
Predicting deliberative outcomes

Supplementary material

We now provide a detailed analysis on two fundamental aspects of our games: convergence and identifiability. That is, we
characterize conditions under which players converge to an equilibrium, and when the game parameters can be provably
recovered from observed outcomes.

A. Identifiability of our games
We begin with the results on provably recovering the structure of our one-shot games from data. Specifically, we characterize
the conditions under which our games with one step of dynamics become identifiable, and provide an algorithm to recover
the structure of the game, i.e., the neighbors for each player i ∈ [n] with the signs (positive or negative) of their respective
influences.

Our recovery procedure adapts the primal-dual witness method (Wainwright, 2009) for structure estimation in games. The
method has previously been applied in several non-strategic settings such as Lasso (Wainwright, 2009) and Ising models
(Ravikumar et al., 2010). Recently, (Ghoshal and Honorio, 2017) employed this method to recover a set of pure strategy
Nash equilibria (PSNE) from data consisting of a subset of PSNE, and a small fraction of non-equilibrium outcomes assumed
to be sampled under their noise models in the setting of linear influence games. However, the problem of structure recovery
is significantly harder: it is known (Honorio and Ortiz, 2015; Ghoshal and Honorio, 2017) that the problem becomes
non-identifiable in the setting of PSNE, since multiple game structures may pertain to the same of PSNE. We leverage
dynamics to fill this gap by characterizing conditions under which our one-shot games become identifiable.

Our approach follows the general proof structure of primal-dual witness method in the context of model selection for Ising
models (Ravikumar et al., 2010). However, our setting is significantly different from the setting in (Ravikumar et al., 2010)
where context and dynamics play no part, and all the observed data is assumed to be sampled from a common (global)
distribution expressible in a closed form. In contrast, each observed outcome in our setting is sampled from a separate joint
strategy profile following one-step of dynamics initiated under a different context.

Specifically, in the one-shot setting, consider a dataset D = {(x(m), a(m)) ∈ X × Y,m ∈ [M ]} where a(m) is the action
profile (i.e. observed outcome) sampled from the joint player strategies after one round of communication. Assume that the
type parameters θ = (θ1, . . . , θn) are known. Then, since types for any context are determined by the parameters θ, we have
access to the player types z(m)(x(m)) = (z

(m)
1 , . . . , z

(m)
n ), which in turn determine the initial strategies for all the examples

m ∈ [M ]. We focus on binary actions here since they let us simplify the exposition while conveying the essential ideas.
Specifically, each player i ∈ [n] initially plays action 1 with probability

φ
(m)
i = ξ(z

(m)
i ) ,

1

1 + exp(−z(m)
i )

,

and the action 0 with probability 1− φ(m)
i . We define φ(m) = (φ

(m)
1 , . . . , φ

(m)
n ), and Φ

(m)
−i = (φ

(m)
j )j 6=i. We focus on

the gradient update setting where after one round of communication, player i responds to its neighbors with its updated
strategy (σ

∗(m)
i , 1− σ∗(m)

i ), where

σ
∗(m)
i , ξ

φ(m)
i + α(

∑
j 6=i

w∗ijφ
(m)
j − z(m)

i )

 ,

such that α > 0, and w∗ij ∈ R is the true influence (i.e. interaction weight) of player j ∈ [n] \ {i} on i. Recall that we call

player j a neighbor of i if |w∗ij | > 0. Finally, action a(m)
i is sampled from the updated strategy, and we obtain the joint

profile a(m) = {a(m)
i , i ∈ [n]} as the observed outcome. Our goal is to estimate, from D and α, the support Si, or the set of

neighbors j for i, i.e., the players that have influence w∗ij 6= 0. We can thus separate the influence of neighbors of i from the
non-neighbors by defining the set of non-zero weights w∗i,S = {w∗ij |j ∈ Si}. We denote the complement of a set A by Ac.
Thus, w∗ij = 0 for j ∈ Sci . We equivalently write w∗i,Sc = 0. We are interested in recovering not only the support of each
player i, but also the correct sign of influence (i.e. positive or negative) of each neighbor j on i.
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We consider the average cross-entropy loss between the strategy under wi and the observed outcome.

`i(wi;D) =
1

M

M∑
m=1

−
(
a

(m)
i log(σ

(m)
i ) + (1− a(m)

i ) log(1− σ(m)
i )

)
. (14)

We compute the gradient and the Hessian of the sample loss:

∇`i(wi;D) =
α

M

M∑
m=1

(σ
(m)
i − a(m)

i ) Φ
(m)
−i , (15)

HM
i , ∇2`i(wi;D) =

α2

M

M∑
m=1

σ
(m)
i (1− σ(m)

i ) Φ
(m)
−i Φ

(m)>

−i . (16)

We will often use the variance function ηi(wi;m) , α2σ
(m)
i (1− σ(m)

i ) as a shorthand, and write

HM
i =

1

M

M∑
m=1

ηi(wi;m) Φ
(m)
−i Φ

(m)>

−i . (17)

We denote by H∗Mi,SS the submatrix obtained by restricting the Hessian H∗Mi , pertaining to true weights, to rows and columns
corresponding to neighbors, i.e., players in Si. Likewise, H∗Mi,SSc denotes the submatrix restricted to rows pertaining to Si
(neighbors) and columns to Sci (non-neighbors).

We will provide detailed analysis under sample Fisher matrix assumptions. We will omit the analysis for the population
setting that can be derived by imposing analogous assumptions directly on the population matrices, and making concentration
arguments that show these assumptions hold in the sampled setting with high probability. Recall from the main text that we
make the following assumptions that are reminiscent of those for support recovery under Lasso (Wainwright, 2009), and
model selection in Ising models (Ravikumar et al., 2010). We first recall our assumptions from the main text.

Assumptions.
Λmin

(
H∗Mi,SS

)
≥ α2Cmin . (18)

Λmax

(
1

M

M∑
m=1

Φ
(m)
−i Φ

(m)>

−i

)
≤ Cmax . (19)

|||H∗Mi,ScS(H∗Mi,SS)−1|||∞ ≤ 1− γ , (20)

such that Cmin > 0, Cmax < ∞, and γ ∈ (0, 1]. In our notation, |||A|||∞ denotes the maximum `1 norm across rows
of matrix A, and |||A|||2 denotes the spectral norm (i.e. maximum singular value) of A. Λmin(A) and Λmax(A) refer
respectively to the minimum and the maximum eigenvalue of a square matrix A.

