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Abstract

This paper employs a formal connection of ma-
chine learning with thermodynamics to charac-
terize the quality of learnt representations for
transfer learning. We discuss how information-
theoretic functionals such as rate, distortion and
classification loss of a model lie on a convex,
so-called equilibrium surface. We prescribe dy-
namical processes to traverse this surface un-
der constraints, e.g., an iso-classification pro-
cess that trades off rate and distortion to keep
the classification loss unchanged. We demon-
strate how this process can be used for trans-
ferring representations from a source dataset to
a target dataset while keeping the classification
loss constant. Experimental validation of the the-
oretical results is provided on standard image-
classification datasets.

1. Introduction

A representation is a statistic of the data that is “useful”.
Classical Information Theory creates a compressed repre-
sentation and makes it easier to store or transmit data; the
goal is always to decode the representation to get the origi-
nal data back. If we are given images and their labels, we
could learn a representation that is useful to predict the cor-
rect labels. This representation is thus a statistic of the data
sufficient for the task of classification. If it is also minimal—
say in its size—it would discard information in the data that
is not correlated with the labels. Such a representation is
unique to the chosen task, it would perform poorly to predict
some other labels correlated with the discarded information.
If instead the representation were to have lots of redundant
information about the data, it could potentially predict other
labels correlated with this extra information.

The premise of this paper is our desire to characterize the
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information discarded in the representation when it is fit on
a task. We want to do so in order to learn representations
that can be transferred easily to other tasks.

Our main idea is to choose a canonical task—in this paper,
we pick reconstruction of the original data—as a way to
measure the discarded information. Although one can use
any canonical task, reconstruction is special. It is a “capture
all” task in the sense that achieving perfect reconstruction
entails that the representation is lossless; information dis-
carded by the original task is therefore readily measured as
the one that helps solve the canonical task. This leads to the
study of the following Lagrangian which is similar to the
Information Bottlenck of Tishby et al. (2000)

F(\~) = min
(A7) Ge@,eg(z\lac),me(z)x
do(z|2),co(y|2)

R+AD +~C

where the rate R is an upper bound on the mutual infor-
mation of the representation learnt by the encoder egy(z|x)
with the input data x, distortion D measures the quality
of reconstruction of the decoder dy(z|z) and C' measures
the classification loss of the classifier cg(y|z). As Alemi
& Fischer (2018) show, this Lagrangian can be formally
connected to ideas in thermodynamics. We heavily exploit
and specialize this point of view, as summarized next.

1.1. Summary of contributions

Our main technical observation is that F'(\, ) can be in-
tepreted as a free-energy and a stochastic learning process
that minimizes its corresponding Hamiltonian converges
to the optimal free-energy. This corresponds to an “equi-
librium surface” of information-theoretic functionals R, D
and C' and a surface O ., of the model parameters at con-
vergence. We prove that the equilibrium surface is convex
and its dual, the free-energy F'(\,~), is concave. The free-
energy is only a function of Lagrange multipliers (A, ), the
family of model parameters O, and the task, and is therefore
invariant of the learning dynamics.

Second, we design a quasi-static stochastic process, akin
to an equilibrium process in thermodynamics, to keep the
model parameters 6 on the equilibrium surface. Such a
process allow us to travel to any feasible values of (R, D, C')
while ensuring that the parameters 6 of the model are on
the equilibrium surface. We focus on one process, the “iso-
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classification process” which automatically trades off the
rate and distortion to keep the classification loss constant.

We prescribe a quasi-static process that allows for a con-
trolled transfer of learnt representations. It adapts the model
parameters as the task is changed from some source dataset
to a target dataset while keeping the classification loss con-
stant. Such a process is in stark contrast to current tech-
niques in transfer learning which do not provide any guar-
antees on the quality of the model on the target dataset.

We provide extensive experimental results which realize the
theory developed in this paper.

2. Theroetical setup

This section introduces notation and preliminaries that form
the building blocks of our approach.

2.1. Auto-Encoders

Consider an encoder e(z|x) that encodes data x into a latent
code z and a decoder d(z|z) that decodes z back into the
original data z. If the true distribution of the data is p(z)
we may define the following functionals.

