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Supplements
First we provide more detailed information about a closely-related economic model, dynamic discrete choice models, is
deferred to Section A. Then, theoretical details including the proof and extra assumptions for our main results are provided
in Section B. We provide extended experiment details in Section C.

A. Dynamic Discrete Choice Models
In this Section, we detail the formulation of DDCs (Rust, 1987) to support our argument in Section 3. The results here are
mainly a review of existing work. DDCs assume that agents make decisions following a Markov decision process described
by the tuple {{S, E} ,A,P, γ, r}, where

• {S, E} denotes the space of state variables.

• A is a set of J actions as the action space.

• r is the reward function.

• γ ∈ [0, 1) is the discount factor.

• P denotes the transition distribution.

At time point t, agents observe state variable St ∈ S, and et = {et1, et2, · · · , etJ} ∈ E . While St is observable and
recorded in the dataset, et is not observable in the dataset, and is only known by the agent when making decisions at time
point t.

The decision variable is defined as a J × 1 vector, At = {At1, At2, · · · , AtJ}> ∈ A, satisfying

•
∑J
j=1Atj = 1,

• Atj ∈ {0, 1}.

Thus, the decision is indeed a selection over J choices.

The control problem agents are solving is formulated by the following value function:

V DDC(s, ε) = max
{at}∞t=0

E

[ ∞∑
t=0

γtr(St, et,at) | s, e

]
. (6)

The reward function of DDCs is defined by decomposing over different actions. For s ∈ S, e ∈ E , and a ∈ A, the reward
function r(s, ε,a) is defined by

r(s, e,a) = r∗(s,a) + a>e,

where r∗ is the estimation target.

A.1. Assumptions

We first discuss the assumptions for DDCs:

Assumption 4. The transition distribution from St to St+1 is independent from et

P(St+1 = s′ | St = s, et = e,At = a) = P(St+1 = s′ | St = s,At = a).

Assumption 5. The et are independent and identically distributed (IID) according to a Type-I extreme value distribution
(aka the Gumbel distribution).

Note that εt could also follow other parametric distributions. As suggested by (Arcidiacono and Ellickson, 2011), Assump-
tion 5 is virtually standard for all dynamic discrete choice models. We use Type-I extreme value distribution as an example,
other distributions follow a similar analysis.
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A.2. Likelihood for DDCs

Next, we derive the likelihood of DDCs.

Definition 4 (Conditional Value Function).

QDDC(s,a) = r∗(At,St) + γ

∫
S
V̄ (s′)f(St+1 = s′ | St = s,At = a)ds′, (7)

where

V̄ (s) = Eε[V
DDC(s, ε)]. (8)

Lemma 3. Let the assumptions in Section A.1 be satisfied. The likelihood of observationX = {s1,a1, s2,a2, · · · , sT ,aT }
becomes:

LDDC(X) =

T−1∏
t=1

P(St+1 = st+1 | St = st,At = at)

T∏
t=1

[
exp

{
QDDC(st,at)

}
/ZDDC(st)

]
, (9)

where

ZDDC(s) =
∑
a∈A

exp {v(s,a)} .

Comparing (9) with the likelihood in Lemma 1, it is clear that DDC is a special case of the considered setting when the
action space is discrete and α = 1.

B. Extended Theoretical Results
In this section, we provide more information about our theoretical results including Lemma 2, Theorem 1, and Theorem 2.

B.1. Proof of Lemma 2

In this section, we prove Lemma 2. By Theorem 1, we know

r(s,a) = Q(s,a)− γE
[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
. (10)

In other words, we can recover the true reward function if the Q input to R-ESTIMATOR is not shaped. Next, we take an
input shaped by φ(s):

Q′(s,a) := Q(s,a) + φ(s).

The according reward estimator r′(s,a) can be derived as

r′(s,a) = Q′(s,a)− γE
[
−α log(π∗(s′,aA)) +Q′(s′,aA) | s,a

]
= Q(s,a)− γE

[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
+ φ(s)− γE [φ(s′) | s,a] .

Finally, by (10) and the definition of Φ(s,a), we have

r′(s,a) = r(s,a) + Φ(s,a).

B.2. Theoretical Results for Theorem 1

The details for the derivation of Theorem 1 is provided in this Section.



Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions

B.2.1. AUXILIARY LEMMAS FOR THEOREM 1

To start with, we provide required lemmas.

Lemma 4. Following the definitions and Lemma 1, we can derive:

V (s) = E(Q(s,A)) + αH(π∗(s, ·)),

where the expectation is over the action variable A following the optimal policy (2).

Proof. To start with, we insert the optimal policy to the definition of V :

V (s) = max
π

∞∑
t=0

γtE[r(St,At) + αH(π(St, ·)) | S0 = s]

=

∞∑
t=0

γtE[r(St,At) + αH(π∗(St, ·)) | S0 = s].

Next, we take the case t = 0 out of the summation, and derive

V (s) = E[r(s,A0) + αH(π∗(s, ·)) | S0 = s] +

∞∑
t=1

γtE[r(St,At) + αH(π∗(St, ·)) | S0 = s]

= αH(π∗(s, ·)) + E [r(s,A) | S0 = s] + E

{ ∞∑
t=1

[
γtr(St,At) + γtαH(π∗(St, ·))

]
| S0 = s

}
.

