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Abstract
Online Convex Optimization (OCO) is a powerful
framework for sequential prediction, portraying
the natural uncertainty inherent in data-streams
as though the data were generated by an almost
omniscient adversary. However, this view, which
is often too pessimistic for real-world data, comes
with a price. The complexity of solving many im-
portant online tasks in this adversarial framework
becomes much worse than that of their offline and
even stochastic counterparts. In this work we con-
sider a natural random-order version of the OCO
model, in which the adversary can choose the set
of loss functions, but does not get to choose the
order in which they are supplied to the learner;
Instead, they are observed in uniformly random
order. Focusing on two important families of on-
line tasks, one in which the cumulative loss func-
tion is strongly convex (though individual loss
functions may not even be convex), and the other
being online k-PCA, we show that under stan-
dard well-conditioned-data assumptions, standard
online gradient descent (OGD) methods become
much more efficient in the random-order model.
In particular, for the first group of tasks OGD
guarantees poly-logarithmic regret. In the case of
online k-PCA, OGD guarantees sublinear regret
using only a rank-k SVD on each iteration and
memory linear in the size of the solution.

1. Introduction
Online Convex Optimization (OCO) (Hazan, 2016; Shalev-
Shwartz, 2012) has emerged in the past two decades as a
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powerful and popular paradigm for modeling sequential pre-
diction problems in face of uncertainty. Its main strength
is that the notion of uncertainty considered is very strong
and involves worst-case scenarios, i.e., the sequence of loss
functions is considered to be selected by an adversary who
knows the prediction algorithm (perhaps up to potential
randomness used for prediction). At the same time, this
paradigm lands itself to tractable optimization, and theoreti-
cally efficient algorithms that provably minimize the regret
are known to exist.

Of course, when considering applications of this paradigm
to practical prediction tasks which involve very high di-
mensional settings and high-throughput rates, classical
polynomial-time efficiency may be prohibitive, and there is
a need for practically efficient algorithms, usually such that
require at most linear (in the dimension) memory and linear
runtime per prediction round.

Unfortunately, for several important online tasks such as
online linear regression and online PCA, state-of-the-art
methods require quadratic memory and at least quadratic
runtime per round, which greatly limits their applicability
to high dimensional data, see for instance (Garber, 2019a;b)
and references therein. Perhaps surprisingly, in both of
these cases, this is in clear contrast to their offline and even
stochastic counterparts, which admit significantly more ef-
ficient algorithms, under standard well-conditionedness as-
sumptions (e.g., moderate condition number of data matrix
in linear regression, or non-negligible eigengap in covari-
ance matrix for PCA). In particular, in both cases these
efficient algorithms are simply gradient descent / stochastic
gradient descent methods. It is thus natural to ask, if Online
Gradient Descent (Zinkevich, 2003a), which requires only
linear memory and linear runtime (putting aside to gradient
computation time) could be shown to be efficient for online
variants of such fundamental tasks.

Towards obtaining highly-efficient algorithms for online
sequential prediction, in this work we consider a weaker
variant of OCO, in which, while we still allow an adversary
to choose the set of loss functions (with complete knowl-
edge of the prediction algorithm), we do not allow him to
control the order in which they are supplied to the learner.
Instead, here we assume that the losses are observed in
a random order, according to a uniformly chosen permu-
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tation. We refer to this model as Random-Order Online
Convex Optimization (ROOCO). In particular, we note that
ROOCO forms a natural middle ground between the easier
and highly popular setting of prediction with a stochastic
adversary, who chooses a distribution over loss functions
from a certain family of distributions, and on every round
a loss function is sampled i.i.d. from this distribution, and
the more difficult standard OCO setting with an oblivious
adversary, in which the adversary also controls the order of
the loss functions.

It is quite clear that the proposed ROOCO model has several
major drawbacks in comparison to the standard OCO model,
even when focusing on practical scenarios: it clearly does
not capture sequences with temporal structure, such as those
we might expect to be inherit in applications such as online
portfolio selection (Cover, 2011; Agarwal et al., 2006) or
time-series forecasting (Anava et al., 2013). Nevertheless,
we argue that many scenarios of interest do not depend
inherently on time. For instance in prediction tasks in which
data is generated by many independent sources (such as a
web application that serves many individual and unrelated
clients or a router in a highly distributed computer network),
or when it is reasonable to assume that data is streamed
without particular order. Such scenarios may indeed be
faithfully modeled by ROOCO.

For further motivation, in Figure 1 we report results on a
simple online linear regression task with the MNIST dataset
(LeCun et al., 1998). We show that in the fully adversarial
setting of OCO, we can easily construct pathological, yet
not practically reasonable, adversarial orders over the data
that make OGD incur cumulative loss significantly higher
than under the much more plausible random-order scenario.