= E [-logp)
D= w~IE(z) { /dz e(z|z) log d(x|z)] (1)
R= z~IE(z) {/ dz e(z|z) log eyS(f”

We denote expectation over data using the notation
(@) pzy = J dz p(x)e. The first functional H is the Shanon
entropy of the true data distribution; it quantifies the com-
plexity of the data. The distortion D measures the quality of
the reconstruction through its log-likelihood. The rate R is a
Kullback-Leibler (KL) divergence; it measures the average
excess bits used to encode samples from e(z|x) using a code
that was built for our approximation of the true marginal on
the latent factors m(z).

2.2. Rate-Distortion curve

The functionals in (1) come together to give the inequality
H-D<I.(z;2) <R ()

where I, = KL(e(z|z) || p(z|x)) is the KL-divergence be-
tween the learnt encoder and the true (unknown) conditional
of the latent factors. The outer inequality H < D + R
forms the basis for a large body of literature on Evidence
Lower Bounds (ELBO, see Kingma & Welling (2013)).
Consider Fig. 1a, if the capacity of our candidate distribu-
tions e(z|x), m(z) and d(z|z) is infinite, we can obtain the
equality H = R + D. This is the thick black line in Fig. 1a.

For finite capacity variational families, say parameterized by
6, which we denote by eg(z|z), dg(x|2z) and my(z) respec-
tively, as Alemi et al. (2017) argue, one obtains a convex
RD curve (shown in red in Fig. 1a) corresponding to the
Lagrangian

F(\) = R+ AD. 3)

min
eg(z]x),me(2),do(x|2)

This Lagrangian is the relaxation of the idea that given a
fixed variational family and data distribution p(z), there
exists an optimal value of, say, rate R = f(D) that best
sandwiches (2). The optimal Lagrange multiplier is A = g—g
evaluated at the desired value of D.

O

a b
Figure 1. Schegn)atic of the equilibrium surfaie? Fig. 1a shows
that rate (R) and distortion (D) trade off against each other on the
equilibrium surface. Similarly in Fig. 1b, the equilibrium surface is
a convex constraint that joins rate, distortion and the classification
loss. Training objectives with different (A, ) (shown in red and
blue) reach different parts of the equilibrium surface.

2.3. Incorporating the classification loss

Let us create a classifier that uses the learnt representation
z as the input and set the classification loss as the negative
log-likelihood of the prediction

C= E

z~p(z)

[/ dz e(z|z)log c(y|2) | - )

If the parameters of the model—which now consists of the
encoder e(z|x), decoder d(x|z) and the classifier ¢(y|z)—
are denoted by 6, the training process for the model induces
a distribution p(0| {(z,y)}) where {(z,y)} denotes a finite
dataset. In addition to R, D and C, the authors in Alemi &
Fischer (2018) define

S:

MR

e~p(a) y~p(ylz) [ m(0)

which is the relative entropy of the distribution on parame-
ters 6 after training compared to a prior distribution m(#) of
our choosing. Using a very similar argument as Section 2.2
the four functionals R, D,C and S form a convex three-
dimensional surface in the RDCS phase space. A schematic
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is shown in Fig. 1b for 0 = 0. We can again consider a
Lagrange relaxation of this surface given by

F(\v,0) =

= min
e(z|x),m(z),d(x|z),c(y|z)

R+ AD +~C +08.

(6)
Remark 1 (‘The ‘First Law” of learning). Alemi & Fis-
cher (2018) draw formal connections of the Lagrangian
in (6) with the theory of thermodynamics. Just like the
first law of thermodynamics is a statement about the con-
servation of energy in physical processes, the fact that the
four functionals are tied together in a smooth constraint
f(R,D,C,S) = 0leads to an equation of the form
dR=-AdD —vydC —odS @)
which indicates that information in learning processes is
conserved. The information in the latent representation z is
kept either to reconstruct back the original data or to predict
the labels. The former is captured by the encoder-decoder
pair, the latter is captured by the classifier.

Remark 2 (Setting 0 = 0). The distribution p(6| {(x, y)})
is a posterior on the parameters of the model given the
dataset. While this distribution is well-defined under minor
technical conditions, e.g., ergodicity, performing computa-
tions with this distribution is difficult. We therefore only
consider the case when o = 0 in the sequel and leave the
general case for future work.

The following lemma (proved in Appendix B) shows that the
constraint surface connecting the information-theoretic func-
tionals R, D and C'is convex and its dual, the Lagrangian
F(\, ) is concave.

