/n. We also plot the value of
the training error (lower panel) for a small regularisation
value, showing that the peaks indeed occur when the train-
ing loss goes to zero. For the square loss the peak appears
at 1/α = p/n = 1 when the system of n linear equations
with p parameters becomes solvable. For the logistic loss
the peak instead appears at a value 1/α∗ where the data D
become linearly separable and hence the logistic loss can be
optimised down to zero. These values 1/α∗ depends on the
value n/d, and this dependence is plotted in Fig. 4. For very
large dimension d, i.e. n/d→ 0 the data matrix X is close
to iid random matrix and hence the α∗(n/d = 0) = 2 as
famously derived in classical work by Cover (Cover, 1965).
For n/d > 0 the α∗ is growing (1/α∗ decreasing) as corre-
lations make data easier to linearly separate, similarly as in
(Candès & Sur, 2020).

Fig. 2 also shows that better error can be achieved with the
logistic loss compared to the square loss, both for small and
optimal regularisations, except in a small region around
the logistic interpolation peak. In the Kernel limit, i.e.
p/n → ∞, the generalization error at optimal regulari-
sation saturates at εg(p/n → ∞) ' 0.17 for square loss

and at εg(p/n → ∞) ' 0.16 for logistic loss. Fig. 3 then
depicts a 3D plot of the generalisation error also illustrating
the position of the interpolation peak.

3.2. Random features: Gaussian versus orthogonal

Kernel methods are a very popular class of machine learn-
ing techniques, achieving state-of-the-art performance on a
variety of tasks with theoretical guarantees (Schölkopf et al.,
2002; Rudi et al., 2017; Caponnetto & De Vito, 2007). In
the context of neural network, they are the subject of a re-
newal of interest in the context of the Neural Tangent Kernel
(Jacot et al., 2018). Applying kernel methods to large-scale
“big data” problems, however, poses many computational
challenges, and this has motivated a variety of contributions
to develop them at scale, see, e.g., (Rudi et al., 2017; Zhang
et al., 2015; Saade et al., 2016; Ohana et al., 2019). Ran-
dom features (Rahimi & Recht, 2008) are among the most
popular techniques to do so.

Here, we want to compare the performance of random pro-
jection with respect to structured ones, and in particular
orthogonal random projections (Choromanski et al., 2017)
or deterministic matrices such as real Fourier (DCT) and
Hadamard matrices used in fast projection methods (Le
et al., 2013; Andoni et al., 2015; Bojarski et al., 2016).
Up to normalisation, these matrices have the same spec-
tral density. Since the asymptotic generalisation error
only depends on the spectrum of FF>, all these matrices
share the same theoretical prediction when properly nor-
malised, see Fig. 5. In our computation, left- and right-
orthogonal invariance is parametrised by letting F = U>DV
for U ∈ Rd×d, V ∈ Rp×p two orthogonal matrices drawn
from the Haar measure, and D ∈ Rd×p a diagonal matrix
of rank min(d, p). In order to compare the results with the
Gaussian case, we fix the diagonal entries dk = max(

√
γ, 1)

of D such that an arbitrary projected vector has the same
norm, on average, to the Gaussian case.

Fig. 5 shows that random orthogonal embeddings always
outperform Gaussian random projections, in line with em-
pirical observations, and that they allow to reach the kernel
limit with fewer number of projections. Their behaviour is,
however, qualitatively similar to the one of random i.i.d. pro-
jections. We also show in Fig. 4 that orthogonal projections
allow to separate the data more easily than the Gaussian
ones, as the phase transition curve delimiting the linear
separability of the logistic loss get shifted to the left.

3.3. The hidden manifold model phase diagram

In this subsection we consider the hidden manifold model
where p-dimensional x data lie on a d-dimensional manifold,
we have mainly in mind d < p. The labels y are generated
using the coordinates on the manifold, eq. (2).
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Figure 5. Generalisation error against the number of features per sample p/n, for a regression problem (left) and a classification one
(right). Left (ridge regression): We used n/d = 2 and generated labels as yµ = cµ · θ0, data as xµ = sign

(
F>cµ

)
and f̂(x) = x. The

two curves correspond to ridge regression with Gaussian (blue) versus orthogonal (red) projection matrix F for both λ = 10−8 (top) and
optimal regularisation λ (bottom). Right (logistic classification): We used n/d = 2 and generated labels as yµ = sign

(
cµ · θ0

)
, data as

xµ = sign
(
F>cµ

)
and f̂ = sign. The two curves correspond to a logistic classification with again Gaussian (blue) versus orthogonal

(red) projection matrix F for both λ = 10−4 and optimal regularisation λ. In all cases, full lines is the theoretical prediction, and points
correspond to gradient-descent simulations with d = 256. For the simulations of orthogonally invariant matrices, we results for Hadamard
matrices (dots) and DCT Fourier matrices (diamonds).
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)
, data xµ = erf

(
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and f̂ = sign, for different values of the regularisation λ (full
lines), including the optimal regularisation value (dashed).

In Fig. 6 we plot the generalisation error of classification
with the square loss for various values of the regularisation λ.
We fix the ratio between the dimension of the sub-manifold
and the dimensionality of the input data to d/p = 0.1 and
plot the learning curve, i.e. the error as a function of the
number of samples per dimension. Depending on the value
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Figure 7. Heat-map of the generalisation errors as a function of the
number of samples per data dimension n/p against the ratio of the
latent and data dimension d/p, for a classification task with square
loss on labels yµ = sign

(
cµ · θ0

)
and data xµ = erf

(
F>cµ

)
for

the optimal values of the regularisation λ.

of the regularisation, we observe that the interpolation peak,
which is at α = 1 at very small regularisation (here the over-
parametrised regime is on the left hand side), decreases
for larger regularisation λ. A similar behaviour has been
observed for other models in the past, see e.g. (Opper &
Kinzel, 1996). Finally Fig. 6 depicts the error for opti-
mised regularisation parameter in the black dashed line.
For large number of samples we observe the generalisa-
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tion error at optimal regularisation to saturate in this case
at εg(α → ∞) → 0.0325. A challenge for future work
is to see whether better performance can be achieved on
this model by including hidden variables into the neural
network.

Fig. 7 then shows the generalisation error for the optimised
regularisation λ with square loss as a function of the ratio
between the latent and the data dimensions d/p. In the
limit d/p� 1 the data matrix becomes close to a random
iid matrix and the labels are effectively random, thus only
bad generalisation can be reached. Interestingly, as d/p
decreases to small values even the simple classification with
regularised square loss is able to “disentangle” the hidden
manifold structure in the data and to reach a rather low
generalisation error. The figure quantifies how the error
deteriorates when the ratio between the two dimensions d/p
increases. Rather remarkably, for a low d/p a good gen-
eralisation error is achieved even in the over-parametrised
regime, where the dimension is larger than the number of
samples, p > n. In a sense, the square loss linear classifica-
tion is able to locate the low-dimensional subspace and find
good generalisation even in the over-parametrised regime
as long as roughly d . n. The observed results are in quali-
tative agreement with the results of learning with stochastic
gradient descent in (Goldt et al., 2019) where for very low
d/p good generalisation error was observed in the hidden
manifold model, but a rather bad one for d/p = 0.5.
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