Our main algorithmic contribution is in showing that for
two types of fundamental applications: the first includes
prediction with sequences for which the cumulative loss is
strongly convex (though each individual loss function need
not even be convex), and hence generalizes as a special
case the important task of online linear regression in the
well-conditioned case, and the second being online k-PCA
in the well-conditioned case (i.e., under spectral gap in the
cumulative covariance matrix), the standard online gradient
descent method minimizes the regret with high-probability
while requiring only linear memory and linear runtime per
round (assuming the gradient vector is given). In particu-
lar, in the first case of sequences with cumulative strong
convexity, we show that OGD attains poly-logarithmic re-
gret with high probability. In the second case of k-PCA,
we show that with high probability, OGD only requires to
maintain a rank-k projection matrix, which is linear in the
size of the solution. Also, each iteration requires only a
rank-k SVD which requires nearly linear time to compute
(in the size of the solution). This significantly improves over

the current state-of-the-art complexities for the fully adver-
sarial OCO model which require quadratic memory and at
least quadratic runtime, for both online linear regression
and k-PCA. For sequences of convex losses, even when the
cumulative loss is strongly convex, the only method known
to obtain logarithmic regret in the fully-adversarial OCO set-
ting, is the Online Newton Step method (ONS), which also
require the losses to be exp-concave (Hazan et al., 2007).
ONS requires in general quadratic memory to store the sum
of outer products of gradients, and at least quadratic runtime
to compute to so-called newton direction. For k-PCA all
existing methods for the fully adversarial setting require to
store in memory the cumulative covariance which requires
quadratic memory and/or to compute SVD of potentially
high-rank matrices (Warmuth & Kuzmin, 2006a;b; Garber
et al., 2015; Allen-Zhu & Li, 2017; Carmon et al., 2019).

On the technical side, we leverage recent developments
in matrix concentration bounds for sampling without re-
placement (Mackey et al., 2014b) as our main non-standard
technical tool. For the k-PCA problem we rely on the ideas
introduced in (Garber, 2019a) for k = 1 and later also used
in (Arora & Marinov, 2019) with arbitrary k, to show that
with a “warm-start” initialization (which is not difficult to
obtain in our setting), the iterates of OGD on the convex
relaxation, are of rank k with high probability.

Figure 1. Linear regression with MNIST. This experiment demon-
strates how the random order model gives rise to better perfor-
mance of OGD. We only consider images labeled “3” and “5” (a
total of 13454 images). In the adversarial setting, we partition
our data into alternating consecutive homogeneous blocks of size
1000, where each block either consists of only “3”-images or only
“5”-images. It can be seen that the cumulative loss for the adver-
sarial order case is much worse compared to the random order
case.
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2. Preliminaries
Given any positive integer m we use the standard notations
[m] := {1, 2, . . . ,m} and [[m]] := {0, 1, . . . ,m}. Matrices
are denoted by bold capital letters, vectors are bold lower-
case and scalars or entries are not bold. ei will denote the
ith standard basis vector in Rd, equal to 1 in component i
and 0 everywhere else. The dimension of ei will always be
clear from context. For vectors in Rd we let ‖·‖ denote the
Euclidean norm. The spectral norm of a matrix is denoted by
‖X‖ = σmax(X) where σmax(X) is the maximum singular
value of the matrix X ∈ Rd×d. The Euclidean inner product
between two matrices is 〈X,Y〉 = Tr(X>Y), and the cor-
responding Euclidean norm, called the Frobenius norm is
denoted ‖X‖F . That is, ‖X‖F = 〈X,X〉1/2. The symbols
λmax(X) and λmin(X) refer to the algebraic maximum and
minimum eigenvalues of a matrix X ∈ Rd×d.

Definition 2.1. Given a convex and compact set K ⊂ Rd
and a real-valued function f , differentiable over K, we
say f is G-Lipschitz over K if for all x ∈ K, we have
‖∇f(x)‖ ≤ G.

In particular, if f is convex, differentiable and G-Lipschitz
over a convex and compact K, we have that for any x,y ∈
K, f(x)− f(y) ≤ (x− y)>∇f(x) ≤ G‖x− y‖.
Definition 2.2. Given a convex and compact set K ⊂ Rd
and a real-valued function f which is differentiable over K,
we say f is α-strongly convex over K if for all x,y ∈ K,
f(x) ≤ f(y) + (x− y)>∇f(x)− α

2 ‖x− y‖2.

Moreover, if f is also twice differentiable over K, then, for
any x ∈ K,∇2f(x) � αI.
Definition 2.3. Given a convex and compact set K ⊂ Rd
and a real-valued function f which is differentiable over
K, we say f is b-smooth if and only if its gradient is b-
Lipschitz, for some b > 0 over K, i.e., for all x,y ∈ K,
‖∇f(x)−∇f(y)‖ ≤ b · ‖x−y‖. If the function f is twice
differentiable over K, the above condition is equivalent to
the following condition on the Hessian,∇2f(x) � bI.