Lemma 3 (The RDC constraint surface is convex). The
constraint surface f(R,D,C) = 0 is convex and the La-
grangian F(\, ) is concave.

We can show using a similar proof that the entire surface
joining R, D, C and S is convex by considering the cases
A = 0 and v = 0 separately. Note that the constraint is
convex in R, D and C; it need not be convex in the model
parameters 6 that parameterize eg(z|x), mg(z), etc.

2.4. Equilibrium surface of optimal free-energy

We next elaborate upon the objective in (6). Consider the
functionals R, D and C parameterized using parameters
6 € © C RV First, consider the problem

F(\~) = R+ AD +~C.

min
e(z|z), 0€©

(®)

We can solve this using calculus of variations to get

e(zz) o m(=)dy(z]2)* exp (7 [ auislo logc9<y|z>) ‘

We assume in this paper that the labels are a deterministic
function of the data, i.e., p(y|z) = 0(y — y.) where y,. is
the true label of the datum z. We therefore have

me(2)dg (x2)*cp(ys|2)"
Z@,m

e(z|r) =
where the normalization constant is

Zos = [ dzmo@da(alzPealusla). O
The objective F'(\, ) can now be rewritten as maximizing
the log-partition function, also known as the free-energy in
statistical physics (Mezard & Montanari, 2009),

F(\,v) =min — (log Zg )

min ()" (10)

Remark 4 (Why is it called the ‘“‘equilibrium” surface?).
Given a finite dataset {(z, ) }, one may minimize the objec-
tive in (8) using stochastic gradient descent (SGD, Robbins
& Monro (1951)) on a Hamiltonian

H(z;2,0,\,v) = —logmg(z)—Alog dg(z|z)—vlog cy(y|z)
(11)
with updates given by

oF+Hl = 9k 5V, ]E( : [/ dz egk(z|x)H(z;x,9k,)\,’y)}
z~p(x

(12)

where o > 0 is the step-size; the gradient Vy is evaluated

over samples from p(x) and eg(z|x). Using the same tech-

nique as that of Chaudhari & Soatto (2017), one can show

that the objective

pE (1082000, ]~ cHO] {z.0)))
decreases monotonically. Observe that our objective in (8)
corresponds to the limit ¢ — 0 of this objective along
with a uniform non-informative prior m(6) in (5). In fact,
this result is analogous to the classical result that an er-
godic Markov chain makes monotonic improvements in
the KL-divergence as it converges to the steady-state, also
known as, equilibrium, distribution (Levin & Peres, 2017).
The posterior distribution of the model parameters induced
by the stochastic updates in (12) is the Gibbs distribution
(0] {(2.9)}) x exp (=2(R + AD +~C)/0).

It is for the above reason that we call the surface in Fig. 1b
parameterized by

O, = {9 €0:— (108 Zy.0) 0 = F(A,v)} (13)

as the “equilibrium surface”. Learning, in this case mini-
mizing (8), is initialized outside this surface and converges
to specific parts of the equilibrium surface depending upon
(A, ¥); this is denoted by the red and blue curves in Fig. 1b.
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The constraint that ties results in this equilibrium surface
is that variational inequalities such as (2) (more are given
in Alemi & Fischer (2018)) are tight up to the capacity of
the model. This is analogous to the concept of equilibrium
in thermodynamics (Sethna, 2006)

3. Dynamical processes on the equilibrium
surface

This section prescribes dynamical processes that explore
the equilibrium surface. For any parameters § € O, not
necessarily on the equilibrium surface, let us define

J(07 Aa ,Y) = - <10g ZQ,w>p(z) . (14)
If 0 € ©, -, we have J(0, \,v) = F(\, ) which implies

VeJ(0,A,v) =0forall 6 € O, ,. (15)

Quasi-static process. A quasi-static process in thermo-
dynamics happens slowly enough for a system to remain
in equilibrium with its surroundings. In our case, we are
interested in evolving Lagrange multipliers (), ) slowly
and simultaneously keep the model parameters 6 on the
equilibrium surface; the constraint (15) thus holds at each
time instant. The equilibrium surface is parameterized by
R, D and C so changing (), ) adapts the three functionals
to track their optimal values corresponding to F'(\, ).