Finally, by the definition of Q in Lemma 1, we can finish the proof:

V (s) = E[Q(s,A)] + αH(π∗(s, ·)).

Lemma 5. The value function (1) satisfies the following equation:

V (s) = α log

∫
a∈A

exp

(
Q(s,a)

α

)
da. (11)

Proof. By Lemma 4, we can derive the relationship between Q and V as

V (s) = E[Q(s,A)] + αH(π∗(s, ·)),

where the expectation is over the action variable A following the optimal policy (2). Next, by the definitions of expectation
and information entropy, we can derive

V (s) =

∫
a∈A

Q(s,a)π∗(s,a)da− α
∫
a∈A

log(π∗(s,a))π∗(s,a)da

=

∫
a∈A

Q(s,a)π∗(s,a)da− α
∫
a∈A

Q(s,a)

α
π∗(s,a)da

+ α

∫
a∈A

log

[∫
a′∈A

exp

(
Q(s,a′)

α

)
da′
]
π∗(s,a)da

= α log

[∫
a′∈A

exp

(
Q(s,a′)

α

)
da′
]

= α log

[∫
a∈A

exp

(
Q(s,a)

α

)
da

]
.
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As α approaches 0, Lemma 5 is consistent with the case with deterministic policies corresponding to α = 0. We summarize
the analysis in Remark 1
Remark 1. As α approaches 0+, (11) is consistent with the Bellman equation with deterministic polices:

lim
α→0+

V (s) = max
a

Q′(s,a),

where
Q′(s,a) = lim

α→0+
Q(s,a).

Proof. To start with, we review the definition of Lp-norm of functions:

Definition 5. Given a measurable space (A, µ) and a real number p ∈ [1,∞), the Lp-norm of a function f : A 7→ R is
defined as

‖f‖p =

(∫
A
|f |pdµ

)1/p

Therefore, (11) can be represented by the Lp-norm of the function of a exp(Q(s, ·)) with p = 1/α:

V (s) = α log

∫
a∈A

exp

(
Q(s,a)

α

)
da

= log

∣∣∣∣∫
a∈A

exp

(
Q(s,a)

α

)
da

∣∣∣∣α
= log

∣∣∣∣∫
a∈A

[exp (Q(s,a))]
1/α

da

∣∣∣∣α
= log‖exp(Q(s, ·))‖1/α.

Then, we take limit to the both sides of V (s) and derive

lim
α→0+

V (s) = lim
α→0+

log‖exp(Q(s, ·))‖1/α = log‖exp(Q′(s, ·))‖∞ = ‖Q′(s, ·)‖∞,

with Q′(s,a) = limα→0+ Q(s,a). Note that the second equation is true since both log and exp are monotonic functions.

Lemma 6. Let π∗(s,a) be the optimal policy of agents, Q(s,a) the ground-truth Q-function, and r(s,a) the true reward.
Under the formulation in Section 2, we have

Q(s,a) = r(s,a) + γE
[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
.

Proof. According to Lemma 1, we have

π∗(s,a) =
exp

(
1
αQ(s,a)

)∫
a′∈A exp

(
1
αQ(s,a′)

)
da′

.

By Lemma 5, we have

V (s) = α log

∫
a∈A

exp

(
Q(s,a)

α

)
da. (12)

For the next step, we consider a specific action aA, and extract α log
[
exp

(
Q(s,aA)

α

)]
from (12):

V (s) = α log

∫a∈A exp
(
Q(s,a)
α

)
da

exp
(
Q(s,aA)

α

)
+ α log

[
exp

(
Q(s,aA)

α

)]

= α log

(
1

π∗(s,aA)

)
+Q(s,aA)

= −α log
(
π∗(s,aA)

)
+Q(s,aA).

(13)
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According to Theorem 1 in Haarnoja et al. (2017), we have

Q(s,a) = r(s,a) + γE [V (s′) | s,a] (14)

Finally, by taking (13) into (14), we prove the result.

Lemma 7. Let π∗(s,a) be the optimal policy of agents, Q(s,a) the ground-truth Q-function, and r(s,a) the true reward.
Define T as an operator on the set of continuous bounded functions f : S 7−→ R:

T f(s) := g(s) + γE
[
−α log(π∗(s′,aA)) + f(s′) | s,aA

]
. (15)

Under the formulation in Section 2 and Assumption 1, QA(s) := Q(s,aA) is the unique solution to

f(s) = T f(s). (16)

Proof. It is obvious that T satisfies the monotonicity and discounting condition. Therefore, we can conclude that T is a
contraction, and (16) has the unique solution.

On the other hand, by taking a = aA to Lemma 6, we have

QA(s) = T QA(s). (17)

Thus, QA(s) is the unique solution.

B.2.2. PROOF OF THEOREM 1

Proof. Since the transition probabilities are given, and π̂(s,a) is accurate, we have Ê = E, π̂ = π∗, and thus T̂ = T .
According to Lemma 7, QA-ESTIMATOR (denoted as Q̂A(s)) uniquely recovers the true QA(s):

Q̂A(s) = QA(s).