3. Random Order Model
Online Convex Optimization. Online Convex Optimiza-
tion is posed as a repeated game between a learner and an
adversary. First, the adversary chooses T convex loss func-
tions f1, ..., fT from a fixed convex and compact domain
K ⊂ Rd to the reals1. On each iteration t ∈ [T ], the learner
makes a prediction wt ∈ K using some online algorithm A,
and suffers a loss of ft(wt). In addition, we assume that the
Euclidean diameter of the set K is bounded by D, and that
for any w ∈ K and all t ∈ [T ], it holds that ‖∇ft(w)‖ ≤ G,

1In this work we focus only on oblivious adversaries which
choose the entire sequence of losses beforehand, but with knowl-
edge of the algorithm used by the learner.

for some G > 0. The goal of the learner is to minimize the
regret, which is given by

regretT (A) =

T∑
t=1

ft(wt)− min
w∈K

T∑
t=1

ft(w).

Perhaps the simplest algorithm for OCO is the Online Gradi-
ent Descent (OGD) algorithm, which is an adaptation of the
classical projected (sub)gradient descent for offline convex
optimization. On each iteration, the algorithm picks the next
prediction as follows:

wt+1 = ΠK(wt − ηt∇ft(wt)), (1)

where for any w0 ∈ Rd we denote

ΠK(w0) = arg min
w∈K
‖w −w0‖ .

Throughout the paper, we consider a variant of this stan-
dard setting: online convex optimization in a random order
model, in which the adversary can choose the set of loss
functions, but cannot control the order in which these loss
functions are presented to the learner. Instead, these losses
are observed in a uniformly random order. This is formally
stated in the following assumption.

Assumption 3.1 (random order assumption). We say that a
sequence of T functions satisfies the random order assump-
tion if each of the functions is chosen by an adversary, but
their order is determined be a random permutation over T
elements.

3.1. Cumulative Strongly Convex Sequences

Our first suite of results concerns a family of online tasks,
which generalizes online linear and logistic regression in the
random order model (Assumption 3.1). As discussed in the
introduction, our aim is to obtain poly-logarithmic regret for
a sequence of functions whose average is strongly convex,
while each of the functions might not even be convex by
itself. In this subsection, the learner’s prediction is generally
assumed to be a vector in Rd, and is denoted wt. Note that
the Hessian of each loss function is a d× d real matrix.

Throughout the discussion, we always assume that the fol-
lowing holds for the loss functions. Given a convex and com-
pact set K ⊂ Rd, each of the functions f1, . . . fT is twice
differentiable, b-smooth and with gradients bounded in `2-
norm over the domain K. Moreover D is the `2-diameter of
K. Next we present the main assumption that refers to the
Hessians of the loss functions and define “well-conditioned
data”.

Assumption 3.2 (cumulative α-strong convexity). Given
α ∈ R+ and a convex and compact domain K ⊂ Rd,
we say that a sequence of T twice differentiable functions
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f1, . . . , fT over the domain K satisfies the cumulative α-
strong convexity assumption, if

∀w ∈ K :
1

T

T∑
t=1

∇2ft(w) � αI.

We consider three classes of functions to which our results
apply.

Definition 3.3 (quadratic functions). Let A1, . . . ,AT be
a sequence of d × d real symmetric matrices. We define
the loss function ft(w) = 1

2w
>Atw for every t ∈ [T ].

The sequence f1, . . . , fT satisfies the cumulative α-strong
convexity assumption (Assumption 3.2) if 1

T

∑T
t=1 At �

αI.

Definition 3.4 (strongly convex function composed with
linear transformation). Let A1, . . . ,AT be a sequence of
d× d real matrices, and let g be a β-strongly convex func-
tion. We define the loss function ft(w) = gt(Atw) for
every t ∈ [T ]. The sequence f1, . . . , fT satisfies the cumu-
lative α-strong convexity assumption (Assumption 3.2) if
1
T

∑T
t=1 A

>
t At � α

β I.

Definition 3.5 (general cumulative strongly convex se-
quences). Let f1, . . . , fT be a sequence of functions fromK
to R which are twice-differential overK (but not necessarily
convex). The sequence f1, . . . , fT satisfies the cumulative
α-strong convexity assumption (Assumption 3.2) if the aver-
aged function 1

T

∑T
t=1 ft(·) is α-strongly convex over K.

Main Results Next we present our main results. In Ta-
ble 1 we summarize and compare our results to relevant
results in two related models. The first is the stochastic
model, where loss functions are drawn i.i.d. from a fixed
distribution. The second is the adversarial model, where
the order of the samples arrives at an arbitrary (possibly
adversarial) order. Recall that individual losses are allowed
to be non-convex, and we only assume the cumulative loss
to be convex.

The following theorem states our main result of this sub-
section, suggesting that under the random order model (As-
sumption 3.1), and for a sequence of loss functions that
satisfies the cumulative strong convexity assumption (As-
sumption 3.2), OGD guarantees poly-logarithmic regret.