Let us choose some values (A,%) and the trivial dynamics
%)\ = A and %7 = 4. The quasi-static constraint leads to
the following partial differential equation (PDE)

0= %vgj(e, A\y)=ViJo+ )\%V(;J + ﬁ/%VgJ
(16)
valid all & € ©, . At each location 6 € O, , the above
PDE indicates how the parameters should evolve upon
changing the Lagrange multipliers (), ). We can rewrite
the PDE using the Hamiltonian H in (11) as shown next.

Lemma 5 (Equilibrium dynamics for parameters 0).
Given (\, %), the parameters 6 € © ., evolve as

0=A"1by A+ A7, 5

: (17)
= O\ + 0,5

where H is the Hamiltonian in (11) and

A=V3iJ
= B [{V3H) + (Vol) (VoH)" = (VoH Vg H)]:
0
by = faw}
_ OVoH oOH oH .
== 5[5~ Garmem) = (v oo
0
by = ——
v = =gy Vel

- 5 (25) - (o) (2) )

All the inner expectations (-) above are taken with respect
to the Gibbs measure of the Hamiltonian, i.e., {p) =
J pexp(—H(z)) dz

| exp(—H(z)) dz °
therefore a function of the two directional derivatives

The dynamics for the parameters 0 is

O0n=A"1by, and 0,=A"1b, (18)

with respect to A and . Note that A in (17) is the Hessian
of a strictly convex functional.

This lemma allows us to implement dynamical processes
for the model parameters 6 on the equilibrium surface. As
expected, this is an ordinary differential equation (17) that
depends on our chosen evolution for ()\, ) through the di-
rectional derivatives 0, 6. The utility of the above lemma
therefore lies in the expressions for these directional deriva-
tives. Appendix C gives the proof of the above lemma.

Remark 6 (Implementing the equilibrium dynamics).
The equations in Lemma 5 may seem complicated to com-
pute but observe that they can be readily estimated using
samples from the dataset  ~ p(z) and those from the en-
coder z ~ eg(z|z). The key difference between (17) and,
say, the ELBO objective is that the gradient in the former
depends upon the Hessian of the Hamiltonian H. These
equations can be implemented using Hessian-vector prod-
ucts (Pearlmutter, 1994). If the dynamics involves certain
constrains among the functionals, as Remark 7 shows, we
simplify the implementation of such equations.

3.1. Iso-classification process

An iso-thermal process in thermodynamics is a quasi-static
process where a system exchanges energy with its surround-
ings and remains in thermal equilibrium with the surround-
ings. We now analogously define an iso-classification pro-
cess that adapts parameters of the model 6 while the free-
energy is subject to slow changes in (A, ). This adaptation
is such that the classification loss is kept constant while the
rate and distortion change automatically.

Following the development in Lemma 5, it is easy to create
an iso-classification process. We simply add a constraint of
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the form
d . . -
—VyJ =0 (Quasi-Static Condition)
dt
. (19)
&C’ =0 (Iso-classification Condition).

Using a very similar computation (given in Appendix D) as
that in the proof of Lemma 5, this leads to the constrained
dynamics _

0=C\+Cy

0= 0\\+0.,7.
The quantities C'y and C,, are given by

o=, ()0 (-
=, [0 ) s
(2D

where ¢ = log cy(y,|z) is the logarithm of the classifica-
tion loss. Observe that we are not free to pick any values
for ()\, %) for the iso-classification process anymore, the
constraint % = 0 ties the two rates together.

(20)

Remark 7 (Implementing an iso-classification process).
The first constraint in (20) allows us to choose

e a2 - _OF

- 87 Oy? 9
. 9C _ O°F 22)
TTYN T “aray

where « is a parameter to scale time. The second equalities
in both rows follow because F'(A,) is the optimal free—
energy which implies relations like D = gi and C = a

We can now compute the two deriatives in (22) using ﬁmte
differences to implement an iso-classification process. This
is equivalent to running the dynamics in (20) using finite-

; imati OH OH 9Vel
difference approximation for the terms 337, 5, 55—

OVeH
o

. While approximating all these listed quantities at
each update of # would be cumbersome, exploiting the
relations in (20) is efficient even for large neural networks,
as our experiments show.