By Lemma 1, we have

π∗(s,a) =
exp

(
Q(s,a)
α

)
∫
a′∈A exp

(
Q(s,a′)
α

)
da′

.

Then, we have

log(π̂(s,a))− log(π̂(s,aA))

= log

[
exp

(
Q(s,a)

α

)]
− log

[
exp

(
QA(s)

α

)]
+ log

(∫
A

exp(
Q(s,a)

α
)da

)
− log

(∫
A

exp(
Q(s,a)

α
)da

)
=

1

α
(Q(s,a)−QA(s)),

suggesting
α log(π̂(s,a))− α log(π̂(s,aA)) + Q̂A(s) = Q(s,a).

Therefore, Q-ESTIMATOR recovers the true Q-function:

Q̂(s,a) = Q(s,a). (18)

Finally, by taking (18) into R-ESTIMATOR, we derive

r̂(s,a) = Q̂(s,a)− γÊ
[
−α log(π̂(s′,aA)) + Q̂(s′,aA) | s,a

]
= Q(s,a)− γE

[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
,



Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions

where π̂ = π∗ according to the setting of Theorem 1. Finally, by Lemma 6, we have

r̂(s,a) = Q(s,a)− γE
[
−α log(π∗(s′,aA)) +Q(s′,aA) | s,a

]
= r(s,a).

B.3. Theoretical Results for Theorem 2

In this Section, we provide all the assumptions required by Theorem 2, and prove Theorem 2.

B.3.1. EXTRA DEFINITIONS AND ASSUMPTIONS FOR THEOREM 2

We first list the notions required for the proof of Theorem 2. To start with we define r̄ and Q̄ with π̂ and the exact expectation
E.

Definition 6. We use Qk to denote the result of Algorithm 2 after the kth iteration. Accordingly, QAk (s) = Qk(s,aA).
Define Q̄A(s) as the solution to a fixed point to the operator T̄ :

T̄ Q̄A(s) = Q̄A(s),

with
T̄ Q̄A(s) = g(s) + γE

[
−α log(π̂(s′,aA)) + Q̄A(s′) | s,aA

]
,

with an exact expectation and the estimated policy.

Definition 7. Denote the estimated reward function by Algorithm 1 as r̂(s,a). Define

r̄(s,a) := Q̂(s,a)− γE
[
−α log(π̂(s′,aA)) + Q̂(s′,aA) | s,a

]
,

with an exact expectation and the estimated policy.

Definition 8 (Definition 5.1 in Arora et al. (2019)). A distribution is (λ, P, n)-non-degenerate if for n IID samples
{(xi, yi)}ni=1 with xi ∈ S ×A, λmin(H∞) ≥ λ ≥ 0 with probability at least 1−P . λmin denotes the smallest eigen value.
H∞ is defined in Theorem 2.

Definition 9. {(xi, yi)}ni=1 follows a (λ, P3 , n)-non-degenerate distribution D, and
{

(xi, y
k
i )
}n
i=1

follows a (λ, P3 , n)-non-
degenerate distribution Dk. We use subscripts like Ds to denote the marginal distribution of the state variables according to
D.

It can be noticed that 9 is trying to quantify the quality of sample generation process. In practice, it is very hard to exactly
derive λ.

Definition 10. Define

ρk(s) := g(s) + γE
[
−α log(π̂(s′,aA)) +QAk−1(s′) | s,aA

]
−QAk (s)

and

εMax := max
k∈[N ]

[∫
S
|ρk(s)|2dDs(s)

]1/2
.

Definition 11. We use m to denote the number of neurons in the hidden layer of neural networks in Algorithm 1 and
Algorithm 2.

To quantify the generalization errors of neural networks, we require the following assumptions.

Assumption 6. The numbers of training iterations of neural networks in Algorithm 1 and Algorithm 2 equal to Ω
(

1
ηλ log n

P

)
,

where η > 0 is the learning rate. m in Definition 11 satisfies m ≥ c−2poly(n, λ−1, 3
P ), where c = O

(
λP
n

)
.

Assumption 7. The neural networks in Algorithm 1 and Algorithm 2 are two-layer ReLU networks trained by the randomly
initialized gradient descent.
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Further, for the MDP in Algorithm 2, we pose the following assumptions commonly used for the FQI method (Munos and
Szepesvári, 2008; Yang et al., 2020).
Assumption 8. The true reward function can be bounded by maxs,a|r(s,a)| ≤ R.
Assumption 9. Define the operator T̄ on the set of continuous bounded functions f : S 7−→ R

T̄ f(s) := g(s) + γE
[
−α log(π̂(s′,aA)) + f(s′) | s,aA

]
.

Define the concentration coefficient as

κ(m) =

[
EDs

∣∣∣∣dT̄ mDs

dDs

∣∣∣∣2
]1/2

.

We assume that (1− γ)
∑
m≥1 γ

m−1κ(m) ≤ ψ.

B.3.2. AUXILIARY LEMMAS FOR THEOREM 2

Lemma 8 (Hoeffding’s Inequality). Let X1, X2, · · · , Xn be n IID random variables drawn from distribution D, with
0 ≤ Xi ≤ a, ∀i ∈ {1, 2, · · · , n}. Let X̄ := 1

n

∑n
i=1Xi. Then, for any t > 0,

P(
∣∣X̄ − E[X̄]

∣∣ ≥ t) ≤ 2 exp

(
−2nt2

a2

)
.