Theorem 3.6. Let {ft}t∈[T ] be a sequence of loss func-
tions that satisfies the random order model and cumulative
α-strong convexity assumptions (Assumptions 3.1 and 3.2
accordingly). Then, for any δ ∈ (0, 1), Online Gradient
Descent with step sizes ηt = 1

αt for any t ∈ [T ], gives with
probability at least 1 − δ the following for quadratic loss
functions (see Definition 3.3)

regretT = Õ

(
b2(G+Db)G

α3
log

(
T

δ

)
log T

)
.

For strongly convex functions of a linear transformation (see
Definition 3.4), OGD with the same step sizes gives with
probability at least 1− δ

regretT = Õ

(
b(G+Db)G

α2
log

(
T

δ

)
log T

)
.

Finally, for general loss functions with cumulative strong
convexity (see Definition 3.5), OGD with the same step sizes
gives with probability at least 1− δ

regretT = Õ

(
b2(G+Db)G

α3

(
log

T

δ
+ d

)
log T

)
,

where in all results we use Õ(·) to suppress logarithmic
dependencies on the dimension and other parameters, but
not on T .

In Section 4.1 we provide a proof sketch for Theorem 3.6.
The full proof is deferred to the appendix.

The next theorems show that the random order assumption
(Assumption 3.1) is crucial for the improved regret bounds
in Theorem 3.6. Specifically, there exists a sequences of
loss functions that satisfy the cumulative strong convexity
assumption (Assumption 3.2), and for which adversarial
order makes OGD suffer linear regret in T with at least
constant probability; this is proved in Theorem 3.7. Fur-
thermore, in Theorem 3.8, we show that even the additional
assumption that each of the loss functions is convex by itself
(in combination with cumulative strong convexity) cannot
yield a polylogarithmic regret without the random order as-
sumption (Assumption 3.1); specifically, there exists such a
sequence where adversarial order results in Ω(

√
T ) regret.

Theorem 3.7. Let K = [0, 1]. There exists a sequence
{ft}t∈[T ] of quadratic loss functions fromK to R, which are
Θ(1)-smooth and satisfy Θ(1)-cumulative strong convexity
(Assumption 3.2), for which OGD with arbitrary positive
step-sizes {ηt}t∈[T ] and uniformly random initialization,
incurs linear regret with probability at least 0.4.

Theorem 3.8. There exist a choice of feasible set K and a
sequence of convex loss functions f1, . . . , fT which satisfy
Θ(1)-cumulative strong convexity (Assumption 3.2), such
that any algorithm suffers Ω(

√
T ) regret.

3.2. Online Principal Component Analysis

We recall the problem of online Principal Component Anal-
ysis (PCA) (Warmuth & Kuzmin, 2006b; Nie et al., 2013).
Fix 1 ≤ k < d, where d is the dimension. In the online
setting, for each batch of m data points that arrives on round
t ∈ [T ] Xt ∈ Rd×m (i.e., data-points as columns), with
covariance matrix Mt = XtX

>
t , the online algorithm is

required to predict a projection matrix Pt ∈ Rd×k onto
a k-dimensional subspace of Rd which belongs to the set
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Table 1. Regret guarantees for Online Gradient Descent under various models and assumptions. The 7 symbol indicates that a relevant
assumption is not needed. All results for the stochastic model are from (Hazan et al., 2007). The Õ notation hides logarithmic dependencies
in d and other parameters, but not in T . SCLT stands for strongly convex functions of linear transformations (see Definition 3.4). For our
result with general loss functions we assume T is sub-exponential in d.

MODEL STRONGLY CONVEX? CONVEX? REGRET

STOCHASTIC
7 IN EXPECTATION Θ(

√
T )

IN EXPECTATION IN EXPECTATION Θ(G
2

α
log T )

ORDER
RANDOM

QUADRATIC (DEF 3.3) CUMULATIVE CUMULATIVE O
(
b2(G+Db)G

α3 log2 T
)

(THEOREM 3.6)

SCLT (DEF 3.4) CUMULATIVE INDIVIDUAL Õ
(
b(G+Db)G

α2 log2 T
)

(THEOREM 3.6)

GENERAL (DEF 3.5) CUMULATIVE CUMULATIVE Õ
(
b2d(G+Db)G

α3 log T
)

(THEOREM 3.6)

ADVERSARIAL

7/ CUMULATIVE 7/ CUMULATIVE Θ (T ) (THEOREM 3.7)
7/ CUMULATIVE INDIVIDUAL Θ(

√
T ) (THEOREM 3.8)

7 INDIVIDUAL Θ(
√
T )

INDIVIDUAL INDIVIDUAL Θ(G
2

α
log T )

Id,k ≡ {P : P>P = Ik} before observing Xt. The loss on
each round t is then defined as

ft(Pt) :=
1

2
‖Xt −PtP

>
t Xt‖2F .