Remark 8 (Other dynamical processes of interest). In
this paper, we focus on iso-classification processes. How-
ever, following the same program as that of this section,
we can also define other processes of interest, e.g., one that
keeps C' + 31 R constant while fine-tuning a model. This is
similar to the alternative Information Bottlenck of Achille &
Soatto (2017) wherein the rate is defined using the weights
of a network as the random variable instead of the latent
factors z. This is also easily seen to be the right-hand side
of the PAC-Bayes generalization bound (McAllester, 2013).
A dynamical process that preserves this functional would be
able to control the generalization error which is an interest-
ing prospect for future work.

{0V H) + <e;vge>]

— (8TVoH) + (8] Vol) }{xlv R

4. Transferring representations to new tasks

Section 3 demonstrated dynamical processes where the La-
grange multipliers A, v change with time and the process
adapts the model parameters 6 to remain on the equilibrium
surface. This section demonstrates the same concept under a
different kind of perturbation, namely the one where the un-
derlying task changes. The prototypical example one should
keep in mind in this section is that of transfer learning where
a classifier trained on a dataset p®(x, y) is further trained on
a new dataset, say p‘(z,y). We will assume that the input
domain of the two distributions is the same.

4.1. Changing the data distribution

If i.i.d samples from the source task are denoted by X* =
Ty, } and those of the target distribution are X* =

xh, . al, } the empirical source and target distributions
can be written as

ndegj m,andp ntZ(SI ot

respectively; here §,_, is a Dirac delta distribution at z’.
We will consider a transport problem that transports the
source distribution p® () to the target distribution p*(z). For
any ¢ € [0, 1] we interpolate between the two distributions
using a mixture

pla,t) = (1 —t)p*(z) + tp'(2).

Observe that the interpolated data distribution equals the
source and target distribution at £ = 0 and £ = 1 respec-
tively and it is the mixture of the two distributions for other
times. We keep the labels of the data the same and do not
interpolate them. As discussed in Appendix F we can also
use techniques from optimal transportation (Villani, 2008)
to obtain a better transport; the same dynamical equations
given below remain valid in that case.

pi(z) =

(23)

4.2. Iso-classification process with a changing data
distribution

The equilibrium surface © , in Fig. 1b is a function of the
task and also evolves with the task. We now give a dynami-
cal process that keeps the model parameters in equilibrium
as the task evolves quasi-statically. We again have the same
conditions for the dynamics as those in (19). The following
lemma is analogous to Lemma 5.

Lemma 9 (Dynamical process for changing data distri-
bution). Given (\,%), the evolution of model parameters 0
for a changing data distribution given by (23) is

0= 0\\+ 0,5+ 6, (24)
where
0, =A b = —A"1 / % (VoH) dz  (25)
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and the other quantities are as defined in Lemma 5 with
the only change that expectations on data x are taken with
respect to p(x,t) instead of p(x). The additional term 6,
arises because the data distribution changes with time.

A similar computation as that of Section 3.1 gives a quasi-
static iso-classification process as the task evolves

0 = 0\\+ 0,4 + 0,

. (26)
OZC)\/\+CV’Y+C15

where C), and C,, are as given in (21) with the only change
being that the outer expectation is taken with respect to
x ~ p(z,t). The new term that depends on time ¢ is

space is Euclidean and therefore the geodesic is simply a
straight line. Since we keep the classification loss con-
stant during the transfer, c =0, straight line implies
that slope dD/dR is a constant, say k. Thus D = kR.
Observe that R = %D + g—gC’ + % = -\D + %.
Combining the iso-classification constraint and the fact that
D=kR=—k\D + k%—}f, gives us a linear system:

oD 0D 0D _
a "o ey T
ac. aCc. ac

T e

OR
kSt .
14+ kX

(30)

We solve this system to update (), ) during the transfer.

" Op(z,t . . .
@Z*/J%ﬁwmfwﬁﬂWﬁwﬂ@*@vﬁ@+WVW5Em%nmmﬂMVNMan

27
with £ = log ¢y (yz, |2). Finally get
. Cx : Cy
0=(0r——==06,]A 0, — —0
<A <, ”) +<t c, ”). (28)

= é,\)\ + ét

This indicates that = 0(\, t) is a surface parameterized by
A and t, equipped with a basis of tangent plane (0, 0;).

4.3. Geodesic transfer of representations

The dynamics of Lemma 9 is valid for any (), ¥). We pro-
vide a locally optimal way to change (), ) in this section.