Analysis. We propose to solve the following regularized problem for each player i ∈ [n] separately.

arg min
wi∈Rn−1

`i(wi;D) + λM,n,d||wi||1 , (21)

where λM,n,d > 0 is a regularization parameter that depends on the sample size M , the number of players n, and the
maximum degree (i.e. number of neighbors) d of any player. For brevity, we will omit the dependence of this parameter on
n and d, and simply write λM . This problem is convex but not differentiable everywhere because of the L1 penalty. Note
that since the problem is not strictly convex, it might have multiple minimizing solutions. For any such optimal solution ŵi,
we must have by KKT conditions,

∇`i(ŵi;D) + λM κ̂i = 0 , (22)

where the subgradient κ̂i ∈ Rn−1 is such that

κ̂ij = sign(ŵij) ∈ {±1} if ŵij 6= 0, and |κ̂ij | ≤ 1 otherwise. (23)
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We would like to ensure the following conditions in order to recover the signed neighborhood for i.

sign(κ̂ij) = sign(w∗ij), ∀j ∈ Si (24)
ŵij = 0, ∀j ∈ Sci . (25)

Our analysis is built on the primal-dual witness (PDW) method (Wainwright, 2009). This method has the following steps.
First, only for the sake of analysis, we presuppose that some Oracle provides the true neighbors Si. Therefore, we solve the
following problem to recover the signs of true neighbors.

ŵi,S = arg min
(wi,S ,0)∈Rn−1

`i(wi;D) + λM ||wi,S ||1 , (26)

We then set the components of the dual vector κi that pertain to neighbors of i to the sign of corresponding components in
ŵi,S . That is, κ̂i,j = sign(ŵi,j), ∀j ∈ Si. We next set ŵi,Sc = 0, and thus (25) is satisfied. We then solve for κ̂i,Sc by
plugging ŵi,S , κ̂i,S , and ŵi,Sc in (22). Thus, we are left to show that (23) and (24) are satisfied. We impose conditions on
M , n, and d under which these conditions are satisfied with high probability. In fact, we prove a stronger result for (23),
namely, strict dual feasibility for non-neighbors, i.e., |κ̂i,j | < 1 for all j ∈ Sci .

We argue that our construction yields a unique optimal primal solution ŵi. Specifically, we invoke Lemma 1 from (Ravikumar
et al., 2010) that states that so long as ||κ̂i,Sc ||∞ < 1, any optimal primal solution w̃i satisfies w̃i,Sc = 0. This is established
by our construction above. Moreover, Lemma 1 asserts that ŵi is the unique solution to (21) if Λmin(ĤM

i,SS) > 0, i.e., if
the sample Hessian under ŵi is positive definite when restricted to the rows and columns in the true support Si. We show

that assumption (18) implies Λmin

(
ĤM
i,SS

)
≥ α2Cmin

2
> 0, and this guarantees that we correctly recover the signed

neighborhood of i.

To proceed, we define GMi = −∇`i(w∗i ;D) and rewrite (22) as

∇`i(ŵi;D)−∇`i(w∗i ;D) = GMi − λM κ̂i . (27)

Applying the mean value theorem component-wise, we can write (27) as

∇2`i(w
∗
i ;D)(ŵi − w∗i ) = GMi − λM κ̂i − RMi , (28)

where
RMi,j =

(
∇2`i(w

(j)
i ;D)−∇2`i(w

∗
i ;D)

)>
j

(ŵi − w∗i ) ,

for some vector w(j)
i = tjŵi + (1− tj)w∗i , tj ∈ [0, 1]. Here, (A)>j denotes row j of matrix A.

We will now prove some auxiliary results that we will use in the proof of Theorem 2.

Lemma 1. We have that

P
(
||GMi ||∞ ≥

λM
4

γ

2− γ

)
≤ 2 exp

(
− γ2λ2

M

32α2(2− γ)2
M + log(n)

)
,

which converges to zero at rate exp(−Cα,γλ2
MM) (where constant Cα,γ depends on α and γ) whenever

λM ≥
8α(2− γ)

γ

√
log(n)

M
.

Proof. We note that

GMi = −∇`i(w∗i ;D) =
1

M

M∑
m=1

−α(σ
∗(m)
i − a∗(m)

i ) Φ
(m)
−i︸ ︷︷ ︸

Zi,m

,

where |Zui,m| ≤ α for each component Zmi,u of random vector Zmi . Moreover, E(Zmi,u) = 0 under w∗i , and Z1
i,u, . . . , Z

M
i,u

are independent. Invoking the Hoeffding’s inequality, we have that for any δ > 0,

P(|GMi,u| ≥ δ) ≤ 2 exp

(
−Mδ2

2α2

)
,
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where GMi,u denotes the component at index u of vector GMi . Setting δ =
γλM

4(2− γ)
, we get

P
(
|GMi,u| ≥

γλM
4(2− γ)

)
≤ 2 exp

(
− M

2α2

γ2λ2
M

16(2− γ)2

)
.

Then, applying a union bound over indices u ∈ [n− 1], we get

P
(
||GMi ||∞ ≥

γλM
4(2− γ)

)
≤ 2(n− 1) exp

(
− M

2α2

γ2λ2
M

16(2− γ)2

)
< 2 exp

(
− M

2α2

γ2λ2
M

16(2− γ)2
+ log(n)

)
.

Lemma 2. Let λMd ≤
αC2

min

10Cmax
and ||GMi ||∞ ≤

λM
4

. Then,

||ŵi,S − w∗i,S ||2 ≤
5

α2Cmin
λM
√
d .

Proof. We define a function F : Rd → R that quantifies the change in optimization objective at a distance ∆i,S from the
true parameters w∗i,S . Specifically,

F (∆i,S) , `i(w
∗
i,S + ∆i,S ;D)− `i(w∗i,S ;D) + λM (||w∗i,S + ∆i,S ||1 − ||w∗i,S ||1) .

Note that F is convex and F (0) = 0. Moreover, F is minimized for ∆̂i,S = ŵi,S − w∗i,S . Therefore, F (∆̂i,S) ≤ 0. We
show that the function F is strictly positive on the surface of a Euclidean ball of radius B for some B > 0. Then, the vector
∆̂i,S lies inside the ball, i.e.,

||ŵi,S − w∗i,S ||2 ≤ B .

This follows since otherwise, the convex combination t∆̂i,S + (1− t)0 would lie on boundary of the ball for some t ∈ (0, 1),
which would imply the contradiction

F (t∆̂i,S + (1− t)0) ≤ tF (∆̂i,S) + (1− t)F (0) ≤ 0.

Therefore, let ∆ ∈ Rd be an arbitrary vector such that ||∆||2 = B. We then have from Taylor’s series

F (∆) = ∇`i(w∗i,S ;D)>∆ + ∆>∇2`(w∗i,S + θ∆;D)∆ + λM (||w∗i,S + ∆||1 − ||w∗i,S ||1) , (29)

for some θ ∈ [0, 1]. We lower bound F (∆) by bounding each term on the right side of (29).