The regret for the online PCA is given by

regretT =
∑
t∈[T ]

‖Xt −PtP
>
t Xt‖2F

− min
P∈Id,k

∑
t∈[T ]

‖Xt −PP>Xt‖2F

= max
P∈Id,k

∑
t∈[T ]

Tr(PP>Mt)−
∑
t∈[T ]

Tr(PtP
>
t Mt).

(2)

Since Problem (2) is non-convex, we consider a well
known convex relaxation that was proposed in (Warmuth &
Kuzmin, 2006b) which relaxes it by taking the convex hull

Sd,k = convex-hull{PP> | P ∈ Id,k}.

Thus, we introduce the symmetric matrix Wt ∈ Rd×d,
which belongs to the set Sd,k. Belonging to Sd,k amounts to
satisfying the constraints Wt ∈ {0 �W � I,Tr(W) =
k} (Warmuth & Kuzmin, 2006b). Using this, we can re-
formulate Problem (2) and get the following optimization
problem with linear payoff functions, allowing us to use
known algorithms such as Online Gradient Ascent (OGA).

regretT = max
W∈Sd,k

∑
t∈[T ]

Tr(WMt)−
∑
t∈[T ]

Tr(WtMt).

(3)

In this paper, we assume that the data {Xt}t∈[T ] satisfy
the random order model (Assumption 3.1), i.e., the matri-
ces X1, . . . ,XT are chosen by an oblivious adversary but

Algorithm 1 batch Online Principal Component Analysis
based on Online Gradient Ascent

input: T , L, W0, step sizes {ητ}τ≥0
for τ = 0, ..., T/L− 1 do

play Wτ and observe the block-averaged covariance
matrix Mτ = 1

L

∑(τ+1)L
t=τL+1 XtX

>
t

set Wτ+1 = ΠSd,k(Wτ + ητMτ )
end for

are supplied to the learner in a uniformly-chosen random
order. Our algorithm, Algorithm 1, is a variant of OGA
that predicts over blocks of L consecutive covariance ma-
trices. We denote the average over a length-L block τ of
such covariance matrices by Mτ = 1

L

∑(τ+1)L
t=τL+1 Mt =

1
L

∑(τ+1)L
t=τL+1 XtX

>
t , and the average of all covariance ma-

trices as M = 1
T

∑T
t=1 Mt = 1

T

∑T
t=1 XtX

>
t , where for

ease of presentation, throughout the rest of this paper we
assume, only slightly loosing generality, that T/L is an in-
teger. This allows us to define the following linear payoff
function over blocks:

Fτ (W) := Tr(WMτ ).

Thus, the corresponding regret minimization task, formu-
lated in Problem (3), becomes

regretT = L
(

max
W∈Sd,k

∑
τ

Tr(WMτ )−
∑
τ

Tr(WτMτ )
)
.

(4)

Algorithm 1 involves the projected-gradient mapping over
the set Sd,k and thus requires a full-rank SVD computation
in each iteration, at lease in worst-case.
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Next, we show that under an eigengap assumption this com-
putation can be replaced by a more efficient rank-k SVD
computation. First (in Lemma 3.9), we explore how the
projection onto Sd,k is constructed. We demonstrate that an
eigengap assumption suffices for the projection to have rank
at most k.
Lemma 3.9. Let Y be a symmetric matrix in Rd×d and
write its eigen-decomposition as Y =

∑d
i=1 λiviv

>
i . Sup-

pose that Y admits an eigengap λk(Y) − λk+1(Y) ≥ 1.
Then, it holds that the Euclidean projection of Y onto the
set Sd,k is of the form:

ΠSd,k [Y] =

k∑
i=1

viv
>
i .

From this lemma we make the following observation, relat-
ing between the SVD of a point to project, and the resulting
projection.
Observation 3.10 (Low-rank projection, low-rank SVD).
Let Y be a symmetric Rd×d matrix. If rank(ΠSd,k [Y]) ≤ k,
then only the top k components in the SVD of Y are required
to compute the projection. Hence, only a rank-k SVD of Y
is required.

With the above observation in hand, we present the main re-
sults of this section. As reviewed above, it is known that the
online PCA problem, when cast as online linear optimiza-
tion over Sd,k, is learnable via a standard variant of Online
Gradient Ascent, which achieves an O(

√
T ) regret bound,

but requires a full SVD computation on each iteration. Next
we show that given a sequence of covariance matrices which
admits an eigengap with parameter s > 0, when partition-
ing the covariance matrices into length-L blocks with a
suitable choice of L, and initializing OGA with a proper
”warm-start” matrix (which is straightforward to obtain in
our random-order setting), the full SVD computation can be
avoided and replaced by only a rank-k SVD computation
per iteration (see Theorem 3.11).