Remark 10 (Rate-distortion tradeoff). Note that

C =0,
. D 9D, O*F O°F ([ 0°F \°
D=—"\+—9%=—-« -
o\ oy ON2 02 OOy
= —adet (Hess(F)),
OR . OR
R a—DD + %C’ —-AD

(29)
The first equality is simply our iso-classification constraint.
For « > 0, the second one indicates that D < 0 us-
ing Lemma 3 which shows that 0 > Hess(F'). This also
gives A > 0in (22). The third equality is a powerful obser-
vation: it indicates a trade-off between rate and distortion,
if D < 0 we have R > 0. It also shows the geometric
structure of the equilibrium surface by connecting Rand D
together, which we will exploit next.

Computing the functionals R, D and C during the iso-
classification transfer presents us with a curve in RDC
space. Geodesic transfer implies that the functionals R, D
follow the shortest path in this space. But notice that if
we assume that the model capacity is infinite, the RDC'

This section presents experimental validation for the ideas in
this paper. We first implement the dynamics in Section 3 that
traverses the equilibrium surface and then demonstrate the
dynamical process for transfer learning devised in Section 4.

Setup. We use the MNIST (LeCun et al., 1998) and
CIFAR-10 (Krizhevsky, 2009) datasets for our experiments.
We use a 2-layer fully-connected network (same as that
of Kingma & Welling (2013)) as the encoder and decoder
for MNIST; the encoder for CIFAR-10 is a ResNet-18 (He
et al., 2016) architecture while the decoder is a 4-layer de-
convolutional network (Noh et al., 2015). Full details of
the pre-processing, network architecture and training are
provided in Appendix A.

5.1. Iso-classification process on the equilibrium
surface

This experiment demonstrates the iso-classification process
in Remark 7. As discussed in Remark 4, training a model
to minimize the funtional R + AD + vC decreases the free-
energy monotonically.

Details. Given a value of the Lagrange multipliers (), v) we
first find a model on the equilibrium surface by training from
scratch for 120 epochs with the Adam optimizer (Kingma &
Ba, 2014); the learning rate is set to 10~ and drops by a fac-
tor of 10 every 50 epochs. We then run the iso-classification
process for these models in Remark 7 as follows. We modify
(), ) according to the equations

and 4 =a2l 31)

Changes in (), ) cause the equilibrium surface to change,
so it is necessary to adapt the model parameters 6 so as to
keep them on the dynamically changing surface; let us call
this proces of adaptation “equilibriation”. We achieve this
by taking gradient-based updates to minimize J (A, ) with a
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Figure 2. Iso-classification process for MNIST. We run 5 different experiments for initial Lagrange multipliers given by A = 0.25 and
v € {4,6,8,10, 15}. During each experiment, we modify these Lagrange multipliers (Fig. 2b) to keep the classification loss constant and
plot the rate-distortion curve (Fig. 2a) along with the validation loss (Fig. 2c). The validation accuracy is constant for each experiment; it
is between 92-98% for these initial values of (X, ~y). Similarly the training loss is almost unchanged during each experiment and takes
values between 0.06-0.2 for different values of (), ).
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Figure 3. Iso-classification process for CIFAR-10. We run 4 different experiments for initial Lagrange multipliers A = 0.5 and
v € {5,10,15,20}. During each experiment, we modify the Lagrange multipliers (Fig. 3b) to keep the classification loss constant and
plot the rate-distortion curve (Fig. 3a) along with the validation accuracy (Fig. 3c). The validation loss is constant during each experiment;
it takes values between 0.5-0.8 for these initial values of (), ). Similarly, the training loss is constant and takes values between 0.02-0.09
for these initial values of (), 7). Observe that the rate-distortion curve in Fig. 3a is much flatter than the one in Fig. 2a which indicates
that the model family © for CIFAR-10 is much more powerful; this corresponds to the straight line in the RD curve for an infinite model
capacity is as shown in Fig. la.

learning rate schedule that looks like a sharp quick increase 5.2. Transfer learning between two subsets of MNIST
from zero and then a slow annealing back to zero. The learn-
ing rate schedule is given by n(t) = (t/T)%(1 —t/T)°
where ¢ is the number of mini-batch updates taken since the
last change in (A, ) and T is total number of mini-batch
updates of equilibriation. The maximum value of the learn-
ing rate is set to 1.5 x 1073, The free-energy should be
unchanged if the model parameters are on the equilibrium
surface after equilibriation; this is shown in Fig. 4a. Partial
derivatives in (31) are computed using finite-differences.