We let B = OλM
√
d where we will choose O > 0 later. From Cauchy-Schwartz inequality,

∇`i(w∗i,S ;D)>∆ ≥ −||∇`i(w∗i,S ;D)||∞||∆||1 (30)

≥ −||∇`i(w∗i,S ;D)||∞
√
d||∆||2 (31)

≥ −(λM
√
d)2O

4
, (32)

where in the last inequality we have used ||∆||2 = B = OλM
√
d, and

−||∇`i(w∗i,S ;D)||∞ ≥ −||∇`i(w∗i ;D)||∞ = − || − ∇`i(w∗i ;D)||∞ = − ||GMi ||∞ ≥ − λM
4

by our assumption on ||GMi ||∞ in the lemma statement. Next, by triangle inequality, we have

λM (||w∗i,S + ∆||1 − ||w∗i,S ||1) ≥ − λM ||∆||1 ≥ − λM
√
d||∆||2 ≥ − (λM

√
d)2O . (33)
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We now bound the quantity ∆>∇2`(w∗i,S + θ∆;D)∆. We note that

∆>∇2`(w∗i,S + θ∆;D)∆ ≥ min
||∆̃||2=B

∆̃>∇2`(w∗i,S + θ∆;D)∆̃

≥ min
θ̃∈[0,1]

B2Λmin(∇2`(w∗i,S + θ̃∆;D))

= B2 min
θ̃∈[0,1]

Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S + θ̃∆;m) Φ

(m)
−i Φ

(m)>

−i

)
.

Applying Taylor’s series expansion, we note that ∆>∇2`(w∗i,S + θ∆;D)∆

≥ B2Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S ;m)Φ

(m)
−i Φ

(m)>

−i

)

− B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= B2Λmin(H∗Mi,SS)−B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

= B2α2Cmin −B2 max
θ̃∈[0,1]

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ 1

M

M∑
m=1

η′i(w
∗
i,S + θ∆;m)(Φ

(m)>

−i θ̃∆) Φ
(m)
−i Φ

(m)>

−i

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

.

Now, a simple calculation shows that |η′i(·)| ≤ α3. Moreover, we note for θ̃ ∈ [0, 1],

|Φ(m)>

−i θ̃∆| ≤ ||Φ(m)
−i ||∞||θ̃∆||1 ≤ ||Φ

(m)
−i ||∞||∆||1 ≤ ||∆||1 ≤

√
d||∆||2 = OλMd .

Putting all these facts together, along with our assumption (19), we get

∆>∇2`(w∗i,S + θ∆;D)∆ ≥ B2α2Cmin −B2α3(OλMd)Cmax ≥ B2α2Cmin

2
(34)

when λM ≤
Cmin

2αCmaxOd
. Therefore, plugging the lower bounds from (30), (33), and (34) in (29),

F (∆) ≥ λ2
Md

(
−O

4
−O +

O2α2Cmin

2

)
> 0 ,

for O =
5

α2Cmin
. Thus, for λM ≤ Cmin

2αCmaxOd
=

αC2
min

10Cmaxd
, we must have

||ŵi,S − w∗i,S ||2 ≤ B = OλM
√
d =

5

α2Cmin
λM
√
d .

Lemma 3. Let λMd ≤
αC2

min

100Cmax

γ

2− γ
and ||GMi ||∞ ≤

λM
4

. Then,

||RMi ||∞
λM

≤ 25Cmax

αC2
min

λMd ≤
1

4

(
γ

2− γ

)
≤ γ

4
.
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Proof. We have for j ∈ [n] \ {i} and some w(j)
i = tjŵi + (1− tj)w∗i , tj ∈ [0, 1],

RMi,j =
(
∇2`i(w

(j)
i ;D)−∇2`i(w

∗
i ;D)

)>
j

(ŵi − w∗i )

=
1

M

M∑
m=1

((
ηi(w

(j)
i ;m)− ηi(w∗i ;m)

)
Φ

(m)
−i Φ

(m)>

−i

)>
j

(ŵi − w∗i )

=
1

M

M∑
m=1

(
η′i(w

(j)
i ;m)

(
Φ

(m)>

−i (w
(j)
i − w

∗
i )
)

Φ
(m)
−i Φ

(m)>

−i

)>
j

(ŵi − w∗i ) ,

where w(j)
i is a point on the line between w(j)

i and w∗i , by the mean value theorem. We note that(
Φ

(m)
−i Φ

(m)>

−i

)>
j

= φ
(m)
j Φ

(m)>

−i .

We thus write

RMi,j =
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j

(
(w

(j)
i − w

∗
i )>Φ

(m)
−i

)
Φ

(m)>

−i (ŵi − w∗i )

=
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j

(
(w

(j)
i − w

∗
i )>Φ

(m)
−i Φ

(m)>

−i (ŵi − w∗i )
)

=
1

M

M∑
m=1

η′i(w
(j)
i ;m)φ

(m)
j︸ ︷︷ ︸

p(m)

(
tj(ŵi − w∗i )>Φ

(m)
−i Φ

(m)>

−i (ŵi − w∗i )
)

︸ ︷︷ ︸
q(m)

,

which is of the form
1

M
p>q, where p, q ∈ RM . Thus, we have by Cauchy-Schwartz inequality,

|RMi,j | =
1

M
|p>q| ≤ 1

M
||p||∞||q||1 .

It can be shown that p(m) = α3σ
(m)
i (1− σ(m)

i )(1− 2σ
(m)
i ), whereby ||p||∞ ≤ α3.

Finally, we see that q(m) = tj

∣∣∣∣∣∣Φ(m)>

−i (ŵi − w∗i )
∣∣∣∣∣∣2

2
≥ 0 since tj ∈ [0, 1]. Therefore ||q||1 = q>1, where 1 ∈ RM is a

vector of all ones. Moreover, since ŵi,Sc = w∗i,Sc = 0, we note that

1

M
||q||1 = tj(ŵi − w∗i )>

(
1

M

M∑
m=1

Φ
(m)
−i Φ

(m)>

−i

)
(ŵi − w∗i )

= tj(ŵi,S − w∗i,S)>

(
1

M

M∑
m=1

Φ
(m)
−i,SΦ

(m)>

−i,S

)
(ŵi,S − w∗i,S)

≤ Cmax

∣∣∣∣ŵi,S − w∗i,S∣∣∣∣22 .
Since γ ∈ (0, 1], so

λMd ≤
αC2

min

100Cmax

γ

2− γ
≤ αC2

min

100Cmax
≤ αC2

min

10Cmax
.

Therefore, we can invoke Lemma 2 when ||GMi ||∞ ≤
λM
4

. Specifically, we then have for each j,

|RMi,j | ≤ α3Cmax

∣∣∣∣ŵi,S − w∗i,S∣∣∣∣22 ≤ α3Cmax

(
5

α2Cmin
λM
√
d

)2

=
25Cmax

αC2
min

λ2
Md .