Throughout the rest of this paper we assume that the fol-
lowing holds for the covariance matrices. All matrices Mt

for t ∈ [T ] satisfy ‖Mt‖ ≤ b for some b > 0 and also
‖Mt‖F ≤ C for some C > 0. Recall also our assumption
that T/L is an integer, where L is the size of the blocks
used to group the iterations.
Theorem 3.11 (convergence of Algorithm 1). Let δ ∈ (0, 1)
and suppose the data {Mt = XtX

>
t }t∈[T ] satisfy the ran-

dom order assumption (Assumption 3.1). Additionally, sup-
pose the average M = 1

T

∑T
t=1 Mt admits an eigengap

s(M) := λk(M) − λk+1(M) ≥ ρ > 0. Let W∗ ∈ Sd,k
be the optimal solution of Problem (4). Consider parti-
tioning the matrices {Mt}t∈[T ] into length-L blocks with
block size L = Θ((b2/ζ2) log(d/δ)) 2, and running OGA

2For ease of presentation we assume T/L is an integer.

for T/L iterations with step sizes {ητ}τ∈[[T/L−1]] with the
first iterate W0 ∈ Sd,k satisfying ‖W0 −W∗‖F ≤ γζ,
for ζ = ρ/(2 + 6bγ) and γ = Θ(

√
k/ρ), and step-sizes

ητ = Θ(
√
k/(C

√
T/L))

For T large enough it holds with probability at least 1− δ
that

regretT = O((b/ζ)C
√
kT log(d/δ))

and
∀τ ∈ [T/L− 1] : rank(Wτ ) = k.

Note that Theorem 3.11 relies crucially on an eigengap
assumption, asserting that the k largest eigenvalues of the
average of all covariance matrices are strictly larger than
all other eigenvalues. This assumption of a non-negligible
eigengap in the covariance matrix is very natural for PCA,
often observed in practice, and essential for the proof. In
Section 4.2 we provide a proof sketch for Theorem 3.11.
The full proof is deferred to the appendix.

3.2.1. COMPUTING A ”WARM-START” MATRIX

We now discuss the possibility of satisfying the ”warm-
start” requirement in Theorem 3.11. Recall that W∗, the
optimizer of Problem (4), is the projection of the whole data
sequence M onto the set Sd,k, which corresponds to the
top k eigenvectors of M. To compute a warm-start, we can
take the covariance matrix over a block M′ of size at least
L0 := O

(
b2

ζ20
log dT

δ

)
from the data, where ζ is a parameter

to be determined, and similarly compute the projection of
M′ onto the set Sd,k, which we denote W0. That is, W0

corresponds to the top k eigenvectors of M′.

Using Davis-Kahan sin θ Theorem (see for instance Theo-
rem 2 in (Yu et al., 2014)), we have that

‖W0 −W∗‖F ≤
√
k‖M−M′‖

λk(M)− λk+1(M)

≤
(a)

√
k

s(M)
ζ ≤
√
k

ρ
ζ0,

where (a) follows from the choice of L0 together with an
appropriate concentration bound ( see Lemma A.11 in the
appendix). In particular, for ζ0 = ργζ√

k
, W0 satisfies the

requirements of Theorem 3.11 with probability at least 1−
O(δ).

4. Proofs: Main Ideas and Techniques
4.1. Proof Sketch for cumulative strongly convex losses

Here we provide a proof sketch for Theorem 3.6 that dis-
cusses the case of cumulative strongly convex losses under
the random order assumption (Assumption 3.1).
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Proof Sketch of Theorem 3.6. The first idea in our analysis
is to show that the regret of the original loss sequence can
be related to a loss of a batched loss sequence. Thus, letting
L be block size whose value will be set later on, we can
define a sequence of batched losses, ∀τ ∈ [[dT/Le − 1]],

Fτ (w) :=
1

L

(τ+1)L∑
t=τL

ft(w) .

Also, for any τ ∈ [[dT/Le − 1]] we denote by w̃τ the value
of wt at the beginning of each block τ .

Using the above definition together with the OGD update
rule, we can show that,

T∑
t=1

ft(wt) ≤ L
dT/Le∑
τ=0

Fτ (w̃τ ) +
G2L

α
(1 + log T ) ,

and note that the second term in the above expression scales
with the block size L.

The second part of our analysis shows that for an appropri-
ately large block size L ≥ L0, each batched loss function
Fτ (·) is (α/2)-strongly convex with high probability. To
do so we use concentration inequalities for the Hessian
of each batched loss ∇2Fτ (·). Note that since the losses
arrive according to a random order permutation, this re-
quires us to build upon specialized Matrix concentration
inequalities (Mackey et al., 2014a) that apply to random
matrix permutations in the case of quadratic or general func-
tions and a version of Matrix Chernoff (Tropp, 2011) for
the case of strongly convex functions of linear transfor-
mations. For quadratic loss functions (but not necessarily
convex), the Hessian is constant and it is enough to take
L0 = Õ

(
b2

α2 log(T/δ)
)

. For strongly convex functions

of linear transformations, L0 = Õ
(
b
α log(T/δ)

)
suffices,

since the losses are convex and hence the Hessians are pos-
itive semidefinite, which allows to apply tighter Matrix-
Chernoff bounds. For general losses, for which the Hessians
cannot be treated as constant over the feasible set K, we
need to take L0 = Õ

(
db2

α2 log(T/δ)
)

which follows from
using a discretization argument of the set K and using the
union-bound.