We next present experimental results of an iso-classification
process for transferring the learnt representation. We pick
the source dataset to be all images corresponding to digits
0—4 in MNIST and the target datast is its complement, im-
ages of digits 5-9. Our goal is to adapt a model trained on
the source task to the target task while keeping its classifica-
tion loss constant. We run the geodesic transfer dynamics
from Section 4.3 and the results are shown in Fig. 5.

It is evident that the classification accuracy is constant
throughout the transfer and is also the same as that of train-
ing from scratch on the target. MNIST is an simple dataset
and the accuracy gap between iso-classification transfer,
fine-tuning from the source and training from scratch is
minor. The benefit of running the iso-classification trans-
fer however is that we can be guaranteed about the final
accuracy of the model. The gap between these three to

Fig. 2 shows the result for the iso-classification process
for MNIST and Fig. 3 shows a similar result for CIFAR-
10. We can see that the classification loss remains constant
through the process. This experiment shows that we can
implement an iso-classification process while keeping the
model parameters on the equilibrium surface during it.
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Figure 4. Variation of the free-energy F'()\,~) across the equi-
libriation and the iso-classification processes. Fig. 4a shows the
free-energy during equilibriation between small changes of (), ).
The initial and final values of the Lagrange multipliers are (0.5, 1)
and (0.51, 1.04) respectively and the free-energy is about the same
for these values. Fig. 4b shows the free-energy as (A, ) undergo
a large change from their initial value of (0.25, 4) to (3.5, 26) dur-
ing the iso-classification process in Fig. 2. Since the rate-distortion
change a lot (Fig. 2a), the free-energy also changes a lot even if
C' is constant (Fig. 2¢). Number of steps in Fig. 4b refers to the
number of steps of running (31).
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Figure 5. Transfering from source dataset of MNIST digits 0—

4 to the target dataset consisting of digits 5-9. Fig. 5a shows
the variation of rate and distortion during the transfer; as discussed
in Section 4.3 we maintain a constant dR/d D during the transfer;
the rate decreases and the distortion increases. Fig. 5b shows
the validation accuracy during the transfer. The orange curve
corresponds to geodesic iso-classification transfer; the blue curve
is the result of directly fine-tuning the source model on the target
data (note the very low accuracy at the start); the green point is the
accuracy of training on the target task from scratch.

be significant for more complex datasets in the following
section.

5.3. Transfer learning between two subsets of CIFAR10

The iso-classification process is a quasi-static process, i.e.,
the model parameters 6 are lie on the equilibrium surface
at all times ¢ € [0, 1] during the transfer. Note that both
the equilibrium surface and the free-energy F'()\, ) are
functions of the data and change with time. Let us write this
explicitly as

F(t) := R(t, A(£),7(t)) + AD(t, A1), (1)) +7Co

where () is the classification loss. We prescribed a geodesic
transfer above where the Lagrange multipliers A,y were
adapted simultaneously to confirm to the constraints of the
equilibrium surface locally. We can also adapt them using
the following heuristic. We let A = k for some constant k
and use

oC i ocC' .

90, oC, 00
"oy T ot

=0, (32)

to get the evolution curve of ~y(t).

Here we present experimental results of an iso-classification
process for transferring the learnt representation. We pick
the source dataset to be all vehicles (airplane, automobile,
ship and truck) in CIFAR-10 and the target dataset consists
of four animals (bird, cat, deer and dog). We set the output
size of classifier to be four. Our goal is to adapt a model
trained on the source task to the target task while keeping
its classification loss constant. We run the iso-c transfer
dynamics (32) and the results are shown in Fig. 6.
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Figure 6. Transferring from source dataset of CIFAR-10 vehi-
cles to the target dataset consisting of four animals. Fig. 6a
shows the variation of validation loss during the transfer. Fig. 6b
shows the validation accuracy during the transfer. The orange
curve corresponds to iso-classification transfer; the blue curve is
the result of directly fine-tuning the source model on the target
data (note the very low accuracy at the start); the green point is the
accuracy of training on the target task from scratch.