This immediately yields
||RMi ||∞
λM

≤ 25Cmax

αC2
min

λMd .
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We are now ready to prove our main result.

Theorem 1. Let M >
802C2

max

C4
min

(
2− γ
γ

)4

d2 log(n), and λM ≥
8α(2− γ)

γ

√
log(n)

M
. Suppose the sample satisfies

assumptions (18), (19), and (20). Define Cα,γ =
γ2

32α2(2− γ)2
. Consider any player i ∈ [n]. The following results hold

with probability at least 1− 2 exp(−Cα,γλ2
MM)→ 1 for i.

1. The corresponding L1-regularized optimization problem has a unique solution, i.e., a unique set of neighbors for i.

2. The set of predicted neighbors of i is a subset of the true neighbors. Additionally, the predicted set contains all true

neighbors j for which |w∗ij | ≥
10

α2Cmin

√
dλM . In particular, the set of true neighbors of i is exactly recovered if

min
j∈Si

|w∗ij | ≥
10

α2Cmin

√
dλM .

Taking a union bound over players, our results imply that we recover the true signed neighborhoods for all players in the
game with probability at least 1− 2n exp(−Cα,γλ2

MM) .

Proof. Since λM ≥
8α(2− γ)

γ

√
log(n)

M
, Lemma 1 holds. Thus, with high probability (as stated in the theorem statement),

we obtain
||GMi ||∞ ≤

λM
4

γ

2− γ
≤ γλM

4
≤ λ

4
, (35)

since γ ∈ (0, 1]. Moreover, for the specified lower bound on sample size M , a simple computation shows

λMd ≤
αC2

min

10Cmax

γ

2− γ
. (36)

Thus the conditions required for both Lemma 2 and Lemma 3 are satisfied. By our primal-dual construction, ŵi,Sc = 0.
Furthermore, using (18), Λmin(H∗Mi,SS) > 0, and so H∗Mi,SS is invertible. Separating the rows in the support of i and others,
we write (28) as

H∗Mi,ScS(ŵiS − w∗iS) = GMi,Sc − λM κ̂i,Sc −RMi,Sc

H∗Mi,SS(ŵiS − w∗iS) = GMi,S − λM κ̂i,S −RMi,S .

These two equations can be combined into one as

H∗Mi,ScS(H∗Mi,SS)−1
(
GMi,S − λM κ̂i,S −RMi,S

)
= GMi,Sc − λM κ̂i,Sc −RMi,Sc .

Recalling that ||κ̂i,S ||∞ < 1, we immediately get that λM ||κ̂i,Sc ||∞

≤
∣∣∣∣∣∣H∗Mi,ScS(H∗Mi,SS)−1

∣∣∣∣∣∣
∞

(
||GMi,S ||∞ + ||RMi,S ||∞ + λM

)
+ ||GMi,Sc ||∞ + ||RMi,Sc ||∞

≤ (1− γ)
(
||GMi,S ||∞ + ||RMi,S ||∞ + λM

)
+ ||GMi,Sc ||∞ + ||RMi,Sc ||∞

≤ (1− γ)λM + ||GMi ||∞ + ||RMi ||∞
≤ λM

(
1− γ +

γ

4
+
γ

4

)
= λM

(
1− γ

2

)
.

Since γ ∈ (0, 1] and λM > 0, we immediately get ||κ̂i,Sc ||∞ < 1. Therefore, strict dual feasibility is established and (23)
is verified. Then, using Lemma 1 of (Ravikumar et al., 2010), we note that any optimal solution w̃i of (21) must have
w̃i,Sc = 0. In particular, we have ŵi,Sc = 0 as desired. Thus, we can focus on ŵi,S . We now prove uniqueness of ŵi by

showing that Λmin

(
ĤM
i,SS

)
> 0. Let ∆ = ŵi,S − w∗i,S ∈ Rd. Then, using Lemma 2, we have

||∆||2 ≤
5

α2Cmin
λM
√
d .
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Note that

Λmin

(
ĤM
i,SS

)
= Λmin

(
1

M

M∑
m=1

ηi(ŵi;m) Φ
(m)
−i,SΦ

(m)>

−i,S

)

= Λmin

(
1

M

M∑
m=1

ηi(ŵi,S ;m) Φ
(m)
−i,SΦ

(m)>

−i,S

)

= Λmin

(
1

M

M∑
m=1

ηi(w
∗
i,S + ∆;m) Φ

(m)
−i,SΦ

(m)>

−i,S

)
.

Performing a Taylor expansion around w∗i,S , and making arguments similar to the proof segment between (33) and (34) in
Lemma 2, we can show that

Λmin

(
ĤM
i,SS

)
≥ α2Cmin − α3

√
d||∆||2Cmax

≥ α2Cmin −
(

5αCmax

Cmin

)
λMd

≥ α2Cmin − α2Cmin

2

γ

2− γ

≥ α2Cmin

2
,

which is greater than 0. Therefore, ĤM
i,SS is positive definite, and Lemma 1 of (Ravikumar et al., 2010) guarantees that ŵi is

the unique optimal primal solution for (21).

We finally argue about the only remaining condition (24). In order for neighbor j to be correctly recovered with sign, i.e.,
sign(ŵij) = sign(w∗ij), it suffices to have

|ŵij − w∗ij | ≤
|w∗ij |

2
. (37)

Moreover to recover the neighborhood of i exactly, it is sufficient to show

min
j∈Si

|w∗ij | ≥ 2||ŵi,S − w∗i,S ||∞ , (38)

which implies (37). We note that

||ŵi,S − w∗i,S ||∞ ≤ ||ŵi,S − w∗i,S ||2 ≤
5

α2Cmin
λM
√
d .

Using (38), it immediately follows that the neighborhood of i is recovered with correct sign if

min
j∈Si

|w∗ij | ≥
10

α2Cmin
λM
√
d .

B. General game dynamics and convergence
In this section we provide an in-depth look at the game dynamics along with associated convergence guarantees.

Recall that in of our protocols, players take actions stochastically according to σki and the best response mapping gi is unique
for each k. Assuming that the error sequence in updating {σki } is a martingale, our updates satisfy the conditions outlined in
(section 2.1 of (Borkar, 2008)) and we can analyze the stochastic evolution of each setting as a noisy discretization of a
limiting ordinary differential equation (ODE). In particular, Lipschitz condition is satisfied since gi and hi are both Lipschitz
continuous, step size condition is fulfilled since the sequence bk−1 = 1/k satisfies

∑
k b

k−1 =∞ and
∑
k(bk−1)2 <∞,
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(SAP-FP/AA) q̇i = βτi (Ai(q−i + γṙ−i), zi)− qi, ṙi = λ(qi − ri) (39)
(SAP-FP/ PA) q̇i = βτi (Ai(q−i) + γṙi, zi)− qi, ṙi = λ(Ai(q−i)− ri) (40)
(SAP-GP/AA) q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi, ṙi = λ(qi − ri) (41)
(SAP-GP/PA) q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi, ṙi = λ(Ai(q−i)− ri) (42)

and our iterates remain bounded since they remain confined to ∆(A). Thus, we can investigate the conditions under which
the fixed points of the limiting ODE are locally asymptotically stable (l.a.s.), and as a consequence, our discrete updates
would converge to a Nash equilibrium with positive probability (Shamma and Arslan, 2005). An equilibrium point s is said
to be l.a.s. if every ODE trajectory that starts at a point in a small neighborhood of s remains forever in that neighborhood
and eventually converges to s.