To start with, we consider the errors induced by Algorithm 1 by studying the difference between r̂(s,a) and r̄(s,a).
Lemma 9. With Definition 7 and 9, under Assumption 3, 7, and 6, we have

E(s,a)∼Ds,a
[|r̂(s,a)− r̄(s,a)|] ≤

√
2yT (H∞)−1y

n
+O

(√
log( n

λP )

n

)
,

with probability at least 1− P .

Proof. Note that the difference between r̂ and r̄ is no more than the estimation error of the expectation in r̂, which is
conducted by neural networks. Therefore, we apply Theorem 5.1 in Arora et al. (2019).

Next, we consider the error of Algorithm 2. First, we bound the difference between Q̂A(s) and Q̄A(s).
Lemma 10. With Definitions 6 and 10, under Assumptions 8 and 9, we have

E(s,a)∼Ds,a

[∣∣∣Q̂A(s)− Q̄A(s)
∣∣∣] ≤ N−1∑

k=0

γN−k−1κ(N − k − 1)εMax + γN
2R

1− γ
,

with probability at least 1− P .

Proof. By Lemma C.2 in Yang et al. (2020), we can derive

Q̂A(s)− Q̄A(s) =

N−1∑
k=0

(
γN−k−1T̄ N−k−1ρk+1(s)

)
+ γN T̄ N (Q̄A(s)−QA0 (s)),

where QA0 denotes the initialized estimator for Algorithm 2. Then, we apply the expectation to the absolute value of both
sides of the equation above:

Es∼Ds

[∣∣∣Q̂A(s)− Q̄A(s)
∣∣∣] ≤ N−1∑

k=0

(
γN−k−1Es∼Ds

[∣∣T̄ N−k−1ρk+1(s)
∣∣])

+ γNEs∼Ds

[∣∣T̄ N (Q̄A(s)−QA0 (s))
∣∣]

≤
N−1∑
k=0

γN−k−1Es∼Ds

[∣∣T̄ N−i−1ρk+1(s)
∣∣]+ γN

2R

1− γ
.
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By Cauchy-Schwarz inequality, we have

E(s,a)∼Ds,a

[∣∣T̄ N−k−1ρk+1

∣∣] ≤ [∫
S

∣∣∣∣d(T̄ N−k−1Ds)

dDs
(s)

∣∣∣∣2dDs(s)

]1/2 [∫
S
|ρk+1(a)|2dDs(s)

]1/2
≤ κ(N − k − 1)

[∫
S
|ρk+1(a)|2dDs(s)

]1/2
,

where the last inequality is according to Assumption 9. Therefore,

Es∼Ds

[∣∣∣Q̂A(s)− Q̄A(s)
∣∣∣] ≤ N−1∑

i=0

γN−k−1Es∼Ds

[∣∣PN−k−1ρk+1(s)
∣∣]+ γN

2R

1− γ

≤
N−1∑
i=0

γN−k−1κ(N − k − 1)

[∫
S
|ρk+1(s)|2dDs(s)

]1/2
+ γN

2R

1− γ

≤
N−1∑
k=0

γN−k−1κ(N − k − 1)εMax + γN
2R

1− γ
,

where the last inequality is according to Definition 10.

We study the ρk(s) in εMax:

ρk(s) = g(s) + γE
[
−α log(π̂(s′,aA)) +QAk−1(s′) | s,aA

]
−QAk .

According to the the fifth line of 2, QAk is a deep function trained using the samples g(s) + γ − α log(π̂(s′,aA)) +
QAk−1(s′), where s′ is the next-step state variable. In other words, the QAk is trained to estimate g(s) +

γE
[
−α log(π̂(s′,aA)) +QAk−1(s′) | s,aA

]
, the first part of ρk(s). Therefore, it can be seen that εMax is really caused by

the neural networks used in Algorithm 2. We use the results in Arora et al. (2019) again to bound εMax.

Lemma 11. With Definition 9, under Assumptions 3, 7, and 6, we have

εMax ≤ max
k∈[N ]

√
2yTk (H∞)−1yk

n
+O

(√
log( n

λP )

n

)
.

with probability at least 1− (N + 1)P .

Proof. We consider[∫
S
|ρk(s)|2dDs(s)

]1/2
=

[∫
S

∣∣QAk (s)− g(s)− γE
[
−α log(π̂(s′,aA)) +QAk−1(s′) | s,aA

]∣∣2dDs(s)

]1/2
≤
[∫
S×Y

∣∣y − g(s)− γE
[
−α log(π̂(s′,aA)) +QAk−1(s′) | s,aA

]∣∣2dDs,y(s, y)

]1/2
+

[∫
S×Y

∣∣QAk (s)− y
∣∣2dDs,y(s, y)

]1/2
(19)

It should be noticed that the second part on the right hand side is the generation error of the deep estimation. According to
Theorem 5.1 in Arora et al. (2019), with probability at least 1− P , we have[∫

S×Y

∣∣QAk (s)− y
∣∣2dDs,y(s, y)

]1/2
≤
√

2yTk (H∞)−1yk
n

+O

(√
log( n

λP )

n

)
.
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We bound the first part of the RHS of (19) by Hoeffding’s Inequality (Lemma 8). This provides an error with smaller order,
and thus can be ignored. Therefore, by the union bound, we can conclude that, with probability at least 1− (N + 1)P ,

εMax ≤ max
k∈[N ]

√
2yTk (H∞)−1yk

n
+O

(√
log( n

λP )

n

)
.