The last part of the proof shows that we can use this strong-
convexity of the blocks and translate it into a regret bound of
O( (G+Db)GL

α log T ) for the original sequence of losses and
decision points. Using the appropriate L := L0 concludes
the proof.

It is highly important to emphasize that the partitioning of
the losses into blocks of length L is only for the purpose of
the regret analysis, while our application of OGD is directly
on the original sequence of losses.

4.2. Proof Sketch for online PCA

Here we provide a proof sketch for Theorem 3.11 that dis-
cusses the case of Online PCA. In the sketch we focus on
showing that with high probability,

∀τ ∈ [T/L− 1] : rank(Wτ ) = k.

Given the above holds, the regret analysis for showing
O(
√
T ) regret is quite standard (see e.g. (Hazan, 2016)).

Proof Sketch of Theorem 3.11. The first part of the proof
shows that with probability at least 1 − δ we can bound
the spectral norm distance between the average covariance
matrix and every batch of size L ≥ L0, i.e., ∀τ ∈ [[dT/Le−
1]], ∥∥∥∥∥∥ 1

T

T∑
t=1

Mt −
1

L

(τ+1)L∑
t=τL+1

Mt

∥∥∥∥∥∥ = ‖M−Mτ‖ ≤ ζ ,

where L0 = O
(
b2

ζ2 log dT
δ

)
.

Conditioning on the event that the above inequality holds,
we are then able to show the following,

‖W∗MW∗ −WτMWτ‖ = O(bγζ). (5)

The proof of the above inequality relies on analyzing the
OGA update rule combined with exploiting the eigengap
property of the data Matrix M. The intuition is that OGA,
when initialized with a “warm-start” matrix, produces with
high probability iterates that remain close enough to the
optimum.

The next part of the proof works as follows: We assume by
induction that for some block τ we have rank(Wτ ) = k,
and use it to show that rank(Wτ+1) = k holds as well.
This obviously holds for τ = 0 by the assumption of the
theorem.

In order to show that the induction step holds we examine
the unique structure of the Euclidean projection onto the set
Sd,k, as captured in Lemma 3.9. We show that rank(Wτ ) =
k together with Eq. (5) implies that

λk(Wτ + ητMτ ) ≥ 1 + λk+1(Wτ + ητMτ ). (6)

Combining Eq. (6) together with Lemma 3.9, implies that
rank(Wτ+1) = k, and the low-rank property holds also for
the next iterate.

5. Experiments
We conduct two sets of experiments demonstrating our the-
oretical findings for the online PCA problem. (Recall also
our experiment from the introduction, which considers the
online linear regression problem.)
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(a) k = 1 (b) k = 3

(c) k = 7

Figure 2. Average regret of full-SVD and k-SVD on synthetic data for k = {1, 3, 7}. The case of k = 2 behaves similarly (see Appendix).

5.1. k-SVD vs. Full-SVD

We compare the average regret of two algorithms: the first
is Algorithm 1 , where Wτ+1 is computed via rank-k SVD.
The second is the same algorithm , but where Wτ+1 is
computed via full SVD. We consider the following datasets,
where the samples (and therefore also loss functions) arrive
in a random order.

Synthetic Data A synthetic dataset generated as follows.
The data is sampled from a multi-variate Normal distribution
with zero mean and diagonal covariance matrix Σ. For
each value of k, we have Σi,i = 1 for 1 ≤ i ≤ k and
Σi,i = gap×2−i×0.1 for k+1 ≤ i ≤ d. In our experiments
gap = 0.1, k = {1, 2, 3, 7}, d = 1000, and the window
size is L = 10. We use 3% of the data to compute the
initialization W0, and step sizes ηt = 1√

t
. The results on

the synthetic data set are the average of 10 experiments and
can be found in Figure 2 and in Table 2. It can be seen that
even though the dimensionality is high, using low rank-SVD
for the projections performs comparably to using full SVD.

Table 2. Results for synthetic dataset. ”bad projections” percent-
age, i.e. percentage of number of iterations in which the projection
in Algorithm 1 has rank greater than k, for different values of k
and with block size L = 10.