Our updates in (9) lead to the implicit ODEs (39)-(42) for SAP-FP and SAP-GP under AA and PA settings, where λ > 0, ṙi
is an estimate for q̇i, and ṙ−i , {ṙj |j 6= i, wij 6= 0}. We will call a matrix stable if all its eigenvalues have strictly negative
real parts. Let I denote the identity matrix. We now state results that characterize conditions under which different dynamics
lead to asymptotically stable equilibria.

Theorem 2. (SAP-FP/AA convergence to NE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a NE under the dynamics in (39). There

exists a matrix D such that the linearization of (39) with γ > 0 is l.a.s. for λ > 0 if and only if the following matrix is stable[
−I + (1 + γλ)D −γλD

λI −λI

]
.

Theorem 3. (SAP-FP/PA convergence to NE) Let the weight matrix W be stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a

NE under the dynamics in (40). There exists a matrix D1 with zero diagonal, and a block diagonal matrix D2 such that the
linearization of (40) with γ > 0 is l.a.s. for λ > 0 if and only if if the following matrix is stable[

−I + (1 + γλ)D1 −γλD2

λW −λI

]
.

Theorem 4. (SAP-GP/AA convergence to CMNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a completely mixed NE under the

dynamics in (41). Then the linearization of (41) with γ > 0 is l.a.s. for λ > 0 if and only if the following matrix is stable[
(1 + γλ)W −γλW

λI −λI

]
.

Theorem 5. (SAP-GP/AA convergence to SNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a strict NE under the dynamics in (41).

The associated equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i) is l.a.s. for any γ > 0 and λ > 0.

Theorem 6. (SAP-GP/PA convergence to CMNE) Let the weight matrix W be stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn)

be a completely mixed NE under the dynamics in (42). Then the linearization of (42) with γ > 0 is l.a.s. for λ > 0 if and
only if the following matrix is stable [

(1 + γλ)W −γλW
λW −λI

]
.

Theorem 7. (SAP-GP/PA convergence to SNE) Let the weight matrixW be doubly stochastic. Let (q∗1 , . . . , q
∗
n, z1, . . . , zn)

be a strict NE under the dynamics in (42). The equilibrium point (qi = q∗i , ri = Ai(q
∗
−i))i∈[n] is l.a.s. for sufficiently small

γλ, where γ > 0 and λ > 0.

We now provide some insight into our proof techniques. We follow the general proof structure of (Shamma and Arslan,
2005). Specifically, we prove convergence to SNE via carefully crafted Lyapunov functions V that are locally positive
definite and have a locally negative semidefinite time derivative, and thus satisfy the Lyapunov stability criterion. The other
proofs track the evolution of game dynamics around an equilibrium, where q̇i = 0 and ṙi = 0. Specifically, we analyze
conditions under which the Jacobian matrix of the linearization is Hurwitz stable, i.e., all the eigenvalues have negative
real roots, and exploit the fact that the behavior of the ODE near equilibrium is same as its linear approximation when the
real parts of all eigenvalues are non-zero. Our discrete updates would then converge to a Nash equilibrium with positive
probability (Shamma and Arslan, 2005).
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Recall that AA reveals more information about the evolution of neighbors’ strategy. As a result, the PA settings, i.e. (40) and
(42), require additional subtle reasoning since at equilibrium r∗i converges only to Ai(q∗−i) and not to q∗i . Since qi evolves
within ∆(A), stochasticity assumptions are required to ensure ri stays within the probability simplex as well. Note that the
SAP-FP updates to strategies are smooth due to the entropy term (since τ > 0), unlike SAP-GP. Consequently, the results
for SAP-GP require a separate treatment of completely mixed NE and strict NE, unlike SAP-FP where they can be analyzed
without distinction. Note that τ > 0 ensures that best response is a singleton set and therefore we could leverage the ODE
formulations. Differential inclusions (Benaïm et al., 2005; 2006) could possibly be used to handle τ = 0.

We now provide detailed proofs on convergence of dynamics. We restructure the theorem statements to have the results for
the active aggregator setting precede those for the passive aggregator setting. We use AA1, AA2 etc. to indicate that the
result pertains to convergence in an active aggregator setting. Likewise, we will use PA1 etc. for the passive aggregator
setting. We start with the active aggregator.

Theorem AA1. (Convergence under SAP-FP/AA to NE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a NE under the dynamics in

(39). There exists a matrix D such that the linearization of (39) with γ > 0 is locally asymptotically stable for λ > 0 if and
only if the following matrix is stable [

−I + (1 + γλ)D −γλD
λI −λI

]
.

Proof. Since τ > 0, best response is a singleton set, and the unique best response σ∗i can be obtained by setting the gradients
of the payoff functions to 0. In particular, we have the best response

βτi (Ai(σ−i), zi) = ζ

(∑
j 6=i wijσj − zi

τ

)
= ζ

(
Ai(σ−i)− zi

τ

)
, (43)

where ζ is the softmax function with output coordinate ` given by

(ζ(x))` = exp(x`)

/∑
k

exp(xk).

Now recall from (39) that we have the following ODE:

q̇i = βτi (Ai(q−i + γṙ−i), z
∗
i )− qi︸ ︷︷ ︸

,Fi(qi,q−i,r−i)

(44)

ṙi = λ(qi − ri). (45)

Since βτi maps it input to the simplex ∆(A), we note that the right side of (44) is a difference between two probability
distributions. Therefore this difference must sum to zero. Moreover, since |A| = m, we have m− 1 degrees of freedom that
can be used to express this difference. Therefore, we can investigate the evolution of qi via a matrix N ∈ Rm×(m−1) of
(m− 1) orthonormal columns such that

N>N = Im−1, and 1>mN = 0m−1,

where Im−1 is the identity matrix of order m− 1, and 1m and 0m are m-dimensional vectors with all coordinates set to 1
and 0 respectively. We will sometimes omit the subscripts for Im, 1m, and 0m when the size will be clear from the context.
The equilibrium (q∗i , q