Lemma 12. Under Assumption 2, the estimation error of Q̂ can be bounded by:

E(s,a)∼Ds,a

[∣∣∣Q̂(s,a)−Q(s,a)
∣∣∣] ≤ Es∼Ds

[∣∣∣Q̂A(s)−QA(s)
∣∣∣]+ 2αεπ.

Proof. By the definition of π∗ in (2), we can derive

log(π∗(s,a))− log(π∗(s,aA)) =
Q(s,a)−Q(s,aA)

α
.

Therefore,
Q(s,a) = α log(π∗(s,a))− α log(π∗(s,aA)) +QA(s).

Similarly, according to Algorithm 2,

Q̂(s,a) = α log(π̂(s,a))− α log(π̂(s,aA)) + Q̂A(s).

Therefore, by Assumption 2,

E(s,a)∼Ds,a

[∣∣∣Q̂(s,a)−Q(s,a)
∣∣∣] ≤ Es∼Ds

[∣∣∣Q̂A(s)−QA(s)
∣∣∣]+ 2αεπ.

Lemma 13. With Definitions 6, under Assumption 2, we have

Es∼Ds

[∣∣Q̄A(s)−QA(s)
∣∣] ≤ γαεπ

1− γ
.

Proof. According to Lemma 7, we have

QA(s) := g(s) + γE
[
−α log(π∗(s′,aA)) +QA(s′) | s,aA

]
.

On the other hand, by Definition 6

Q̄A(s) = g(s) + γE
[
−α log(π̂(s′,aA)) + Q̄A(s′) | s,aA

]
.

Therefore, we have

Es∼Ds

[∣∣Q̄A(s)−QA(s)
∣∣]

= γEs∼Ds

{∣∣E [α log(π∗(s′,aA))− α log(π̂(s′,aA)) + Q̄A(s′)−QA(s′) | s,aA
]∣∣}

≤ γEs∼Ds

[∣∣QA(s)− Q̄A(s)
∣∣]+ γαεπ,

which means
Es∼Ds

[∣∣QA(s)− Q̄A(s)
∣∣] ≤ γαεπ

1− γ
.

Lemma 14. With Definition 6 and 7, under Assumption 2, we have

E(s,a)∼Ds,a
[|r(s,a)− r̂(s,a)|]

≤ (1 + γ)Es∼Ds

[∣∣∣QA(s)− Q̂A(s)
∣∣∣]+ E(s,a)∼Ds,a

[|r̄(s,a)− r̂(s,a)|]

+ (γ + 2)αεπ.
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Proof. To start with, by the tower principle, the triangle inequality, Lemma 6 and Definition 6, we can derive

E(s,a)∼Ds,a
[|r(s,a)− r̂(s,a)|] ≤E(s,a)∼Ds,a

[
∣∣∣Q(s,a)− Q̂(s,a)

∣∣∣]
+ γαEs∼Ds

[∣∣log(π∗(s,aA))− log(π̂(s,aA))
∣∣]

+ γE(s,a)∼Ds,a

[∣∣∣QA(s)− Q̂A(s)
∣∣∣]

≤E(s,a)∼Ds,a

[∣∣∣Q(s,a)− Q̂(s,a)
∣∣∣]

+ E(s,a)∼Ds,a
[|r̄(s,a)− r̂(s,a)|] + γαεπ

+ γEs∼Ds

[∣∣∣QA(s)− Q̂A(s)
∣∣∣] .

Next, we use the results of Lemma 12, and derive

E(s,a)∼Ds,a
[|r(s,a)− r̂(s,a)|] ≤ (1 + γ)Es∼Ds

[∣∣∣QA(s)− Q̂A(s)
∣∣∣]

+ E(s,a)∼Ds,a
[|r̄(s,a)− r̂(s,a)|] + (γ + 2)αεπ,

which proves the lemma.

B.3.3. PROOF OF THEOREM 2

Now, we prove Theorem 2. To start with, we study the error of Algorithm 2. Combining Lemma 10 and Lemma 11, we can
derive that with the probability of at least 1− (N + 1)P :

E(s,a)∼Ds,a

[∣∣∣Q̂A(s)− Q̄A(s)
∣∣∣]

≤
N−1∑
k=0

κ(N − k − 1)γN−k−1

[
max
k∈[N ]

√
2yTk (H∞)−1yk

n
+O

(√
log( n

λP )

n

)]
+ γN

2R

1− γ

≤ φ

1− γ
max
k∈[N ]

√
2yTk (H∞)−1yk

n
+ γN

2R

1− γ
+O

(√
log( n

λP )

n

)
,

(20)

where the last inequality is by Assumption 9. Further, by using Lemma 12 and Lemma 13, we can derive