SYN DATASET k = 1 k = 2 k = 3 k = 7

BAD PROJ[%] 0.0082 0.012 0.066 0.37

MNIST we use the training set of the MNIST handwritten
digit recognition dataset, which contains 60,000 28 × 28
images, which we split into 58200 images for testing, and
1800 images (3%) are used to compute the initialization
W0 and step sizes ηt = 1

103
√
t
. We pre-normalized the

data by mean centering the feature vectors and scaling each
feature by its standard deviation and average the results of
20 experiments. We set L = 20 and k = {1, 3, 7, 15}. The
results on the synthetic data set can be found in Figure 3 and
in Table 3. Similarly to the experiment on synthetic data, it
can be seen that even though the dimensionality is high, low
rank SVD for the projections performs comparably to using
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(a) k = 1 (b) k = 3

(c) k = 7 (d) k = 15

Figure 3. Average regret of full-SVD and k-SVD on MNIST data for k = {1, 3, 7, 15}.

full SVD.

Table 3. Results for MNIST dataset. ”bad projections” percentage,
i.e. percentage of number of iterations in which the projection in
Algorithm 1 has rank greater than k, for different values of k and
with block size L = 20.

MNIST DATASET k = 1 k = 3 k = 7 k = 15

BAD PROJ[%] 0 0.23 0.21 0.14
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Beygelzimer, A., d’Alché-Buc, F., Fox, E. B., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems 32: Annual Conference on Neural Information
Processing Systems 2019, NeurIPS 2019, 8-14 December
2019, Vancouver, BC, Canada, pp. 10496–10505, 2019.

Arora, R., Cotter, A., and Srebro, N. Stochastic optimization
of PCA with capped MSG. In Proceedings of the 26th
International Conference on Neural Information Process-
ing Systems - Volume 2, pp. 1815–1823, Red Hook, NY,
USA, 2013.

Carmon, Y., Duchi, J. C., Sidford, A., and Tian, K. A rank-1
sketch for matrix multiplicative weights. In Beygelzimer,
A. and Hsu, D. (eds.), Conference on Learning Theory,
COLT 2019, 25-28 June 2019, Phoenix, AZ, USA, vol-
ume 99 of Proceedings of Machine Learning Research,
pp. 589–623. PMLR, 2019.

Cover, T. M. Universal portfolios. In The Kelly Capital
Growth Investment Criterion: Theory and Practice, pp.
181–209. World Scientific, 2011.

Garber, D. On the regret minimization of nonconvex online
gradient ascent for online pca. In Conference on Learning
Theory, pp. 1349–1373, 2019a.

Garber, D. Logarithmic regret for online gradient descent be-
yond strong convexity. In The 22nd International Confer-
ence on Artificial Intelligence and Statistics, pp. 295–303,
2019b.

Garber, D., Hazan, E., and Ma, T. Online learning of eigen-
vectors. In ICML, pp. 560–568, 2015.

Hazan, E. Introduction to online convex optimization.
Foundations and Trends in Optimization, 2(3-4):157–325,
2016.

Hazan, E., Agarwal, A., and Kale, S. Logarithmic regret al-
gorithms for online convex optimization. Machine Learn-
ing, 69(2):169–192, 2007.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-
based learning applied to document recognition. Proceed-
ings of the IEEE, 86(11):2278–2324, 1998.

Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., and
Tropp, J. A. Matrix concentration inequalities via the
method of exchangeable pairs. The Annals of Probability,
42(3):906–945, 2014a.

Mackey, L., Jordan, M. I., Chen, R. Y., Farrell, B., Tropp,
J. A., et al. Matrix concentration inequalities via the
method of exchangeable pairs. The Annals of Probability,
42(3):906–945, 2014b.

Nie, J., Kotlowski, W., and Warmuth, M. K. Online PCA
with optimal regrets. In 24th International Conference
on Algorithmic Learning Theory, ALT, 2013.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107–194, 2012.

Tropp, J. A. Improved analysis of the subsampled random-
ized hadamard transform. Advances in Adaptive Data
Analysis, 03(01n02):115–126, 2011.

Wang, W. and Lu, C. Projection onto the capped simplex.
ArXiv, abs/1503.01002, 2015.

Warmuth, M. K. and Kuzmin, D. Online variance minimiza-
tion. In 19th Annual Conference on Learning Theory,
COLT, 2006a.

Warmuth, M. K. and Kuzmin, D. Randomized PCA al-
gorithms with regret bounds that are logarithmic in the
dimension. In Proceedings of the Twentieth Annual Con-
ference on Neural Information Processing Systems, NIPS,
2006b.

Yu, Y., Wang, T., and Samworth, R. J. A Useful Variant of
the Davis–Kahan Theorem for Statisticians. Biometrika,
102(2):315–323, 2014.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
International Conference on Machine Learning (ICML-
03), pp. 928–936, 2003a.

Zinkevich, M. Online convex programming and generalized
infinitesimal gradient ascent. In Proceedings of the 20th
international conference on machine learning (icml-03),
pp. 928–936, 2003b.