∗
−i) corresponds to a point (qi(t) = q∗i , q−i(t) = q∗−i, ri(t) = q∗i , r−i(t) = q∗−i) of the dynamics. It

will be convenient to investigate the dynamics as the evolution of deviations around this point. Since qi is confined to ∆(A),
we can express

qi(t) = q∗i +Nδxqi(t),

where δxqi(t) ∈ Rm−1 is uniquely specified, and likewise ri = q∗i + δxri(t) for some δxri(t). Thus, we can define a block
diagonal matrix N ∈ R2nm×2n(m−1), with each diagonal block set to N and all other elements set to 0, such that

(q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)− q∗1 , . . . , rn(t)− q∗n)> = N δx(t) , (46)

where
δx(t) = (δxq1(t), . . . , δxqn(t), δxr1(t), . . . , δxrn(t))> ∈ R2n(m−1)
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is formed by stacking together the deviations at time t in a column vector. Then, the following is immediate from (46):

N>(q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)− q∗1 , . . . , rn(t)− q∗n)> = N>N δx(t) = δx(t). (47)

Denote the Jacobian matrix obtained by taking derivatives of vector y with respect to vector x by Jxy. We will linearize
q̇i = Fi(qi, q−i, r−i) in (44) around , (q∗1 , q

∗
−1, q

∗
1 , q
∗
−1) using first order Taylor series. Then, since q̇∗i = 0, we note from

(44) and (47) that
δ̇xqi = N>(q̇i − q̇∗i ) = N>q̇i(t) = N>Fi(qi, q−i, r−i). (48)

Now, at equilibrium, we have q̇i = 0 for all i ∈ [n], and therefore we have from (44) that

Fi(q
∗
i , q
∗
−i, r

∗
−i) = 0m.

Let diag(b) be a diagonal matrix with vector b on the diagonal and all other elements set to 0. Ignoring the second order and
higher terms, we therefore have by the Taylor series approximation that

Fi(qi, q−i, r−i)

≈
n∑
k=1

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

(qk − q∗k) +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

(rk − q∗k)

=

n∑
k=1

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

Nδxqk +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

Nδxrk

= −Nδxqi +
∑
k 6=i

JqkFi(qk, q
∗
−k, q

∗
−k)

∣∣∣∣
qk=q∗k

Nδxqk +
∑
k 6=i

JrkFi(q
∗
k, q
∗
−k, q

∗
−ki, rk)

∣∣∣∣
rk=q∗k

Nδxrk

= −Nδxqi + (1 + γλ)
∑
k 6=i

D̃ikNδxqk − γλ
∑
k 6=i

D̃ikNδxrk ,

where D̃ik ,
wik
τ
∇ζ
(
Ai(q

∗
−i)− zi
τ

)
, and ∇ζ(b) , diag(ζ(b))− ζ(b)ζ>(b) .

Define Dik = N>D̃ikN . Since N>N = Im−1, it follows immediately from (48) that

δ̇xqi = −δxqi + (1 + γλ)
∑
k 6=i

Dikδxqk − γλ
∑
k 6=i

Dikδxrk . (49)

Linearizing (45), we see that the Taylor approximation results in

δ̇xri = λ(δxqi − δxri). (50)

We define

D =


0 D12 D13 . . . D1n

D21 0 D23 . . . D2n

...
...

...
. . .

...
Dn1 Dn2 Dn3 . . . 0

 .
Combining (49) and (50) together, we can write

δ̇x =

[
−I + (1 + γλ)D −γλD

λI −λI

]
δx.

The statement of the theorem now follows immediately from the Hurwitz stability criterion.
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Theorem AA2. (Convergence under SAP-GP/AA to CMNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a completely mixed NE

under the dynamics in (41). Then the linearization of (41) with γ > 0 is locally asymptotically stable for λ > 0 if and only
if the following matrix is stable [

(1 + γλ)W −γλW
λI −λI

]
.

Proof. Recall the ODE from (41):

q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi (51)
ṙi = λ(qi − ri). (52)

At equilibrium (q∗1 , . . . , q
∗
n, z1, . . . , zn), q̇i = 0 and ṙi = 0. Therefore, using (56), we have:

q∗i = Π∆[q∗i +Ai(q∗−i)− zi].

Since the equilibrium is completely mixed, q∗i is in the interior of ∆(A). We invoke Lemma 4.1 in (Shamma and Arslan,
2005) to get the following:

NN>(Ai(q∗−i)− zi) = 0 (53)

Π∆[q∗i +Ai(q∗−i)− zi + δy]− q∗i = NN>
(
Ai(q∗−i) − zi + δy

)
,

for δy sufficiently small, and N as defined in the proof of Theorem AA1. Then, for a sufficiently small deviation δx, where
δx is as defined in Theorem 1, we get the following dynamics:

q̇i = NN>[Ai(q−i + γṙ−i)− zi] (54)
ṙi = λ(qi − ri). (55)

Linearizing these equations and noting that N>N = I , we get

δ̇xqi = N>

NN>(1 + γλ)
∑
k 6=i

wikNδxqk

 − N>

NN>γλ∑
k 6=i

wikNδxrk


= (1 + γλ)N>

∑
k 6=i

wikNδxqk − γλN>
∑
k 6=i

wikNδxrk

= (1 + γλ)
∑
k 6=i

wikδxqk − γλ
∑
k 6=i

wikδxrk ,

and
δ̇xri = λ(δxqi − δxri).

It follows immediately that

δ̇x =

[
(1 + γλ)W −γλW

λI −λI

]
δx,

where the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .

Theorem AA3. (Convergence under SAP-GP/AA to SNE) Let (q∗1 , . . . , q
∗
n, z1, . . . , zn) be a strict NE under the dynamics

in (41). The associated equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i) is locally asymptotically stable for any
γ > 0 and λ > 0.
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Proof. Recall the ODE from (41):

q̇i = Π∆[qi +Ai(q−i + γṙ−i)− zi]− qi (56)
ṙi = λ(qi − ri). (57)

To prove the local asymptotic stability of the ODE dynamics, we will define a Lyapunov function V that is locally positive
definite and has locally negative semi-definite time derivative. Consider

V(qi, q−i, ri, r−i)

,
1

2

n∑
i=1

(
(qi − q∗i )>(qi − q∗i ) + λ(ri − qi)>(ri − qi)

)
. (58)

We define the shorthand di , qi +Ai(q−i + γṙ−i)− zi. Applying the chain rule, we see that the time derivative of V ,

V̇ =

n∑
i=1

(
∂V
∂qi

)>
q̇i +

n∑
i=1

(
∂V
∂ri

)>
ṙi

=

n∑
i=1

[(qi − q∗i ) + λ(qi − ri)]> q̇i − λ2
n∑
i=1

(ri − qi)>(ri − qi)

=

n∑
i=1

(qi − q∗i )>q̇i + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2

=

n∑
i=1

(qi − q∗i )>Π∆(di)−
n∑
i=1

(qi − q∗i )>qi + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2.