E(s,a)∼Ds,a

[∣∣∣Q̂(s,a)−Q(s,a)
∣∣∣]

≤ Es∼Ds

[∣∣∣Q̂A(s)−QA(s)
∣∣∣]+ 2αεπ

≤ Es∼Ds

[∣∣∣Q̂A(s)− Q̄A(s)
∣∣∣]+ Es∼Ds

[∣∣Q̄A(s)−QA(s)
∣∣]+ 2αεπ

≤ φ

1− γ
max
k∈[N ]

√
2yTk (H∞)−1yk

n
+ γN

2R

1− γ
+O

(√
log( n

λP )

n

)
+
γαεπ
1− γ



Deep PQR: Solving Inverse Reinforcement Learning using Anchor Actions

As a result, the error of Q-function estimation is bounded. Next, we proceed to the reward estimation. According to
Lemma 9 and Lemma 14, we have

E(s,a)∼Ds,a
[|r̂(s,a)− r(s,a)|]

≤ (1 + γ)E(s,a)∼Ds,a

[∣∣∣Q(s,a)− Q̂(s,a)
∣∣∣]+ E(s,a)∼Ds,a

[|r̄(s,a)− r̂(s,a)|] + (2 + γ)αεπ

≤ (1 + γ)

{
ψ

1− γ
max
k∈[N ]

√
2yTk (H∞)−1yk

n
+ γN

2R

1− γ
+O

(√
log( n

λP )

n

)
+
γαεπ
1− γ

}

+

√
2yT (H∞)−1y

n
+ (2 + γ)αεπ +O

(√
log( n

λP )

n

)

≤ (1 + γ)ψ

1− γ
max
k∈[N ]

√
2yTk (H∞)−1yk

n
+ γN

2R(1 + γ)

1− γ
+

2αεπ
1− γ

+

√
2yT (H∞)−1y

n
+O

(√
log( n

λP )

n

)
,

with probability 1− (N + 2)P . Note that the proved results is slightly different from the Theorem 2. The two are consistent
if we select C = max(ψ,R, 1/λ), and treat P (N + 2) as a constant for the tail probability.

C. Extended Experiments
We now provide extended experiments.

C.1. Details of Synthetic Experiments

In this section, we provide more details about the synthetic experiments implemented in Section 6.1.

C.1.1. DATA GENERATION PROCESS

We consider an MDP defined by the tuple {S,A,P, γ, r}.

• S = [−p, p]p, with p ∈ {5, 10, 20, 40}, denotes the state space.

• A = [5] is the action space.

• The reward function is defined as

r(s,a) =
a tanh(

{
s>/p,a/4

}
· ω)

41>ω
,

where ω is a (p+ 1)× 1 vector.

• γ = 0.9 is the discount factor.

• α = 1.

• The transition is defined as

P(s′ | s,a) =

{
1 s′ = s + a/5− 0.5 ∈ S
1
|S| otherwise

.

Next, we solve the MDP with a deep energy-based policy with γ = 0.9 and α = 1, using the soft Q-learning method in
Haarnoja et al. (2017). By conducting the learned policy for 50000 steps, we obtain the demonstration dataset, on which
we compare PQR, MaxEnt-IRL, AIRL, and SPL-GD. We assume that γ and α are known as required by existing methods.
Specifically, the hyperparameters used for the soft Q-learning are reported in Table 1.

C.1.2. COMPETING METHODS

In this section, we provide more details regarding how we implement existing methods.
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p Optimization Method Learning Rate
Final Loss

Number of Epochs
for Q-Function

5 Adagrad 10−4 4× 10−3 100
10 Adagrad 10−4 6× 10−3 150
20 Adagrad 10−4 9× 10−3 175
40 Adagrad 10−4 1.2× 10−2 175

Table 1: Hyperparameters for soft Q-learning.

MaxEnt-IRL According to our analysis, without an appropriate identification procedure, the estimated Q-function may
be shaped by any function of s. Therefore, we implement MaxEnt-IRL with a grounding procedure by Algorithm 4.

Algorithm 4 MaxEnt-IRL with Grounding Procedure

Input: X = {s0,a0, s1,a1, · · · , sT ,aT }, and Q(0, 0)
Output: Q̂(s,a).

1: Q̂(s,a)←MAXENT-IRL(X)
2: Q̂(s,a)← Q̂(s,a)− Q̂(0, 0) +Q(0, 0).
3: return Q̂(s,a).

In other words, we allow MaxEnt-IRL to access the ground truth Q value Q(0, 0). Empirically, this procedure significantly
improves the performance of MaxEnt-IRL.

SPL-GD The original SPL-GD can only deal with discrete and finite state variables. To make the SPL-GD method
available for our setting, we provide access to the true value function and Q-function. The procedure is summarized in
Algorithm 5.

Algorithm 5 SPL-GD for Continuous States

Input: Dataset: X = {s0,a0, s1,a1, · · · , sT ,aT }, Q(s,a) and V (s).
Output: r̂(s,a).

1: for t ∈ [T ] do
2: yt ← Q(st,at)− γV (st+1)
3: end for
4: Train a linear regression with {st}T−1t=0 and {at}T−1t=0 for r̂(s,a).
5: return r̂(s,a).