It is evident that both the classification accuracy and loss
are constant throughout the transfer. CIFAR-10 is a more
complex dataset as comparing with MNIST and the accuracy
gap between iso-classification transfer, fine-tuning from the
source and training from scratch is significant. Observe that
the classification loss gap between iso-classification transfer
and training from scratch on the target is also significant.
The benefit of running the iso-classification transfer is that
we can be guaranteed about the final accuracy and validation
loss of the model.

Details of the experimental setup for CIFAR-10 trans-
ferring. At moment ¢, parameters ), v determine our objec-
tive functions. We compute iso-classification loss transfer
process by first setting initial states: (A = 4,7 = 100).
We train on source dataset for 300 epochs with Adam and
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a learning rate of 1E-3 that drops by a factor of 10 after
every 120 epochs to obtain the initial state. We change A,
~ with respect to time ¢ and then apply the equilibration
learning rate schedule of Fig. 4a to achieve the transition
between equilibrium states. We compute the partial deriva-
tives %, % and % by using finite difference. At each
time ¢, solving (32) with the partial derivatives leads to the
solqtion for 4, where \ is a constant. In our experiment we

set \ = —1.5.

6. Related work

We are motivated by the Information Bottleneck (IB) princi-
ple of Shwartz-Ziv & Tishby (2017); Tishby et al. (2000),
which has been further explored by Achille & Soatto (2017);
Alemi et al. (2016); Higgins et al. (2017). The key difference
in our work is that while these papers seek to understand
the representation for a given task, we focus on how the
representation can be adapted to a new task. Further, the La-
grangian in (8) has connections to PAC-Bayes bounds (Dzi-
ugaite & Roy, 2017; McAllester, 2013) and training algo-
rithms that use the free-energy (Chaudhari et al., 2019). Our
use of rate-distortion for transfer learning is close to the
work on unsupervised learning of Brekelmans et al. (2019);
Ver Steeg & Galstyan (2015).

This paper builds upon the work of Alemi & Fischer (2018);
Alemi et al. (2017). We refine some results therein, viz., we
provide a proof of the convexity of the equilibrium surface
and identify it with the equilibrium distribution of SGD
(Remark 4). We introduce new ideas such as dynamical
processes on the equilibrium surface. Our use of thermody-
namics is purely as an inspiration; the work presented here
is mathematically rigorous and also provides an immediate
algorithmic realization of the ideas.

This paper has strong connections to works that study
stochastic processes inspired from statistical physics for
machine learning, e.g., approximate Bayesian inference and
implicit regularization of SGD (Chaudhari & Soatto, 2017;
Mandt et al., 2017), variational inference (Jordan et al.,
1998; Kingma & Welling, 2013). The iso-classification
process instantiates an “automatic” regularization via the
trade-off between rate and distortion; this point-of-view is
an exciting prospect for future work. The technical content
of the paper also draws from optimal transportation (Villani,
2008).

A large number of applications begin with pre-trained mod-
els (Girshick et al., 2014; Sharif Razavian et al., 2014) or
models trained on tasks different (Doersch & Zisserman,
2017). Current methods in transfer learning however do not
come with guarantees over the performance on the target
dataset, although there is a rich body of older work (Bax-
ter, 2000) and ongoing work that studies this (Zamir et al.,

2018). The information-theoretic understanding of transfer
and the constrained dynamical processes developed in our
paper is a first step towards building such guarantees. In this
context, our theory can also be used to tackle catastrophic
forgetting Kirkpatrick et al. (2017) to “detune” the model
post-training and build up redundant features.

7. Discussion

We presented dynamical processes that maintain the param-
eters of model on an equilibrium surface that arises out of
a certain free-energy functional for the encoder-decoder-
classifier architecture. The decoder acts as a measure of the
information discarded by the encoder-classifier pair while
fitting on a given task. We showed how one can develop
an iso-classification processs that travels on the equilibrium
surface while keeping the classification loss constant. We
showed an iso-classification transfer learning process which
keeps the classification loss constant while adapting the
learnt representation from a source task to a target task.

The information-theoretic point-of-view in this paper is
rather abstract but its benefit lies in its exploitation of the
equilibrium surface. Relationships between the three func-
tionals, namely rate, distortion and classification, that define
this surface, as also other functionals that connect to the
capacity of the hypothesis class such as the entropy S may
allow us to define invariants of the learning process. For
complex models such as deep neural networks, such a pro-
gram may lead an
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