Also, we note that

n∑
i=1

||q̇i||2 =

n∑
i=1

||Π∆(di)− qi||2

=

n∑
i=1

||Π∆(di)||2 +

n∑
i=1

q>i qi − 2

n∑
i=1

q>i Π∆(di).

This immediately implies

V̇ +

n∑
i=1

||q̇i||2 =

n∑
i=1

(Π∆(di)− q∗i )
>

(Π∆(di)− qi)︸ ︷︷ ︸
(B)

+ λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2. (59)

Consider (B) = (Π∆(di)− q∗i )
>

(Π∆(di)− qi). Since ∆(A) is a convex set, the projection property implies

[Π∆(di)]
> (Π∆(di)− qi) ≤ d>i (Π∆(di)− qi) ,

whence we note

(B) = (Π∆(di)− q∗i )
>

(Π∆(di)− qi)
= [Π∆(di)]

> (Π∆(di)− qi)− (Π∆(di)− qi)> q∗i
≤ d>i (Π∆(di)− qi)− (Π∆(di)− qi)> q∗i
= (di − q∗i )> (Π∆(di)− qi)
= (qi +Ai(q−i + γṙ−i)− zi − q∗i )> (Π∆(di)− qi) .
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Now, we note from the definition of V in (58) that by decreasing the distances (qi − ri) and (qi − q∗i ), we can make
V(qi, q−i, ri, r−i) arbitrarily close to 0 from the right. In other words, we can consider a sufficiently small neighborhood
around the equilibrium such that as ri, qi → q∗i , (B) tends to

(q∗i +Ai(q∗−i + δy)− zi − q∗i )> (Π∆(di)− q∗i )

= (Ai(q∗−i + δy)− zi)> (Π∆(di)− q∗i ) ,

= (Π∆(di)− q∗i )
> ∂Ui(qi, q

∗
−i + δy, zi)

∂qi

∣∣∣∣
qi=q∗i

< 0

for some sufficiently small δy and Π∆(di) 6= q∗i . The last inequality follows since (q∗1 , . . . , q
∗
n, z1, . . . , zn) is a strict Nash

equilibrium, whereby (a) (q∗i , q
∗
−i) is a pure strategy Nash equilibrium (since Ai(·) is a linear transformation and the payoff

maximization happens at the vertex), and (b) q∗i is a (strictly) best response to q∗−i and nearby strategies. Therefore, we see
from (59) that for a sufficiently small neighborhood around the equilibrium point,

V̇ ≤ −
n∑
i=1

||q̇i||2 + λ

n∑
i=1

(qi − ri)>q̇i − λ2
n∑
i=1

||ri − qi||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
+ λ

n∑
i=1

(qi − ri)>q̇i

≤ −
n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
+

1

2

n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
= − 1

2

n∑
i=1

(
||q̇i||2 + λ2||ri − qi||2

)
,

where we have invoked the Cauchy-Schwarz inequality in the penultimate line. Since this quantity is non-positive, we
see that V̇ is locally negative semi-definite. Finally, it is clear from (58) that V(qi, q−i, ri, r−i) > 0 in the neighborhood
(qi, q−i, ri, r−i) of the equilibrium point (qi = q∗i , q−i = q∗−i, ri = q∗i , r−i = q∗−i), and V(q∗i , q

∗
−i, q

∗
i , q
∗
−i) = 0. Thus, V is

locally positive definite, and the statement of the theorem follows.

We will now characterize conditions for convergence in the passive aggregator setting.
Theorem PA1. (Convergence under SAP-FP/PA to NE) Let the weight matrix W be stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a NE under the dynamics in (40). There exists a matrix D1 with zero diagonal, and a block

diagonal matrix D2 such that the linearization of (40) with γ > 0 is locally asymptotically stable for λ > 0 if and only if if
the following matrix is stable [

−I + (1 + γλ)D1 −γλD2

λW −λI

]
.

Proof. We reproduce the ODE from (40):

q̇i = βτi (Ai(q−i) + γṙi), zi)− qi (60)
ṙi = λ(Ai(q−i)− ri). (61)

Note that at equilibrium ṙi = 0, but unlike Theorem AA1, ri does not converge to q∗i . Specifically, we note that the
equilibrium (q∗i , q

∗
−i) corresponds to a point (qi(t) = q∗i , q−i(t) = q∗−i, ri(t) = Ai(q∗−i)), i ∈ [n], of the dynamics.

Therefore, we will instead linearize around this point. Since the weight matrix W is stochastic, we must have Ai(q∗−i) ∈
∆(A). Therefore, we can investigate the deviation of ri around Ai(q∗−i) with the help of matrix N defined in Theorem AA1.
In particular, we can express the deviation vector δx = (δxq1 , . . . , δxqn , δxr1 , . . . , δxrn)> as:(

q1(t)− q∗1 , . . . , qn(t)− q∗n, r1(t)−A1(q∗−1), . . . , rn(t)−An(q∗−n)

)>
= N δx(t), (62)

where the block diagonal matrixN is as defined in Theorem AA1. Linearizing around our equilibrium point and proceeding
similarly to Theorem AA1, we get

δ̇xqi = −δxqi + (1 + γλ)
∑
k 6=i

Dikδxqk − γλCiδxri . (63)
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where

Dik ,
wik
τ
N>∇ζ

(
Ai(q

∗
−i)− zi
τ

)
N,

Ci ,
1

τ
N>∇ζ

(
Ai(q

∗
−i)− zi
τ

)
N,

and
∇ζ(b) , diag(ζ(b))− ζ(b)ζ>(b),

with ζ(b) the same as in Theorem AA1. Additionally, we have

δ̇xri = λ
∑
k 6=i

wikδxqi − λδxri . (64)

Recall that the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .
Define

D1 ,


0 D12 D13 . . . D1n

D21 0 D23 . . . D2n

...
...

...
. . .

...
Dn1 Dn2 Dn3 . . . 0

 , and

D2 ,


C1 0 0 . . . 0
0 C2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Cn

 .
Then, the proof follows by combining (63) and (64), since we can express the deviations as

δ̇x =

[
−I + (1 + γλ)D1 −γλD2

λW −λI

]
δx.

Theorem PA2. (Convergence under SAP-GP/PA to CMNE) Let the weight matrix W be stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a completely mixed NE under the dynamics in (42). Then the linearization of (42) with γ > 0 is

locally asymptotically stable for λ > 0 if and only if the following matrix is stable[
(1 + γλ)W −γλW

λW −λI

]
.

Proof. Recall the ODE from (42):

q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi (65)
ṙi = λ(Ai(q−i)− ri). (66)

At equilibrium (q∗1 , . . . , q
∗
n, z1, . . . , zn), q̇i = 0 and ṙi = 0. Therefore, using (65), we have:

q∗i = Π∆[q∗i +Ai(q∗−i)− zi].