C.1.3. PQR DEEP NETWORKS HYPERPARAMETERS

In this section, we provide hyperparameters for training the deep neural networks in PQR. There are three types of deep
neural networks in PQR: networks for policy estimation, Q estimation, and reward estimation. The parameters are provided
in Table 2. The training errors of the neural networks are provided in Figure 7

Types of Networks Optimization Method Learning Rate Number of Steps

Policy Estimation Adagrad 5× 10−4 600
Q Estimation Adagrad 1× 10−3 1000

Reward Estimation Adagrad 1× 10−3 1000

Table 2: Hyperparameters for PQR.
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Figure 7: Final loss on the training datasets of neural networks for different tasks for MDPs with p = {5, 10, 20, 40}.

C.2. Extended Synthetic Experiments

C.2.1. ROBUSTNESS ANALYSIS

It should be noticed that the performance of the proposed PQR method relies on the existence of anchor actions in
Assumption 1. While as we have mentioned this assumption is reasonable in many real-world scenarios (Hotz and Miller,
1993; Bajari et al., 2010; Manzanares et al., 2015), it contradicts the setting of SPL-GD and AIRL, where the reward function
is assumed to only depend on the state variables. Therefore, in this section, we study the performance of the proposed
method when the underlying reward is indeed a state-only function.

Specifically, we replace the reward function in Section C.1 with the following function:

r(s) = tanh(
{
s>/p,a/4

}
· ω).

Then, we use the same configurations as in Section 6.1, and compare the performances of PQR, SPL-GD, and AIRL in
terms of reward recovery for an MDP with a 10-dimension state variable. When implement the PQR method, we randomly
choose one action as the anchor action. The results are summarized in Figure 8.
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Figure 8: MSE for reward recovery

Note that D-AIRL performs the best if the reward function is indeed indecent with the action variable. The performance of
the proposed method may not be guaranteed if anchor-action assumption is not satisfied. This is not surprising since the
PQR method wrongly takes one action as the anchor action for the reward estimation under this setting.

C.2.2. SENSITIVITY ANALYSIS

Theoretically, it is hard to identify the true α and γ. However, in some applications, there are some well-justified and widely
used values for γ and α, like taking γ as the risk-free return rate in financial applications (Merton, 1973). Therefore, we
treat α and γ as two hyperparameters, and provide a sensitivity analysis for PQR.

To analyze γ, we set p = 10 and α = 1, and solve an MDP to generate three datasets with γ = [0, 0.5, 0.9]. We apply
PQR with γ = 0.9 to the 3 datasets and check the reward estimation accuracy. We compare with the MaxEnt-IRL method,
which is equivalent to taking γ = 0. Figure 9 plots the results. Recall from Section 2 that, when true γ = 0, the reward
function equals to the Q-function. Therefore, MaxEnt-IRL gives a very accurate estimation, outperforming PQR with its
mis-specified γ = 0.9. As true γ increases, PQR performance improves, while MaxEnt-IRL performance deteriorates. At
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true γ = 0.9, PQR achieves low error, while the error of MaxEnt-IRL blows up. It is important to note that the PQR error
does not blow, as the identification procedure Algorithm 2 constrains the reward estimation to the right scale.

To analyze α, we set p = 10 and γ = 0.9, and solve an MDP to generate three datasets with α = [0.1, 0.5, 1]. We apply
PQR with α = 1 and report results in Figure 9. As true α approaches 1, PQR performance improves. When true α = 0.1,
PQR error increases significantly. This indicates that PQR may be relatively more sensitive to α. Meanwhile, most IRL
methods operate under α = 1, with no ability to tune it. We provide a strategy to choose α in Section C.2.3.
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Figure 9: Sensitivity analysis for γ and α

C.2.3. α SELECTION

In this section, we propose a strategy to select α, under the assumption that we approximately know the scale of the true
reward function, such as the average reward, maximal reward, or the minimal reward achieved in the dataset. To start with,
we study the effect of α.

Theorem 3. Given the demonstration datasetX = {s0,a0, s1,a1, · · · , sT ,aT }, we use r̂α1
and r̂α2

to denote two estimated
reward functions by PQR, using α1, α2 ∈ (0,∞) respectively. We assume that π̂ is an accurate estimation to π∗, and the
expectation in PQR estimators are exactly calculated. Therefore,

r̂α1
(s,a)− g(s)

1−γ + γE
[
g(s′)
1−γ | s,a

]
r̂α2(s,a)− g(s)

1−γ + γE
[
g(s′)
1−γ | s,a

] =
α1

α2
,

where the expectation is on s′ over one-step transition.

Proof. First, it should be noticed that α does not affect the estimation to π∗.

Then, according to QA-ESTIMATOR, we have

Q̂Aα1
(s) = T̂α1Q̂

A
α1

(s)

Q̂Aα2
(s) = T̂α2

Q̂Aα2
(s),

where

T̂α1
f(s) := g(s) + γÊs′

[
−α1 log(π̂(s′,aA)) + f(s′) | s,aA

]
T̂α2f(s) := g(s) + γÊs′

[
−α2 log(π̂(s′,aA)) + f(s′) | s,aA

]
.