Proceeding along the lines of proof of Theorem AA2, for a sufficiently small deviation δx as defined in Theorem PA1, we
can equivalently analyze the following dynamics:

q̇i = NN>[Ai(q−i) + γṙ−i − zi]
ṙi = λ(qi − ri).
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Linearizing these equations and noting N>N = I , we get

δ̇xqi = N>

NN>(1 + γλ)
∑
k 6=i

wikNδxqk

 − N>

NN>γλ∑
k 6=i

Nδxrk


= (1 + γλ)N>

∑
k 6=i

wikNδxqk − γλN>
∑
k 6=i

wikNδxrk

= (1 + γλ)
∑
k 6=i

wikδxqk − γλ
∑
k 6=i

wikδxrk ,

and
δ̇xri = λ

∑
k 6=i

wikδxqi − λδxri .

It follows immediately that

δ̇x =

[
(1 + γλ)W −γλW

λW −λI

]
δx,

where the weight matrix

W =


0 w12 w13 . . . w1n

w21 0 w23 . . . w2n

...
...

...
. . .

...
wn1 wn2 wn3 . . . 0

 .

Theorem PA3. (Convergence under SAP-GP/PA to SNE) Let the weight matrix W be doubly stochastic. Let
(q∗1 , . . . , q

∗
n, z1, . . . , zn) be a strict NE under the dynamics in (42). The associated equilibrium point (qi = q∗i , ri =

Ai(q
∗
−i))i∈[n] is locally asymptotically stable for sufficiently small γλ, where γ > 0 and λ > 0.

Proof. Recall the ODE from (42):

q̇i = Π∆[qi +Ai(q−i) + γṙi − zi]− qi
ṙi = λ(Ai(q−i)− ri).

We will prove local asymptotic stability via a Lyapunov function V that is locally positive definite and has locally negative
semi-definite time derivative. Consider

V(qi, q−i, ri, r−i) ,
1

2

n∑
i=1

(
(qi − q∗i )>(qi − q∗i ) + λ (ri −Ai(q−i))> (ri −Ai(q−i))

)
. (67)

We define the shorthand d̃i , qi +Ai(q−i) + γṙi − zi. Applying the chain rule, we see that the time derivative of V ,

V̇ =

n∑
i=1

(
∂V
∂qi

)>
q̇i +

n∑
i=1

(
∂V
∂ri

)>
ṙi

=

n∑
i=1

(qi − q∗i )− λ
∑
k 6=i

wki(rk −Ak (q−k))

> q̇i − λ2
n∑
i=1

(ri −Ai(q−i))> (ri −Ai(q−i)))

=

n∑
i=1

(qi − q∗i )>q̇i − λ2
n∑
i=1

||ri −Ai(q−i)||2 − λ

n∑
i=1

∑
k 6=i

wki(rk −Ak (q−k))

> q̇i .



Predicting deliberative outcomes

Also, we note that

n∑
i=1

||q̇i||2 =

n∑
i=1

||Π∆(d̃i)− qi||2

=

n∑
i=1

||Π∆(d̃i)||2 +

n∑
i=1

q>i qi − 2

n∑
i=1

q>i Π∆(d̃i).

It can be shown that

(qi − q∗i )>q̇i + ||q̇i||2 = (Π∆(d̃i)− q∗i )>(Π∆(d̃i)− qi)
≤ (d̃i − q∗i )>(Π∆(d̃i)− qi)
= (qi +Ai(q−i) + γṙi − zi − q∗i )>(Π∆(d̃i)− qi) .

As ri, qi → q∗i , this quantity tends to(
q∗i +Ai(q∗−i) + γλ(Ai(q∗−i)− q∗i )− zi − q∗i

)> (
Π∆(d̃i)− q∗i

)
=

(
Ai(q∗−i) + γλ(Ai(q∗−i)− q∗i )− zi

)> (
Π∆(d̃i)− q∗i

)
=

(
(1 + γλ)Ai(q∗−i)− γλq∗i − zi

)> (
Π∆(d̃i)− q∗i

)
=

(
Ai((1 + γλ)q∗−i)− γλq∗i − zi

)> (
Π∆(d̃i)− q∗i

)
which can be expressed in the form(

Π∆(d̃i)− q∗i
)> ∂Ui(qi, q∗−i + δy, zi)

∂qi

∣∣∣∣
qi=q∗i

< 0

when γλ is sufficiently small and Π∆(d̃i) 6= q∗i , by arguing along the lines of proof for Theorem AA3. Therefore,

V̇ ≤ −
n∑
i=1

||q̇i||2 + λ

n∑
i=1

∑
k 6=i

wki(Ak (q−k)− rk)

> q̇i − λ2
n∑
i=1

||ri −Ai(q−i)||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

n∑
i=1

∑
k 6=i

wki

(
λ(Ak (q−k)− rk)

>
q̇i

)
≤ −

n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

1

2

n∑
i=1

∑
k 6=i

wki
(
λ2||rk −Ak(q−k)||2 + ||q̇i||2

)
by noting that wki ≥ 0 for all i ∈ [n], k 6= i and invoking Cauchy-Schwarz. Furthermore, since W is doubly stochastic, we
have

∑
k 6=i wki = 1 and

∑
k 6=i wik = 1 for all i ∈ [n]. Thus, we may decompose the second term on the right in the last

equation as

1

2

n∑
i=1

∑
k 6=i

wki
(
λ2||rk −Ak(q−k)||2 + ||q̇i||2

)
=

λ2

2

n∑
i=1

∑
k 6=i

wki||rk −Ak(q−k)||2 +
1

2

n∑
i=1

||q̇i||2
∑
k 6=i

wki

=
λ2

2

n∑
i=1

∑
k 6=i

wki||rk −Ak(q−k)||2 +
1

2

n∑
i=1

||q̇i||2.
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The first term in the last equation may be interpreted as a weighted outgoing flow from player i to player k 6= i. Now
viewing this from the equivalent perspective of total incoming flow, we have

V̇ ≤ −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

λ2

2

n∑
i=1

∑
k 6=i

wik||ri −Ai(q−i)||2 +
1

2

n∑
i=1

||q̇i||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

λ2

2

n∑
i=1

||ri −Ai(q−i)||2
∑
k 6=i

wik +
1

2

n∑
i=1

||q̇i||2

= −
n∑
i=1

(
||q̇i||2 + λ2||ri −Ai(q−i)||2

)
+

1

2

n∑
i=1

(
λ2||ri −Ai(q−i)||2 + ||q̇i||2

)
= −1

2

n∑
i=1

(
λ2||ri −Ai(q−i)||2 + ||q̇i||2

)
≤ 0,

which implies that V̇ is locally negative semi-definite. The local positive definiteness of V may be argued similarly to the
proof of Theorem AA3 and we are done.


	Identifiability of our games
	General game dynamics and convergence