Therefore,

Q̂Aα1
(s)− g(s)

1− γ
:= γÊs′

[
−α1 log(π̂(s′,aA)) + Q̂Aα1

(s)− g(s)

1− γ
| s,aA

]
Q̂Aα2

(s)− g(s)

1− γ
:= γÊs′

[
−α2 log(π̂(s′,aA)) + Q̂Aα2

(s)− g(s)

1− γ
| s,aA

]
,

which suggests that
Q̂Aα1

(s)− g(s)
1−γ

Q̂Aα2
(s)− g(s)

1−γ

=
α1

α2
.
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Therefore, by Q-ESTIMATOR, we can conclude that

Q̂α1
(s,a)− g(s)

1−γ

Q̂α2
(s,a)− g(s)

1−γ

=
α1

α2
. (21)

By taking (21) into R-ESTIMATOR, we have

r̂α1
(s,a)− g(s)

1−γ + γE
[
g(s′)
1−γ | s,a

]
r̂α2

(s,a)− g(s)
1−γ + γE

[
g(s′)
1−γ | s,a

] =
α1

α2
.

As a special case, when g(s) = 0, we have

r̂α1
(s,a)

r̂α2(s,a)
=
α1

α2
.

Therefore, the α used in PQR determines the scale of the estimated reward function. If we know the scale of the true reward
function, we can tune α so that the estimated reward function has the right scale. When g(s) = 0, the procedure to select α
is summarized in Algorithm 6:

Algorithm 6 α Selection

Input: Dataset: X = {s0,a0, s1,a1, · · · , sT ,aT }.
Input: R, the average reward achieved onX.
Input: γ and N .

1: r̂(s,a)← PQR(X, α = 1, γ,N)

2: α̂ = R·(T+1)∑
(s,a)∈X r̂(s,a)

3: return α̂

C.3. Details of Real-World Experiments

In this section, we provide detailed configurations of the PQR method when applied to the airline market entry analysis. To
start with, we follow the convention in Benkard (2004); Berry and Jia (2010) and let α = 1. As mentioned in Section 6.2,
we only focus on the top 60 CSAs, summarized in Table 3, and 11 airline companies summarized in Table 4.

We take δ = 0.95. Specifically, the hyperparameters used are provided in Table 5. We train the methods using the data from
the start of 2013 to the end of 2014, and calculate the likelihood using the data of January 2015.

The state variables include the distance between CSAs, the populations of the origin and destination CSAs, the log of
the current passenger density for the market, whether the carrier is already flying for the market, the number of nonstop
competitors for the market, the share of flights operated out of the origin CSA and the destination CSA, whether the carrier
operates any flights out of the origin or destination, and the number of flights operated by the carrier in the current period.

The estimated reward functions of all the 11 airline companies for the top 5 markets are provided in Figure 10.
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(a) Alaska Airlines
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(b) Jetblue Airlines
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(c) Continental Airline
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(d) Delta
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(e) America West
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(f) Northwest
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(g) TWA
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(h) United Airlines
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(i) US Airways
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(j) Southwest

Figure 10: Estimated reward functions for airline companies for top 5 markets.
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CSAs Airport Codes CSAs Airport Codes

Albuquerque ABQ Orlando MCO
Albany ALB Chicago ORD, MDW

Anchorage ANC Memphis MEM
Atlanta ATL Milwaukee MKE
Austin AUS Minneapolis-St.Paul MSP

Hartford BDL NewOrleans MSY
Birmingham BHM SanFrancisco SFO, SJC, OAK

Nashville BNA Kahului OGG
Boise BOI OklahomaCity OKC

Boston BOS, MHT, PVD Omaha OMA
Buffalo BUF Norfolk ORF

LosAngeles LAX, ONT, SNA, BUR PalmBeach PBI
WashingtonDC IAD, DCA, BWI Portland PDX

Cleveland CLE Philadelphia PHL
Charlotte CLT Phoenix PHX
Columbus CMH Pittsburgh PIT
Cincinnati CVG Raleigh-Durham RDU

Dallas DFW, DAL Reno RNO
Denver DEN Southwest Florida RSW
Detroit DTW SanDiego SAN
ElPaso ELP SanAntonio SAT

New York JFK, LGA, EWR Louisville SDF
Miami MIA, FLL Seattle SEA

Spokane GEG SanJuan SJU
Honolulu HNL SaltLakeCity SLC
Houston IAH, HOU Sacramento SMF

Indianapolis IND St.Louis STL
Jacksonville JAX Tampa TPA

LasVegas LAS Tulsa TUL
KansasCity MCI Tuscon TUS

Table 3: Top 60 CSAs with the most itineraries in 2002.
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Airline Companies Airline Company Codes

American Airlines AA
Alaska Airlines AS
Jetblue Airlines B6

Continental Airlines CO
Delta DL

America West HP
Northwest NW

TWA TW
United Airlines UA

US Airways US
Southwest WN

Table 4: List of airline companies and their codes.

Types of Networks Optimization Method Learning Rate Number of Steps

Policy Estimation Adagrad 1.5× 10−4 1000
Q Estimation Adagrad 0.5× 10−4 500

Reward Estimation Adagrad 1× 10−3 1000

Table 5: Hyperparameters for PQR for the airline market entry analysis.


